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Neurons in successive stages of the primate ventral visual pathway encode the spatial

structure of visual objects. In this paper, we investigate through computer simulation how

these cell firing properties may develop through unsupervised visually-guided learning.

Individual neurons in the model are shown to exploit statistical regularity and temporal

continuity of the visual inputs during training to learn firing properties that are similar to

neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour

elements at a particular position within an object regardless of the location of the object

on the retina, while neurons in TEO integrate information from multiple boundary contour

elements. This representation goes beyond mere object recognition, in which neurons

simply respond to the presence of a whole object, but provides an essential foundation

from which the brain is subsequently able to recognize the whole object.

Keywords: ventral visual pathway, neural network, trace learning, V4, TEO, shape representation, hierarchical

networks

1. Introduction

1.1. Hierarchical Representations in the Primate Ventral Visual Pathway
Over successive stages of processing, the primate ventral visual pathway develops neurons that
respond selectively to objects of increasingly complex visual form (Kobatake and Tanaka, 1994),
going from simple orientated line segments in area V1 (Hubel andWiesel, 1962) to whole objects or
faces in the anterior inferotemporal cortex (TE) (Perrett et al., 1982; Tsunoda et al., 2001; Tsao et al.,
2003). In addition, in higher layers of the ventral pathway, the responses of neurons to objects and
faces show invariance to retinal location, size, and orientation (Tanaka et al., 1991; Rolls et al., 1992;
Perrett and Oram, 1993; Rolls, 2000; Rolls and Deco, 2002). These later stages of processing carry
out object recognition by integrating information frommore elementary visual features represented
in earlier layers (Brincat and Connor, 2004). Thus, in order to understand visual object recognition
in the primate brain, we need also to understand the encoding of more elementary features in
the early and middle stages of the ventral visual pathway. In particular, many theories suppose
that object recognition operates through the computation of intermediate representations which
reflect the spatial relations between the parts of objects (Giersch, 2001; Pasupathy and Connor,
2001; Brincat and Connor, 2004).

Experimental studies have shown that neurons in successive stages of the primate ventral
visual pathway encode the spatial structure of visual objects and their parts. For example, single
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unit recording studies carried out by Pasupathy and Connor
(2001) have shown that, within an intermediate stage of the
ventral visual pathway, area V4, there are neurons that respond
selectively to the shape of a local boundary element at a particular
position in the frame of reference of the object. Some of
these V4 neurons also maintain their response properties as an
object shifts across different locations on the retina (Pasupathy
and Connor, 2002). Further experimental studies have shown
that neurons in the later stages of the ventral visual pathway,
TEO and posterior TE, integrate information from multiple
boundary contour elements (Brincat and Connor, 2004). This
representation of the detailed spatial form of the separate parts
of each object may provide a necessary foundation for the
subsequent recognition of whole objects. That is, object selective
cells at the end of the ventral visual pathwaymay learn to respond
to unique distributed representations of object shape in earlier
areas (Booth and Rolls, 1998).

1.2. Computer Modeling Study
A number of modeling studies have tried to reproduce
the observed shape selective and translation invariant firing
properties of neurons in area V4 (Cadieu et al., 2007; Rodríguez-
Sánchez and Tsotsos, 2012). However, these past models have
not utilized biologically plausible local learning rules, which
use pre- and post-synaptic cell quantities to drive modification
of the synaptic connections during visually-guided learning.
Therefore, it still remains a challenge to understand exactly how
V4 neurons develop their shape selective response properties
through learning. The purpose of this paper is to provide
a biologically plausible theory of this learning process. More
generally, we investigate through computer simulation how the
cell firing properties reported in visual areas V4, TEO, and
posterior TE may develop through visually-guided learning, and
thus how the primate ventral visual pathway learns to represent
the spatial structure of objects.

The simulation studies presented below are conducted with an
established neural network model of the primate ventral visual

FIGURE 1 | Left: Stylized image of the four layer VisNet architecture.

Right: Convergence in the visual system. The diagonal lines show the

convergence of feed-forward connections through successive layers of

the ventral visual system leading to an increase in receptive field size

from 1.3◦ in V1 to 50◦ in TE (Figures excerpted from Wallis and Rolls,

1997).

pathway, VisNet (Wallis and Rolls, 1997), shown in Figure 1.
The standard network architecture consists of a hierarchy of
four competitive neural layers (Rumelhart and Zipser, 1985)
corresponding to successive stages of the ventral visual pathway.
The VisNet architecture is feed-forward with lateral interactions
within layers. Many engineering approaches to efficiently solve
similar problems extensively rely their architectures on top-
down information flows, mainly for their supervised learning.
However, our aim is to pin down the simplest form of core-
mechanisms in intermediate vision, that is sufficient to explain
a specific brain function. In fact, in other feature hierarchical
neural network modeling studies, such top-down information
transfer is often excluded (Olshausen et al., 1993; Riesenhuber
and Poggio, 1999; Serre et al., 2005, 2007; Wallis, 2013).

The researchers involved in these last publications
acknowledge the extensive presence of such back projections
in the visual cortex; however, they also think the exact roles
of these projections still remain a matter of debate. For
example, it has been proposed that the role of these feedback
pathways is to relay the interpretations of higher cortical
areas to lower cortical areas in order to verify the high-level
interpretation of a scene (Mumford, 1992) or to refine the
tuning characteristics of lower-level cortical cells based upon
the interpretations made in higher cortical areas (Tsotsos, 1993).
On the other hand, numerous physiological studies have also
reported that only short time spans are required for various
selective responses to appear in monkey IT cells, which imply
that feedback processes may not be critical for coarse, rapid
recognition (Perrett et al., 1992; Hung et al., 2005; vanRullen,
2008).

We also stand on the similar point of view, and learning
mechanisms implemented in the current model are a direct
extension of previous papers in the field (Rumelhart and
Zipser, 1985). In our paper, we have applied these established
learning mechanisms to the important new problem of how the
primate ventral visual system learns to represent the shapes of
objects.
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1.3. Hypothesis
In this paper, we consider how biologically plausible neuronal
and synaptic learning mechanisms may be applied to the
challenge of explaining (i) how neurons in V4 learn to respond
selectively to the shape of localized boundary contour elements
in the frame of reference of the object, (ii) how neurons in
areas TEO and posterior TE learn to respond to localized
combinations of boundary contour elements, and (iii) how these
neurons learn to respond with translation invariance as the object
is shifted through different retinal locations. In particular, we
hypothesize that a biologically plausible solutionmay be provided
by combining the statistical decoupling (Stringer et al., 2007;
Stringer and Rolls, 2008) that will occur between different forms
of boundary contour element over a large population of different
object shapes, with the use of a temporal trace learning rule to
modify synaptic weights as objects shift across different retinal
locations (Wallis and Rolls, 1997; Rolls, 2000).

1.3.1. Neurons Learn to Respond to Individual

Boundary Contour Elements by Exploiting Statistical

Decoupling
In previous work, we have investigated how VisNet may learn
transform invariant representations of individual objects if the
network is always presented with multiple objects simultaneously
during training (Stringer et al., 2007; Stringer and Rolls, 2008).
We have found that if VisNet is trained on different combinations
of objects on different occasions and as long as there are enough
objects in the total pool of objects, this will result in statistical
decoupling between any two objects. This statistical decoupling
forces neurons in the higher competitive layers of VisNet to learn
to respond to the individual objects, rather than the combinations
of objects on which the network is actually trained.

This is because a competitive neural network has a capacity
limit in terms of the number of object categories that can be
represented in a non-overlapping manner in the output layer.
Figure 2A provides some insight into the learning mechanisms
driving the formation of neurons encoding individual object.

Consider the highly simplified situation where, a winner-take-all
competitive network with 64 × 64 = 4096 output neurons is
presented with n different objects, which are presented in pairs
to VisNet during training. With winner-take-all competition,
the network is able to develop 4096 non-overlapping output
representations. Figure 2A shows how the number of individual
objects, y1 = n, and the number of possible objects comprised
of pairs of objects y2 =n C2 = n(n − 1)/2, rise quadratically
with increasing n. Because of this, y2 reaches the capacity limit of
the network much more quickly than y1. Therefore, for n > 91,
individual output neurons are forced to switch from representing
the objects to representing the individual objects. Although, of
course, the output layer as a whole will still provide unique
representations of the pairs of objects, themselves, but in a
distributed, overlapping manner.

We now propose that a similar learning mechanism may
operate to enable the network to learn to represent the
individual boundary contour elements within objects. For
example, consider the simplified case shown in Figure 3A.
This figure shows a set of four sided shapes, where each side
has one of three possible conformations: concave, straight, or
convex. Therefore, there are 4 sides × 3 side types = 12
different boundary contour elements (each defined by a unique
combination of position and shape), which may be used to
construct a total of 34 = 81 different whole objects. We
demonstrate that, when VisNet is trained on such a population of
different object shapes constructed from different combinations
of boundary contour elements, there is statistical decoupling
between any two boundary contour elements.

Figure 2B provides an illustration of how the capacity limit
forces output neurons to learn to represent individual boundary
elements. Figure 2B (left) shows two different object shapes that
share a boundary element at the bottom, which are presented to
the network during training. Each of the two objects stimulates a
subset of output neurons, and those neurons learn to represent
each shape through associative learning in the feed-forward
synaptic connections. The situation in the figure supposes that

FIGURE 2 | (A) The capacity limit of a competitive neural network forces

individual output neurons to switch from representing object shapes to

representing the boundary elements as the number of object shapes on

which the network is trained increases. (B) Illustration of how the network

model develops neurons that have learned to respond to individual boundary

elements of 2D object shapes.
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FIGURE 3 | (A) Form of visual objects used to train and test VisNet

for Study 1. Each object has a fixed number of sides (n), each of

which has a fixed number of possible boundary conformations (p).

(B) Form of visual objects used to train and test VisNet in Study 2.

These visual stimuli are similar to those used in the original

neurophysiological experiments of Pasupathy and Connor (2001). (C)

Examples of some of the realistic visual objects used for training

VisNet in Study 3.

the subset of the neurons activated partly overlap. In this
situation, the boundary element at the bottom becomes especially
strongly associated with the subset of output neurons at the
intersection of the two object shape representations. Figure 2B
(right) shows that during testing this intersecting subset of output
neurons will respond whenever the network is presented with
an object shape containing the given boundary element. In this
manner, without any top-down information transfer, the network
should be able to develop representations of localized boundary
elements. This kind of the distributed coding of 2D object shape,
utilizing an alphabet of localized boundary elements, may be used
to represent the shape of any object.

1.3.2. Neurons Develop Translation Invariant

Responses Through Trace Learning (Temporal

Association)
Another key property of the neurons reported by Pasupathy and
Connor (2001) in area V4, and neurons reported by Brincat
and Connor (2004) in areas TEO and posterior TE, is that they
respond with translation invariance as an object shifts across
different locations over the receptive field. The question is how
these neurons might learn to respond in such a translation
invariant manner?

One possible explanation is that the brain uses temporal
associative learning to develop such transformation invariant
representations. The theory assumes that, every now and
then, a primate will make a series of fixations at different
points on the same visual object before moving onto

another object; much experimental work has studied the
statistics of saccades and fixations across natural visual scenes
(Findlay and Gilchrist, 2003). Of particular relevance is how the
eyes saccade around natural visual scenes containing multiple
objects. Seminal psychophysical studies of how human subjects
move their gaze around pictures of natural scenes were carried
out by Yarbus (1967). It was indeed evident from this work that
there was a tendency for observers to shift their fixation to a
number of different points on a salient object, such as a person,
before moving onto the next object.

Therefore, we assume that eye movements would be
sufficiently small so that the same object is always projected
within the simulated receptive field when learning it. We believe
this constraint is reasonable to simulate recent physiological
findings. For example, Li and DiCarlo (2008) conducted a study
where monkeys are trained to track an object on a screen where
a object with identity A is originally placed on the one of two
possible retinal positions (+3◦ or −3◦) and later shifted to the
center (0◦). In the experimental condition, the identity of the
object is swapped from A to B when it is shifted to the center, and
the eyes saccade to it. As a results, individual neurons in primate
IT that are originally translation-invariantly selective to identity
A start to respond also to object with identity B only at the specific
retinal location. This finding does not exclude the possibility of
the temporal association learning which may occur at larger eye
movement; however, it provided a reasonable evidence for the
translation invariance learning mechanism within IT (Isik et al.,
2012).
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Accordingly, our proposed solution is temporal trace learning
(Foldiak, 1991; Wallis and Rolls, 1997; Rolls and Milward, 2000).
An example of such a learning rule is given in Section 2. If the
eyes shift about a visual scene more rapidly than the objects
change within the scene, then the images of an object in different
locations on the retina will tend to be clustered together in time.
In this case, a trace learning rule will encourage neurons in higher
layers to learn to respond with translation invariance to specific
objects or features across different retinal locations.

This rule is biologically plausible in terms of the way it utilizes
only locally available biological quantities, that is, the present
and recent activities of the pre- and post-synaptic neurons,
respectively. Also, it has been shown that this type of temporal
associative learning arises naturally within biophysically realistic
spiking neural networks when longer time constants for synaptic
conductance are introduced (Evans and Stringer, 2012).

Our past research has shown that this trace learning rule
may be combined with the mechanism of statistical decoupling
described above to produce translation invariant representations
of statistically independent visual objects (Stringer et al., 2007;
Stringer and Rolls, 2008). We hypothesize that the same trace
learning rule could encourage neurons representing boundary
contour elements to respond with translation invariance across
different retinal locations.

1.4. Overview of Simulation Studies Carried Out
in this Paper
Study 1 provides a proof-of-principle analysis. VisNet was trained
on artificial visual objects similar to those shown in Figure 3A.
These carefully constructed objects allowed us to explore how
the statistical decoupling between different boundary contour
elements influences the neuronal firing properties that develop
during learning.We also showed how the capacity of the network
to represent many different boundary contour conformations
can be increased by introducing a Self-Organizing Map (SOM)
architecture within each layer. Finally, we used the same artificial
visual stimuli to confirm that trace learning can produce neurons
that respond to individual boundary contour elements with
translation invariance across different retinal locations.

In Study 2, the sets of visual stimuli presented to VisNet
during training and testing were similar to those used in the
original physiological experiments of Pasupathy and Connor
(2001). Examples are shown in Figure 3B. This allowed for a
direct comparison between the performance of the VisNet model
and real neurons recorded in area V4 of the primate ventral visual
pathway.

In Study 3, we trained VisNet on a large number of realistic
visual objects with different boundary shapes. A sample of these
objects is shown in Figure 3C. This generated amore realistic and
demanding test of the underlying theory.

2. Materials and Methods

2.1. Hierarchical Neural Network Architecture of
the Model
VisNet is a hierarchical neural network model of the primate
ventral visual pathway, which was originally developed by

Wallis and Rolls (1997). The standard network architecture is
shown in Figure 1. It is based on the following: (i) a series
of hierarchical competitive layers with local graded lateral
inhibition. (ii) Convergent connections to each neuron from a
topologically corresponding region of the preceding layer. (iii)
Synaptic plasticity based on a biologically-plausible local learning
rule such as the Hebb rule or trace rule, which are explained in
Section 2.4.

In past work, the hierarchical series of four neuronal layers
of VisNet have been related to the following successive stages
of processing in the ventral visual pathway: V2, V4, the
posterior inferior temporal cortex, and the anterior inferior
temporal cortex. In this paper, we model for the first time
neuronal response properties observed within a series of
intermediate layers. Due to the relatively course-grained four-
layer architecture of VisNet, we do not wish to emphasize
a specific correspondence between the layers of VisNet and
particular stages of the ventral pathway. However, as our
main focus was on the neuronal properties reported in V4
and TEO, we mostly focused on the first three layers of
VisNet.

In VisNet, the forward connections to individual cells are
derived from a topologically corresponding region of the
preceding layer, using a Gaussian distribution of connection
probabilities. These distributions are defined by a radius which
contained approximately 67% of the connections from the
preceding layer. The values employed in the current studies
are given in Table 1, which have been proposed to be realistic
in Wallis and Rolls (1997). However, to deal with more
complex images, the size of the layer was extended to 128 ×
128 neurons from 32 × 32 neurons. The gradual increase
in the receptive field of cells in successive layers reflects the
known physiology of the primate ventral visual pathway (Pettet
and Gilbert, 1992; Pasupathy, 2006; Freeman and Simoncelli,
2011).

2.2. Pre-processing of the Visual Input by Gabor
Filters
Before the visual images are presented to VisNet’s input layer 1,
they are pre-processed by a set of input filters that accord with the
general tuning profiles of simple cells in V1. The filters provide a
unique pattern of filter outputs for each transform of each visual
object, which is passed through to the first layer of VisNet. In
this paper, the input filters were matching the firing properties
of V1 simple cells, which respond to local oriented bars and
edges within the visual field (Jones and Palmer, 1987; Cumming

TABLE 1 | VisNet parameters.

Layer Dimensions Number of connections Radius

Layer 4 128× 128 100 12

Layer 3 128× 128 100 9

Layer 2 128× 128 100 6

Layer 1 128× 128 201 6

Retina 256× 256× 16
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and Parker, 1999). The input filters used are computed by the
following equations (Daugman, 1985):

g(x, y, λ, σ, θ, ψ, γ ) = exp

(

−
x′2 + γ 2y′2

2σ 2

)

cos

(

2π
x′

λ
+ ψ

)

(1)
with the following definitions:

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

(2)

where x and y specify the position of a light impulse in the
visual field (Petkov and Kruizinga, 1997). The parameter λ is
the wavelength, σ is the standard deviation which is a function
of λ and spatial bandwidth b, θ defines the orientation of the
feature, ψ defines the phase offset, and γ sets the aspect ratio.
In each experiment, an array of Gabor filters is generated at
each of 256 × 256 retinal locations with the parameters given in
Table 2.

The outputs of the Gabor filters are passed to the neurons
in layer 1 of VisNet according to the synaptic connectivity
given in Table 1. Each layer 1 neuron received connections
from 201 randomly chosen Gabor filters localized within a
topologically corresponding region of the retina. In the original
VisNet model (Wallis and Rolls, 1997), the input filters were
tuned to the four different spatial wavelengths 2, 4, 8, and
16 pixels. The shortest wavelength filters provided the highest
resolution information about the image. The neurons in the
first layer of VisNet were thus assigned most of their afferent
inputs from the shortest wavelength filters. In the current
simulations reported here, the model used inputs from only the
shortest wavelength filters, which was found to be sufficient to
represent the simple visual objects. For consistency with past
VisNet simulations, each neuron in the first layer of VisNet
received afferent connections from 201 of the short wavelength
filters.

2.3. Calculation of Cell Activations within the
Network
Within each of the neural layers 1–4 of the network, the activation
hi of each neuron i was set equal to a linear sum of the inputs yj
from afferent neurons j in the preceding layer weighted by the
synaptic weights wij. That is,

hi =
∑

j

wijyj (3)

TABLE 2 | Parameters for Gabor input filters.

Parameter (Symbol) Values

Wavelength(λ) 2

Spatial bandwidth (b) 1.5 octaves

Orientation(θ ) 0, π/4, π/2,3π/4

Phase shift (ψ ) 0: white on black bar

π : black on white bar

Aspect ratio (γ ) 0.5

where yj is the firing rate of neuron j, andwij is the strength of the
synapse from neuron j to neuron i.

2.4. Lateral Interaction between Neurons Within
each Layer
In the simulations reported below, the lateral interaction between
the neurons within each neuronal layer was implemented in one
of two different ways. The simplest approach was to implement
a competitive network architecture (Rolls and Treves, 1998),
in which neurons inhibited all of their neighbors. However, in
some simulations we also implemented a more complex SOM
architecture (Kohonen, 2000), which included both short range
excitation and longer range inhibition between neurons (i.e.,
a “Mexican hat” connectivity). A SOM architecture leads to
a map-like arrangement of neuronal response characteristics
across a layer after training, with nearby cells responding to
similar inputs. In particular, we investigated the hypothesis
that the SOM architecture could increase the capacity of the
network by enabling neurons in the higher layers to discriminate
between more boundary contour shapes. Parameters shown
in Tables 3, 4 were selected based on those that previously
optimized performance (Rolls andMilward, 2000; Tromans et al.,
2011).

2.4.1. Competitive Network Architecture
The original VisNet model implemented a competitive network
within each layer. Within each layer, competition was graded
rather than winner-take-all. To implement lateral competition,
the activations hi of neurons within a layer were convolved with a
spatial filter, Iab, where δ controlled the contrast and σ controlled
the width, and a and b indexed the distance away from the center
of the filter:

Ia,b =











−δ exp
(

− a2 + b2

σ 2

)

a 6= 0 or b 6= 0

1−
∑

a 6= 0,b 6= 0

Ia,b a = 0 and b = 0 (4)

The lateral inhibition parameters for the competitive network
architecture are given in Table 3.

TABLE 3 | Lateral inhibition parameters for the competitive network

architecture.

Layer 1 2 3 4

Radius (σ ) 1.38 2.7 4.0 6.0

Contrast (δ) 1.5 1.5 1.6 1.4

TABLE 4 | SOM parameters.

Layer 1 2 3 4

Excitatory radius (σE ) 1.4 1.1 0.8 1.2

Excitatory contrast (δE ) 5.35 33.15 117.57 120.12

Inhibitory radius (σI ) 2.76 5.4 8.0 12.0

Inhibitory contrast (δI ) 1.5 1.5 1.6 1.4
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2.4.2. Self-organizing Map
In this paper, we have also run simulations with a SOM (von
der Malsburg, 1973; Kohonen, 1982) implemented within each
layer. In the case of the SOM architecture, short-range excitation
and long-range inhibition are combined to form a Mexican-hat
spatial profile and is constructed as a difference of two Gaussians
as follows:

Ia,b = −δI exp

(

−
a2 + b2

σ 2
I

)

+ δE exp

(

−
a2 + b2

σ 2
E

)

(5)

To implement the SOM, the activations hi of neurons within a
layer were convolved with a spatial filter, Iab, where δI controlled
the inhibitory contrast and δE controlled the excitatory contrast.
The width of the inhibitory radius was controlled by σI and
the width of the excitatory radius by σE. The parameters a and
b indexed the distance away from the center of the filter. The
lateral inhibition and excitation parameters used in the SOM
architecture are given in Table 4.

2.5. Contrast Enhancement of Neuronal Firing
Rates within Each Layer
Next, the contrast between the activities of neurons with each
layer was enhanced by passing the activations of the neurons
through a sigmoid transfer function (Rolls and Treves, 1998) as
follows:

y = f sigmoid(r) =
1

1+ exp
(

−2β(r − α)
) (6)

where r is the activation after applying the lateral competition or
SOM filter, y is the firing rate after contrast enhancement, and
α and β are the sigmoid threshold and slope, respectively. The
parameters α and β are constant within each layer, although α is
adjusted within each layer of neurons to control the sparseness
of the firing rates. For example, to set the sparseness to 4%,
the threshold is set to the value of the 96th percentile point of
the activations within the layer. The parameters for the sigmoid
activation function are shown in Table 5. These are the standard
parameter values that have been used in past VisNet studies
(Stringer et al., 2006, 2007; Stringer and Rolls, 2008).

2.6. Training the Network: Visually-guided
Learning of Synaptic Weights
The outputs of the Gabor filters were passed to layer 1 of
VisNet. Activity was then propagated sequentially through
layers 2 to 4 using the same mechanisms at each layer.
During training with visual objects, the strengths of the feed-
forward synaptic connections between successive neuronal
layers are modified by local learning rules, where the change

TABLE 5 | Parameters for Sigmoid activation function.

Layer 1 2 3 4

Percentile 99.2 98 88 91

Slope (β) 190 40 75 26

in the strength of a synapse depends on the current or
recent activities of the pre- and post-synaptic neurons. Two
such learning rules were implemented with different learning
properties.

2.6.1. The Hebb Learning Rule
One simple well-known learning rule is the Hebb rule:

δwij = krτi r
τ
j (7)

where δwij is the change of synaptic weight wij from pre-synaptic
neuron j to post-synaptic neuron i, rτi is the firing rate of post-
synaptic neuron i at timestep τ , rτj is the firing rate of pre-

synaptic neuron j at timestep τ , and k is the learning rate
constant.

2.6.2. The Trace Learning Rule
An alternative learning rule that, in addition to producing
neurons that respond to individual contour elements, can
also drive the development of translation invariant neuronal
responses is the trace learning rule (Foldiak, 1991; Wallis and
Rolls, 1997), which incorporates a memory trace of recent
neuronal activity:

δwij = krτ−1
i rτj (8)

where rτi is the trace value of the firing rate of post-synaptic
neuron i at timestep τ . The trace term is updated at each timestep
according to

rτi = (1− η)rτi + ηr
τ−1
i (9)

where η may be set anywhere in the interval [0, 1], and for
the simulations described below, η was set to 0.8. The effect of
this learning rule is to encourage neurons to learn to respond
to visual input patterns that tend to occur close together in
time. If the eyes shift about a visual scene containing a static
object, then the trace learning rule will tend to bind together
successive images corresponding to that object in different retinal
locations.

In our simulations, natural eye movements are simulated
implicitly during training by shifting each visual object in turn
across a number of retinal locations. That is, to simulate natural
rapid eye movements during visual inspection of each object, the
visual object itself is shifted across the retina. After an object
shifted through all of the retinal locations, the next object was
presented across the same locations.

To prevent the same few neurons always winning the
competition, the synaptic weight vector wi of each neuron i is
renormalized to unit length after each learning update for each
training pattern by setting

wi =
wi

||wi||
(10)

where ||wi|| is the length of the vector wi given by

||wi|| =

√

∑

j

w2
ij (11)

Frontiers in Computational Neuroscience | www.frontiersin.org 7 August 2015 | Volume 9 | Article 100

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Eguchi et al. Neural representation of object shape

2.7. Testing the Network
After the synaptic weights were established by training the
network on a set of visual objects, the learned response properties
of neurons through successive layers were tested. This was
done by presenting visual objects constructed from a pool of
different boundary contour elements, with the objects being
similar or different to those used during training. A number of
tests are applied to the recorded neuronal responses, including
information theory, which are described below.We also analyzed
the learned response properties of an output cell by plotting
the subset of input Gabor filters with the strongest feed-forward
connections to that output cell after training.

2.8. Information Analysis
To quantify the performance in transformation invariance
learning with VisNet, the techniques of Shannon’s information
theory have previously been used (Rolls and Treves, 1998). In
particular, a single cell information measure was applied to
analyse the responses of individual cells. In order to keep the
notation consistent with past publications (Rolls et al., 1997; Rolls
and Milward, 2000), we have here denoted the neuronal firing
rates by r.

To be informative in the context of this study, the responses of
a given neuron (r) should be specific to a particular contour that
appears at a particular side (s), and independent of the remaining
global form of the object or retinal location. The amount of
stimulus-specific information that a certain cell transmits is
calculated from the following formula with details given by Rolls
and Milward (2000).

I(s, ER) =
∑

r∈ER

P(r|s) log2
P(r|s)

P(r)
(12)

Here s is a particular stimulus (i.e., a specific contour, at a specific
side) and ER is the set of responses of the cell to the set of objects
that contain the contour at that particular side.

In past research with VisNet, this single-cell information
analysis was used when only one object was presented to the
network at a time. Therefore, the maximum information that an
ideally developed cell could carry was log2(number of stimuli).
However, in this study, the complete object shape (composed of n
contours) is presented. Therefore, this is conceptually equivalent
to always presenting n stimuli simultaneously, thus altering
the maximum attainable value of the single-cell information to
log2(p) bits of information.

3. Results

3.1. Study 1: VisNet Simulations with Artificial
Visual Objects Constructed from Multiple
Boundary Elements
In Study 1, VisNet was trained on artificial visual objects similar
to those shown in Figure 3A. For each simulation, these visual
objects had a fixed number of sides (n), and the curvature of
each side was selected from a fixed number of different boundary
conformations or elements (p) and were projected on 256 × 256

pixels of simulated retina. Therefore, for each simulation there
were pn complete objects constructed from all combinations of
the n× p contour elements. These artificially constructed objects
allowed us to investigate how the learned neuronal response
properties are affected by n and p. We then investigated the
development of translation invariance as objects are shifted by
10 pixels at a time over a grid of four different locations on the
retina by utilizing the trace learning mechanism discussed above.

3.1.1. Development of Neurons that Respond to

Localized Boundary Conformation
We began by demonstrating how neurons in the output layer
learn to respond to individual boundary contour elements when
VisNet, implemented with competitive network, is trained on
whole objects comprised of a number of such boundary elements.
During training, the feed-forward synaptic connections were
modified using the Hebb learning rule.

VisNet was first trained on a set of stimuli with n = 3
sides: top, left, and right. Each side has two possible boundary
conformations: concave and convex. This gave a total of 23 =
8 objects. As conceptually the third layer of VisNet may
represent TEO, the VisNet architecture we used consisted of three
competitive network layers in this simulation.

Figure 4A shows the learned responses y, given by Equation
(6), of a typical output cell in layer 3 of VisNet, which developed
selectivity to a concave contour situated at the top of each
object after training; the criteria of the selectivity is whether
the cell responds with a firing rate, r, approximately equal to 1
(1.00000 ≥ y ≥ 0.99995) across a set of whole objects containing
a concave contour on the top while the cell responds with a firing
rate approximately equal to 0 (0.00005 > y ≥ 0.00000) across a
set of whole objects not containing a concave contour on the top.

Figure 4A (top) shows a histogram of the average firing rate
responses of the neuron to six (overlapping) subsets of objects,
where each subset contains all those objects that incorporate a
particular one of the six contour elements. Figure 4A (bottom)
shows the actual subsets of objects that correspond to the six
data points shown in the histogram. The results confirm that the
neuron responds selectively.

Figure 4B shows the input Gabor filters that the same output
cell in layer 3 has learned to respond to after training. In this case,
the neuron receives the strongest inputs from a subset of Gabor
filters that represent a concave contour on the top of each object.
Such neuronal representations about each contour shape were
found across the layer in the trained network. The distribution
was quantified later in Sections 3.1.3 and 3.1.4.

3.1.2. How the Responses of Neurons to their

Preferred Boundary Elements Depend on the

Position of the Boundary Element in the Frame of

Reference of the Object
Additional simulations investigated how the responses of
neurons to their preferred boundary element depended on the
position of the boundary element with respect to the object.
In these simulations, VisNet, implemented with competitive
networks, was trained on objects constructed with n = 4 sides:
top, bottom, left, and right. Each side had p = 3 possible
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FIGURE 4 | (A) The responses of a cell in the output (third) layer of

VisNet that developed selectivity to the concave contour on the top of

each object. Top: a histogram of the average firing rate responses of the

neuron to six (overlapping) subsets of objects. Bottom: the actual subsets

of objects that correspond to the six data points shown in the histogram.

The objects that the cell responds to are ringed in red. (B) The input

Gabor filters that an output cell in layer 3 has learned to respond to after

training.

boundary conformations: concave, straight and convex. During
training, the feed-forward synaptic connections were modified
using the Hebb learning rule.

VisNet was tested with two sets of objects. The first set
contained those four-sided objects from the original training set
that had at least one straight contour element, either on the right,
bottom, left, or top. The second set contained mirror images of
the first set of objects. The mirror images were constructed by
reflecting the original trained objects around the retinal location
of the vertical straight contour on the right of the training objects
so that the vertical straight contours on the right and left of the
two objects are aligned on the retina as shown in Figure 5A. If
the neuron has learned about the local image context represented
by nearby input filers, the neuron should respond only to the
original images with a vertical straight contour on the right.

This effect is confirmed in Figures 5B,C. Figure 5B shows a
histogram of the average firing rate response of the neuron to the
four subsets of trained objects that contain a straight contour at
one of the sides: right, bottom, left, and top (conventions as in
Figure 4A). The histogram confirms that the neuron has learned
to respond to a vertical straight contour on the right of each of
the trained objects. Figure 5C shows similar results for themirror
image objects. Here it can be seen that the neuron fails to respond
to any of the mirror image objects, including those mirror image
objects with a vertical straight contour on the left.

Figure 5D shows the input Gabor filters that had strong
connectivity through the layers to such a neuron. The plot is
dominated by a strong vertical straight bar on the right hand side.
This shows that the neuron has learned to respond to a straight
contour on the right of each object. However, the activity of the
neuron will also be influenced by other less strong filters shown in

the plot. These additional filters extend furthest to the left of the
dominating vertical straight bar. In particular, the strong input
filters to the left of the vertical straight bar represent boundary
contour features that could co-occur within an object with the
vertical straight contour on the right. The same is not true for
the curve on the right of the vertical straight bar, which joins
the same two vertices linked by the vertical straight bar and so
would have to be an alternative contour element to the vertical
straight bar. The effect of this pattern of additional input filters
is that the neuron may require the presence of additional object
contours to the left of the vertical straight contour in order for
the neuron to respond. That is, the neuron will only respond to
a vertical straight contour when that particular contour shape
is on the right hand side of an object rather than the left of the
object.

3.1.3. How the Number of Object Sides (n) and the

Number of Possible Boundary Elements at Each Side

(p) Affect the Learned Neuronal Response Properties
We investigated how the neuronal firing properties that develop
in the network depend on the number of object sides (n) and the
number of possible boundary contour elements (p) at each side.
Each simulation was run with a fixed value of n and p. Across
simulations, the number of sides, n, was varied from 3 to 8, while
the number of possible boundary elements, p, was varied from 2
to 4. For each simulation, the network was trained on the full set
of objects that could be constructed given the fixed values of n and
p for that simulation; however, simulations with pn > 1000 were
omitted for practical reasons. During training, the feed-forward
synaptic connections were modified using the Hebb learning rule
within VisNet implemented with competitive networks.
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FIGURE 5 | Demonstration of neuronal response tuning in an object

centered frame of reference. Example stimuli used for testing are shown

in (A). (B) Shows a histogram of the average firing rate response of the

neuron to the four subsets of trained objects that contain a straight contour

at one of the sides: right, bottom, left, and top. (C) Shows similar results for

the mirror image objects. (D) The input Gabor filters that had strong

connectivity through the layers to a neuron that had learned to respond to a

straight contour on the right of each object.

For each combination of n and p, Figure 6A (top) gives the
number of neurons that learned to respond selectively to all
objects that contained one particular type of boundary contour
element, but not to objects that did not contain that boundary
element.

It was found that the last layer of the untrained network
already contained a small number of cells that were selective
for objects that contained one type of boundary element. This
was because this simulation task was relatively easy in that it did
not require the output neurons to respond invariantly as objects
were translated across different retinal locations. In simulations
reported later in Section 3.1.6, the output neurons were tested
with the objects presented in different retinal locations. In
these simulations, training was indeed required to produce any
neurons that responded selectively to objects containing one kind
of boundary element.

In the trained network, it can be seen that all simulations
produced large numbers of neurons that were selective for
objects that contained one particular type of boundary element.
Secondly, the number of object sides, n, did not have a significant
systematic effect on the performance of the network. In contrast,

as the number of possible boundary elements at each side,
p, increased, the number of neurons that learned to respond
selectively to objects containing one type of boundary element
declined.

We hypothesize that this is due to the effective increase
in the density of the boundary contour elements at each
side, which increases the difficulty of neurons in the higher
layers developing separate representations of these more similar
boundary conformations. In particular, an invariance learning
mechanism known as Continuous Transformation (CT) learning
(Stringer et al., 2006) may cause neurons in higher layers to
learn to respond to a number of similar boundary conformations
at each side; CT learning is able to bind smoothly varying
input patterns, such as a continuum of different possible
boundary conformations at one of the object sides, onto the
same postsynaptic neuron. In this way, CT learning may
dramatically reduce the selectivity of neurons for particular
boundary conformations.

Typical network behavior for a relatively large value of p is
shown in Figure 7. In this example, the network was trained
on objects with n = 3 sides, each of which had p = 4
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FIGURE 6 | Results of simulations in which VisNet is trained and

tested on objects constructed with a fixed number of sides (n) and

number of possible boundary elements at each side, p. (A) For each

simulation, the table records the number of neurons (in the third layer) that

learned to respond selectively to all objects that contained one particular type

of boundary contour element, but not to objects that did not contain that

boundary element. Results are given before training (left) and after training

(right). (B) Single cell information analysis results. For each simulation, the

single cell information measures for all output (third) layer neurons are plotted

in rank order according to how much information they carry. For each

simulation, results are presented before training (dotted line) and after training

with competitive network (broken dashed line) and with SOM (solid line).

possible boundary elements. The figure shows results for a
typical output cell that failed to learn to respond selectively
to objects containing one particular type of boundary contour.
Figure 7 (left) shows the input Gabor filters that had strong
connectivity through the layers to the neuron. The neuron has
strong connections from three similar boundary elements on
the lower right. Figure 7 (right) shows the average firing rate
response of the neuron to the 12 subsets of objects that contain
one of the different boundary elements. The neuron responds

maximally to the first three subsets of objects, which contain
the three boundary elements that are strongly represented in
the left plot. Thus, the neuron has learned to respond equally
strongly to all of these three boundary elements and is unable to
distinguish between them. This observed behavior is typical when
the number (density) of boundary contour elements at each side
is increased. Investigation into the responses of neurons across
the output layer after the training the network on objects where
each side had a relatively high number of possible boundary
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FIGURE 7 | Simulation showing the failure of an output neuron to

discriminate between a relatively large number of boundary contours

at one object side. Left: The input Gabor filters that had strong connectivity

through the layers to the output neuron. Right: histogram showing average

firing rate response of the neuron to the 12 subsets of objects that contain one

of the different boundary elements. That is, each of the data points (1–12)

represents the average firing rate of the neuron across the 16 objects

containing the following boundary elements: (1) right/sharp-convex, (2)

right/convex, (3) right/concave, (4) right/sharp-concave, (5) left/sharp-convex,

(6) left/convex, (7) left/concave, (8) left/sharp-concave, (9) top/sharp-convex,

(10) top/convex, (11) top/concave, (12) top/sharp-concave.

element contours, p, showed that many cells were unable to
distinguish between differently shaped contours on the same
sides.

The simulations at this juncture show that a biologically
plausible neural network can learn to code relative position
information for visual elements, but has limited capacity. In
the next section, we show how introducing a SOM architecture
within each layer of VisNet can enhance the selectivity of neurons
for individual boundary elements when the number of boundary
elements at each side, p, is large, overcoming the capacity
limitation.

3.1.4. The Effect of a Self-Organizing Map (SOM)

Architecture on Learned Neural Selectivity for

Boundary Contour Elements
We compared the performance of the standard competitive
network architecture in each layer with performance when
a SOM was introduced. We hypothesized that the SOM
architecture could increase the capacity of the network to
represent and distinguish between a larger number of finer
variations in boundary contour curvature.

As discussed in the previous section, a competitive network
may have difficulty in forming separate output representations
of similar input patterns. In particular, CT learning (Stringer
et al., 2006) may encourage the same output neurons to learn
to respond to similar input patterns representing boundary
contour elements of slightly different shape, or even bind
together a continuum of input patterns covering the space of
all possible boundary shapes at a particular object-centered
boundary location.

The SOM architecture is specifically designed to encourage
the output neurons to develop a fine-scaled representation of a
continuum of smoothly varying input patterns (Kohonen, 2000).
A SOM has additional short range lateral excitatory connections

between neurons within each layer. These connections encourage
nearby output neurons to learn to respond to similar input
patterns, which in turn leads to a map-like arrangement of
neuronal response characteristics across the layer after training.
In particular, slightly different input patterns will be distributed
across different output neurons. Thus, the effect of these
additional short range excitatory connections is to influence
learning in the network to spread the representations of a
continuum of overlapping input patterns over a map of output
neurons. This should allow the network to develop a more fine-
grained representation of the space of possible boundary contour
shapes.

We therefore hypothesized that the introduction of a SOM
architecture within each layer of VisNet would spread out the
representations of many different boundary contour curvatures
(p) at a particular side of the object over a map of output neurons.
This would help to produce distinct neural representations of
a large number of different boundary contour elements in the
output layer, and effectively increase the capacity of the network
to represent finer variations in boundary contour curvature.

During training, the feed-forward synaptic connections were,
again modified using the Hebb learning rule, and the simulation
results with the SOM architecture implemented within each layer
are presented in Figure 6A (bottom). The network was tested
on objects constructed with a fixed number of sides, n, and
different numbers of possible boundary elements at each side, p.
For each simulation, the heatmap shows the number of neurons
that learned to respond selectively to all objects that contained
one particular type of boundary contour element, but not to other
objects. These results should be compared with Figure 6A (top),
which gives the corresponding results with a competitive network
architecture implemented within each layer. As hypothesized,
the introduction of SOM architecture within each layer led to
many more neurons learning to respond selectively to objects
containing a particular boundary contour element. This effect is
particularly pronounced for larger numbers of n and p.

These effects can also be seen by examining the amount of
information carried by neurons about the presence of particular
types of boundary elements within the objects presented to
VisNet. We have previously used information theoretic measures
to assess the amount of information carried by neurons about the
presence of whole object stimuli within a scene, where the objects
may be presented under different transforms such as changes in
retinal position or orientation (Wallis and Rolls, 1997; Rolls and
Milward, 2000; Stringer et al., 2007; Stringer and Rolls, 2008).
A neuron that responds selectively to one particular stimulus
across a large number of transforms will carry a high level of
information about the presence of that object within a scene. In
this current paper, we were instead interested in the amount of
information carried by neurons about the presence of particular
boundary elements within an object.

Figure 6B present the single cell information analysis results
for simulations in which VisNet was tested on objects with
different numbers of sides, n, and numbers of possible boundary
elements at each side, p. The results are presented before
training (dotted line), after training with the competitive network
architecture (broken dashed line) and with the SOM architecture
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(solid line). The single cell information measures for all output
layer neurons are plotted in rank order according to how
much information they carry. In all simulations, training the
network on the set of pn whole objects led to many top layer
neurons attaining the maximal level of single cell information
of log2(p) bits. These results imply that training the network
on the whole objects led to many output neurons learning
to respond selectively to all of the objects that contained a
particular one of the boundary contour elements, but not to
objects that do not contain that boundary element. That is, these
neurons had learned to respond to the presence of that particular
boundary contour element within any object. In all simulations,
many top layer neurons attained the maximal level of single
cell information of log2(p) bits. However, consistent with our
hypothesis, the incorporation of a SOM architecture typically led
to a significant increase in the number of neurons that attained
the maximal level of single cell information.

Furthermore, different sub-populations of cells that carry
maximum single-cell information about each contour element
were mapped onto the corresponding locations within the layer.
This extended analysis has revealed that using a SOM led to a
feature map as shown in Figure 8. This result was consistent
with various physiological findings that indicate the topographic
organization within ventral visual pathway (Larsson and Heeger,
2006; Hansen et al., 2007; Silver and Kastner, 2009).

3.1.5. Response properties of Neurons through

Successive Layers of VisNet
We subsequently investigated how the response properties of
neurons vary through successive layers of VisNet, which is
implemented with SOM, before and after training. For all of the
simulations performed, the feed-forward synaptic connections
were modified using the Hebb learning rule.

Table 6 presents simulation results showing the responses of
neurons through layers 1 to 3. The results are presented for a
simulation with n = 4 sides and p = 2 contour elements
per side and compared before and after training. Each sub-table

FIGURE 8 | Simulation results demonstrating that the SOM

architecture leads to a feature map in the output layer. (A) Left: contour

plots showing the amount of single cell information carried by the 128 × 128

layer of output neurons for six boundary elements after training on objects with

n = 3 and p = 2. The different colored contour plots correspond to the

following boundary elements: top/convex (pink), top/concave (light green),

right/convex (blue), right/concave (yellow), left/convex (light blue), and

left/concave (red). (B) Right: similar results for the case n = 3 and p = 3.

gives the number of neurons that responded selectively to either
objects containing a single boundary element, objects containing
a combination of two boundary elements, or a single whole
object. It can be seen that, in all three layers, training the
network led to a substantial increase in the number of neurons
that responded to objects containing a single boundary element.
The numbers of neurons that learned to respond to individual
boundary elements increased through successive layers of VisNet.

For the simulation reported in Table 6, training did not lead
to a similarly large increase in the numbers of neurons that
responded to either a combination of two boundary elements,
or a single whole object. This contrasts with experimental
studies showing that neurons in the later stages of the ventral
visual pathway, TEO and posterior TE, integrate information
from multiple boundary contour elements (Brincat and Connor,
2004). We, therefore, investigated how neurons might learn to
respond to localized clusters of boundary contour elements and
also to whole objects. In fact, by examining the input Gabor filters
that had a strong connectivity to these types of neuron, we were
able to show that some neurons in VisNet were indeed learning
to respond to either a combination of two boundary elements, or
a whole object. These results are shown in Figure 9A.

Figure 9A compares the response properties of trained and
untrained neurons in simulations with the SOM architecture.
The network is presented with objects containing n = 4 sides,
where each side has p = 2 possible boundary elements. Results
are shown for four neurons. For each neuron, we show the
input Gabor filters that had strong connectivity through the
layers to the neuron (left), and a histogram showing average
firing rate response of the neuron to the objects that contain
one of the 8 boundary elements (right). The four neurons shown
in the Figure 9A had the following characteristics. (top-left) A
trained neuron that has learned to respond to a combination
of two adjacent boundary contour elements: top convex and
right convex. The Gabor filter plot shows that the feed-forward
synaptic weights have been strengthened selectively from the two
boundary elements only. (top-right) A trained neuron that has
learned to respond to a whole object. The preferred object is
comprised of two concave on top and right and two convex on
bottom and left. The Gabor filter plot shows that the neuron has
learned to respond to the complete set of boundary elements

TABLE 6 | Simulation results showing the responses of neurons through

layers 1 to 3 with the SOM architecture.

N4P2 experiment (SOM)

Layer 1 Contour 2 Contours Object

UNTRAINED NETWORK

3 856 270 538

2 418 104 82

1 293 0 0

TRAINED NETWORK

3 4216 92 89

2 2440 10 10

1 540 8 0
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FIGURE 9 | Comparison of response properties of trained and

untrained neurons in simulations with the Self-Organizing Map (SOM)

architecture. The network is presented with objects containing n = 4 sides,

where each side has p = 2 possible boundary elements. (A) The figure

shows results for four typical neurons. For each neuron, we show two plots.

Left: The input Gabor filters that had strong connectivity through the layers to

the neuron. Right: histogram showing average firing rate response of the

neuron to the eight subsets of objects that contain one of the different

boundary elements. That is, each of the data points (1–8) represents the

average firing rate of the neuron across the eight objects containing the

following boundary elements: (1) right/concave, (2) right/convex, (3)

bottom/concave, (4) bottom/convex, (5) left/concave, (6) left/convex, (7)

top/concave, (8) top/convex. (B) Four neurons in layer 2 with strong synaptic

connections to the output neuron shown in top-right in (A).

comprising the preferred object. (bottom-left) An untrained
neuron that happens to respond selectively during testing to
two adjacent boundary elements. However, the Gabor filter plot
shows that a random collection of Gabor filters have strong feed-
forward connections to the neuron. This means that across a
richer diversity of test images, this neuron would not maintain
such a strict selectivity, and would in fact be most effectively
stimulated by the random constellation of Gabor filters shown.
(bottom-right) An untrained neuron that responds selectively
to a whole object. The Gabor filter plot shows that the neuron
receives strong connections from a random collection of Gabor

filters. This neuron would not maintain a strict selectivity to the
object when tested on a greater diversity of images.

The conclusion of the results shown in Figure 9A is
that although Table 6 appeared not to show an increase
during training in the numbers of neurons that responded to
combinations of two boundary elements or a whole object, in fact
training did lead to an increase in the numbers of neurons that
had specifically learned to respond to whole stimuli. However,
in Table 6, this effect had been masked by the existence of many
untrained cells that already responded by chance to combinations
of two boundary elements or a whole object, but which in fact
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had random inputs from a large randomized collection of Gabor
filters. Such untrained neurons are unlikely to be selective for
combinations of two boundary elements or a particular object
if the network were tested on a richer diversity of images.
In particular, these untrained neurons would respond more
selectively for images corresponding to the random constellations
of Gabor filters shown in the bottom of Figure 9A. In contrast,
the trained neurons on the top have strengthened connections
specifically from combinations of two boundary elements or a
whole object, and would therefore maintain their selectivity more
robustly across a greater variety of test images.

We also found that output neurons in layer 3 learned to
respond to whole objects by combining inputs from neurons in
the preceding layer that responded to the individual boundary
elements. This can be seen by examining the strengths of
the synaptic connections from neurons in layer 2 to output
neurons in layer 3 after training. Output neurons that had
learned to respond to a particular object received the strongest
synaptic connections from neurons in layer 2 that represented
the constituent boundary elements of that object. Figure 9B
shows four neurons in layer 2 with strong synaptic connections
to a whole shape selective neuron reported in the top-left of
Figure 9A. the output neuron shown in Figure 9A. Each of the
four neurons in layer 2 had learned to respond to a different one
of the boundary elements which were contained in the object
that the output neuron had learned to respond to. This example
shows that neurons in the later stages of the model are able to
integrate information frommultiple boundary contour elements,
as consistent with neurophysiological results for areas TEO and
posterior TE of the primate ventral visual pathway (Brincat and
Connor, 2004).

3.1.6. Translation Invariance of Neuronal Responses

as Objects are Shifted Across Different Locations on

the Retina
The neurons reported by Pasupathy and Connor (2001) in area
V4, and neurons reported by Brincat and Connor (2004) in areas
TEO and posterior TE, respond with translation invariance as an
object is shifted across different retinal locations. In this section
we show how these translation invariant neuronal responses may
be set up by training the network with the trace learning rule. The
trace learning rule encourages individual postsynaptic neurons to
learn to respond to subsets of input patterns that tend to occur
close together in time. Therefore, in the simulation described
below, during training we selected each object in turn and
presented that object in a number of different retinal locations
before moving on to the next object.

For this simulation, VisNet had four layers with a SOM
architecture implemented within each layer. The visual objects
had n = 4 sides, where each side has p = 3 possible boundary
elements. Each of the visual objects was presented in a 2 × 2
grid of four different retinal locations, which were separated by
horizontal and vertical shifts of 10 pixels.

Figure 10A shows the results after training for a typical output
neuron in layer 4. Figure 10B shows the input Gabor filters that
had strong connectivity through the layers to the output neuron.
It can be seen that the neuron has strong connections from a

FIGURE 10 | Simulation of network trained with the trace learning rule

as each of the visual objects is shifted across 4 different retinal

locations: top right, top left, bottom right and bottom left. The objects

had n = 4 sides, where each side has p = 3 possible boundary elements. The

figure shows results after training for a typical output neuron in layer 4. (A)

Histogram showing the average firing rate response of the output neuron to

the 12 subsets of objects that contain one of the boundary contour elements.

That is, each of the data points (1–12) represents the average firing rate of the

neuron across the 27 objects containing the following boundary elements: (1)

right/concave, (2) right/straight, (3) right/convex, (4) bottom/concave, (5)

bottom/straight, (6) bottom/convex, (7) left/concave, (8) left/straight, (9)

left/convex, (10) top/concave, (11) top/straight, (12) top/convex. Each of these

results is given for the objects placed in the four different retinal locations. (B)

The input Gabor filters that had strong connectivity through the layers to the

output neuron. (C) Single cell information analysis of a simulation where visual

object, which has n = 4 sides, where each side has p = 3 possible boundary

elements, is shifted across four different retinal locations. The single cell

information measures for all output layer neurons are plotted in rank order

according to how much information they carry. Results are presented before

training (broken line) and after training (solid line).

convex boundary element on the left of an object. The separate
contours that can be seen in the plot correspond to the different
retinal locations in which the objects are trained. Figure 10A
shows a histogram presenting the average firing rate response of
the output neuron to the 12 subsets of objects that contain one of
the boundary contour elements. The neuron responds maximally
to the subset of objects containing a convex boundary element on
the left. Notably, the neuron responds maximally to this subset
of objects over all four retinal locations. Thus, the neuron has
learned to respond to objects containing the convex boundary
element on the left regardless of where the object is presented on
the retina. These translation invariant neuronal responses are a
result of training the network with the trace learning rule.

Figure 10C shows findings from the single cell information
analysis. The results are presented before training (broken line)
and after training (solid line). Training the network on the
set of pn whole objects over the four retinal locations led to
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many top layer neurons attaining the maximal level of single
cell information of log2(p) bits. Neurons carrying maximal single
cell information responded selectively to a subset of objects
containing one particular type of boundary element, and with
translation invariance as the objects also were shifted over all four
retinal locations. In these simulations with translation invariance,
the information is dramatically increased after training. This
is because it is very unlikely for untrained neurons to both
respond selectively to a single boundary contour element across
all objects, and be able to respond with translation invariance
as these objects are shifted across the retina. Therefore, training
will lead to a much more significant difference between the
performances of the untrained and trained networks.

3.2. Study 2: VisNet Simulations with Visual
Stimuli of Pasupathy and Connor
In Study 2, the visual stimuli presented to VisNet were similar to
the artificial stimuli used in the neurophysiological experiments
of Pasupathy and Connor (2001) shown in Figure 3B. This
allowed direct comparison between the learned response
characteristics of the neurons in the VisNet model and the
experimentally observed cell responses encoding local boundary
information reported.

The stimuli were constructed by systematically combining
sharp convex, medium convex, broad convex, medium concave
and broad concave boundary elements to form closed shapes. We
also vary the angular separations of the vertices used to construct
the stimuli on 256 × 256 pixels of the simulated retina as shown
in Figure 3B. Furthermore, we also rotated the visual stimuli
through 360◦ in a single central location on the retina in steps
of 10◦ during training to provide more natural visual training.
This meant that there was not such a clean statistical decoupling
between the boundary elements as for Study 1. Nevertheless, we
expected that with the new objects used in Study 2 there would
still be sufficient statistical decoupling between the boundary
elements to ensure that the network developed neurons during
visually guided learning that responded to a localized region of
boundary curvature.

For all simulations in Study 2, the VisNet architecture
consisted of three layers of SOM, where each layer is composed
of 64 × 64 neurons. During training, the feed-forward synaptic
weights are modified using the trace learing rule, which is needed
to develop translation invariant neuronal responses.

3.2.1. Development of Neurons Encoding Local

Boundary Conformation in an Object-centered Frame

of Reference
Figure 11 shows a comparison between the responses of a neuron
recorded in area V4 of the primate ventral visual pathway by
Pasupathy and Connor (2001) and a neuron recorded from our
simulation, which exhibits a similar degree of selectivity. The
neuron recorded by Pasupathy and Connor (2001) responds
selectively to object shapes with an acute convex curvature at the
top right of the object. Many other neurons in the output layer of
VisNet learned to respond selectively to particular combinations
of local boundary curvature and position with respect to the
center of mass of the object. The network accomplished this even

though the statistical independence of the boundary contour
elements was not perfect.

To analyse the detailed firing properties of each output neuron
and quantified the distributions, we recorded its response to all
objects as they were rotated through 360◦. Next we segmented
the boundary contour of each object into multiple elements
based on the positions where the rate of change of the curvature
exceeded a fixed threshold. This then enabled us to calculate the
average response of the neuron to each particular combination
of local boundary curvature and angular position where that
boundary curvature appears, where the average is computed over
all orientations of all objects. Figure 12A shows a heatmap of the
average responses of the output neuron shown on the right of
Figure 11 to different combinations of boundary conformation
and angular position. The result indicates that this neuron
responds maximally to object shapes with an acute convex
curvature at the top right. The correlation coefficient between the
result and a predicted result of a modeled V4 neuron based on
Gaussian distribution, which is tuned to acute contours at 70◦ is
strong (0.798) and confirms the selectivity. Figures 12B–D show
examples of different trained cells.

For each neuron, we then analyzed the number of local peaks
in the heatmap of average firing rate against curvature and
angular position, as shown in Figure 12. Specifically, for each
neuron we counted the number of local peaks that were greater
than 60% of the average firing rate across the heatmap. Before
training, 176 cells had one peak, 98 cells had two peaks, 63 cells
had three peaks, and 44 cells had four peaks. After training, the
distributions were 319 cells, 460 cells, 414 cells, and 374 cells.
(These distributions were significantly different, χ2 = 17.58, df =
3, P≪ 0.01.) Thus, training led to a large increase in the number
of neurons that were selectively tuned to either one or just a few
boundary contour elements. The simulation results also predict
the existence of individual neurons that are tuned to boundary
elements in multiple locations. Consistent with this, Brincat and
Connor (2004) have reported that some neurons in TEO and
posterior TE do indeed respond to the co-occurrence of multiple
adjacent contour elements.

3.2.2. Development of Translation Invariant Neuronal

Responses
Pasupathy and Connor (2001) and Brincat and Connor (2004)
reported that neurons encoding the boundary conformation of
objects also respond with translation invariance as an object
is shifted across different retinal locations. In this section we
confirm that neurons in VisNet also develop translation invariant
responses when the network is trained on the stimuli shown
in Figure 3B. To cope with the larger computational resource
requirements, only the stimuli with an angular separation
between vertices of 135 ◦/135 ◦/90 ◦ were used, and the size of
the image was reduced to 128 × 128 pixels. During training,
the trace learning rule was used to modify the synaptic
weights.

In this simulation, during training each object was shifted
across a 3×3 grid of nine different retinal locations, which are
separated by horizontal and vertical intervals of 10 pixels. At
each pixel location, the objects are presented in all orientations
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FIGURE 11 | Comparison between the single neuron recording

data of Pasupathy and Connor (2001) and corresponding results

from VisNet simulations. On the left of the figure are shown the

responses of a neuron recorded in area V4 of the primate ventral

visual pathway and shown in Figure 5A of Pasupathy and Connor

(2001). Each object shape shown to the monkey is represented by a

white icon, and the firing rate response of the neuron is represented

by the surrounding shading with high firing denoted by black. Each

row shows a different object shape, with each column corresponding

to a different orientation of the object. It can be seen that the neuron

responds selectively to object shapes with an acute convex curvature

at the top right of the object. On the right of the figure are shown

corresponding results for an output cell in layer 3 of VisNet, which

has learned to respond with similar selectivity.

through 0◦–360◦ in 10◦ steps. Thismeans that during training the
objects underwent two different kinds of transformation, both
translation and rotation. We assume that typically the eyes shift
about a visual scene more rapidly than the objects rotate on the
retina. To simulate this effect, VisNet was trained as follows.
During training, the orientation of each object was kept fixed at
some initial angle while the object was shifted across all of the
different retinal locations. Then the orientation of the object was
adjusted by, for example, 10◦ and the object was again shifted
across all of the retinal locations. This procedure was repeated
for all object orientations from 0◦ to 360◦ in steps of 10◦. This
training procedure ensured that images of each object in the same
orientation but different retinal locations were closely clustered
together in time.

Figure 13 shows results for a typical output neuron after
training. Each subplot shows the average responses of the neuron
to different combinations of local boundary curvature and
angular position. The top subplot shows the average neuronal
responses over all nine retinal locations, while the remaining
subplots show the average neuronal responses to each of the nine
separate retinal locations.

In order to quantify the distribution of such cells, the number
of peaks of responses for each cell were calculated. Before
training, 91 cells had one peak, 61 cells had two peaks, 34 cells
had three peaks, and 24 cells had four peaks. After training, the
distributions were 288 cells, 253 cells, 119 cells, and 158 cells.
(These distributions were significantly different, χ2 = 1.99e+03,
df = 3, P≪ 0.01.)
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FIGURE 12 | Heatmap showing the average responses of four output

neurons to different combinations of local boundary curvature and

angular position where the boundary curvature appears. The average is

computed over all orientations (0◦–360◦) of all objects. (A) The neuron

responds maximally to object shapes with an acute convex curvature at the

top-right. This is the same neuron that was shown on the right of Figure 11.

(B–D) Three other cells that show different firing patterns are also plotted to

show the variability in the network.

It is evident that the neuron displays a pattern of selectivity for
boundary curvature and angular position that is similar across
the nine retinal locations. Thus, the responses of the neuron
exhibit translational invariance, similar to the neurons reported
in the neurophysiology experiments of Pasupathy and Connor
(2001) and Brincat and Connor (2004).

3.3. Study 3: VisNet Simulations with Images of
Natural Objects
In Study 3, VisNet was trained with images of natural objects in
order to demonstrate that the learning mechanisms elucidated in
this paper and tested with artificially constructed visual stimuli
in sections of Study 1 and 2 will indeed work effectively on real
world visual objects. We hypothesize that across many images
of natural objects with different boundary shapes, there will be
an effective statistical decoupling between localized boundary
elements, which are defined by local curvature and angular
position with respect to the center of mass of the object. This
should force the neurons in higher layers of the network to learn
to respond to the individual boundary elements rather than the
whole objects.

Some examples of the natural objects used in these simulations
are shown in Figure 3C. The set of stimuli used in the simulations
is composed of 177 realistic three dimensional objects. Various
kinds of three dimensional objects are downloaded from Google
3D Warehouse, converted into gray-scaled images, and rescaled
to fit on the center of 256 × 256 retina. In order to enhance
the realism of the visual images used to train VisNet, during
training each of the natural objects is rotated in plane through
360◦ in steps of 10◦. After training, the neuronal responses in

the network were examined with the test stimuli used for Study 2
(Figure 3B).

3.3.1. Development of Neurons Encoding Local

Boundary Conformation in an Object-centered Frame

of Reference
Figure 14 shows the responses of a typical output neuron after
training. This neuron learned to respond to an acute convex
curvature at the bottom left of an object. Moreover, although
not shown, many other neurons in the output layer of VisNet
learned to respond selectively to particular combinations of
local boundary curvature and angular position of the boundary
element.

In order to quantify the distribution of such cells, the number
of peaks of responses for each cell were calculated. Before
training, 176 cells had one peak, 98 cells had two peaks, 63 cells
had three peaks, and 44 cells had four peaks. After training, the
distributions were 232 cells, 141 cells, 125 cells, and 103 cells.
(These distributions were significantly different, χ2 = 176.82,
df = 3, P≪ 0.01.)

This result showed that VisNet was able to develop these
neuronal responses even though the network had been trained
on many natural visual objects without artificially constructing
the boundary shapes from artificially predefined elements.

3.3.2. Development of Translation Invariant Neuronal

Responses
We then tested whether neurons in VisNet can also develop
translation invariant responses when the network was trained
on the natural objects shown in Figure 3C. Each of the natural
objects was shifted across a 3×3 grid of nine different retinal
locations, which were separated by horizontal and vertical
intervals of 10 pixels. At each pixel location, the objects were
presented in different orientations through 0◦–360◦ in 10◦ steps.
The temporal sequencing of these two kinds of transforms was
the same as described in Section 3.2.2. During training, the trace
learning rule was used to modify the synaptic weights.

Figure 15 shows results for a typical output neuron after
training. Each subplot shows the average responses of the neuron
to different combinations of local boundary curvature and
angular position. The top subplot shows the average neuronal
responses over all nine retinal locations, while the remaining
subplots show the average neuronal responses to each of the nine
separate retinal locations. It can be seen that the neuron responds
selectively to objects with a high convex curvature at the top-left.
Moreover, the responses of the neuron are similar across all nine
retinal locations.

In order to quantify the distribution of such cells, the
number of peaks of responses for each cell were calculated. The
distributions were that before training, 97 cells had one peak,
38 cells had two peaks, 25 cells had three peaks, and 31 cells
had four peaks, whereas after training, the distributions were 349
cells, 148 cells, 90 cells, and 109 cells. (These distributions were
significantly different, χ2 = 1.34e + 03, df = 3, P ≪ 0.01).
Thus, the responses of the neuron are reasonably translation
invariant, similar to the neurons reported in the neurophysiology
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FIGURE 13 | Demonstration of translation invariance after training

the network on the visual stimuli shown in Figure 3B. The figure

shows the average responses of a typical output neuron over the nine

retinal locations after training with the trace learning rule. Each of the ten

subplots shows the average responses of the neuron to different

combinations of local boundary curvature and angular position where the

boundary curvature appears. The top subplot shows the average

neuronal responses computed over all nine retinal locations. While the

bottom subplots show the average neuronal responses computed

separately for each of the nine retinal locations.

experiments of Pasupathy and Connor (2001) and Brincat and
Connor (2004).

In conclusion, the above results thus demonstrate that even
when VisNet is trained on realistic natural visual objects, where
the boundary shapes have not been carefully constructed from
a pool of artificial elements, the network still develops neurons
that respond selectively to the curvature and location of localized
boundary contour elements in the frame of reference of the
object. Moreover, with the help of the trace learning rule, these
neuronal responses are also translation invariant as an object
shifts across different retinal locations.

4. Discussion

In this paper, we have demonstrated that when a neural network
model, VisNet, of the primate ventral visual pathway is trained
on many objects with different boundary shapes, the neurons in
the higher layers of the network learn to respond to localized
boundary contour elements, which are defined by the curvature
and location of the boundary element in the frame of reference
of the object. Interestingly, neurons learn to respond to these
boundary elements rather than learning to respond to the whole
objects that were actually presented during training. Moreover,
the neurons were able to learn to respond with translation

invariance as visual objects are shifted across different retinal
locations. This was shown to be successful when VisNet was
trained with either the artificially constructed visual stimuli used
in Studies 1 and 2, or with images of natural visual objects in
Study 3.

The primary contribution of this paper is to elucidate and
test two key biologically plausible learning mechanisms that can
combine to promote the development of these neuronal response
characteristics. First, similar to the results shown in the previous
study with multiple-objects (Stringer et al., 2007; Stringer and
Rolls, 2008), if the network is trained on many objects with
different boundary shapes, where each boundary is comprised
of a different constellation of contour elements, then this leads
to a statistical decoupling between the boundary elements. This
is sufficient to allow the competitive layers of VisNet to develop
neurons that respond to individual boundary elements defined
by curvature and position within the object, which are similar to
the neurons reported in the physiological experiments conducted
by Pasupathy and Connor (2001). Secondly, consistent with
previous simulation studies (Wallis and Rolls, 1997; Rolls and
Milward, 2000), neurons learned to respond with translation
invariance across different retinal locations through the use of a
trace learning rule. This kind of learning places constraints on
the statistics of how the eyes move and visual objects change or
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FIGURE 14 | The development of neuronal responses in VisNet that

encode combinations of local boundary curvature and rotational

position after the network has been trained with images of natural

objects as shown in Figure 3C. The figure shows the responses of an

output neuron which has learned to respond to an acute convex

curvature at the bottom left (225◦) of an object. (A,B) Shows the

responses of the neuron to objects with an angular separation between

the vertices of 135 ◦/135 ◦/90 ◦ and 180 ◦/90 ◦/90 ◦, respectively. Each

object shape is represented by a white icon, and the firing rate response

of the neuron is represented by the surrounding shading with high firing

denoted by black. Each row shows a different object shape, with each

column corresponding to a different orientation of the object. (C) Shows

a heatmap of the average responses of the neuron to different

combinations of local boundary curvature and angular position where the

boundary curvature appears. The average is computed over all

orientations (0◦–360◦) of all objects.

transform on the retina. These two mechanisms together provide
a biologically plausible account of how neurons in the primate
ventral visual pathway may learn to represent localized boundary
contour elements of objects as revealed by Pasupathy and Connor
(2001).

Furthermore, neurophysiological experiments carried out by
Brincat and Connor (2004) have shown that neurons in the
later stages of the ventral visual pathway, TEO and posterior
TE, integrate information from multiple boundary contour
elements. In our simulations, the number of cells that were tuned
to combinations of multiple contours increased in the higher
layers. Tracing back the feed-forward synaptic connectivity to
these output neurons confirmed that their selectivities were

built by combining inputs from neurons representing each local
boundary contour in the preceding layer.

The simulations reported in this present work are the first
to show how neuronal responses encoding the local boundary
conformation of objects may develop through a biologically
plausible process of visually-guided learning. Both the Hebb
learning rule and trace learning rule used above are biologically
plausible in that they are “local” learning rules, which only use
locally available biological quantities, such as the activity of the
pre- and post-synaptic neurons, to modify the synaptic weights.
This is in sharp contrast to other modeling studies that manually
set up the synaptic weights in a non-local manner. In particular,
the trace learning rule drives the development of translation

Frontiers in Computational Neuroscience | www.frontiersin.org 20 August 2015 | Volume 9 | Article 100

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Eguchi et al. Neural representation of object shape

FIGURE 15 | The development of translation invariant neuronal

responses in the output layer of VisNet after the network has been

trained with images of natural objects as shown in Figure 3C. The

network was trained with the trace learning rule in order to promote

invariance learning across nine different retinal locations. The figure shows

the average responses of a typical output neuron over the nine retinal

locations after training. Each of the ten subplots shows the average

responses of the neuron to different combinations of local boundary

curvature and angular position where the boundary curvature appears. The

top subplot shows the average neuronal responses computed over all nine

retinal locations. While the bottom subplots show the average neuronal

responses computed separately for each of the nine retinal locations.

invariant neuronal responses. Convincing experimental evidence
for the presence of trace learning in the primate visual system
has been provided by Cox et al. (2005), and a plausible account
of the synaptic basis of trace learning has been provided by
simulations of biologically detailed integrate and fire neural
networks carried out by Evans and Stringer (2012). Furthermore,
the trace learning rule can be implemented in the afferent
synaptic connections to all neuronal layers in the network,
which avoids the biologically implausible need for separate
layers for template learning and invariance learning as has
been implemented in previous models. Another important factor
that underpins the biological plausibility of the simulations
carried out in this paper is that the network model was always
trained on whole objects rather than carefully pre-segmented
and isolated parts of objects corresponding to local boundary
elements. Indeed, in Study 3, VisNet was trained on a random
assortment of whole natural visual objects. Nevertheless, the
network was still able to develop neurons that were specifically
tuned to localized boundary segments of objects. We also found
the performance of the model to be extremely robust, which gives
additional credence to the learning mechanisms explored in this
paper.

4.1. Future Work
The version of the VisNet architecture used in this paper
incorporated associative learning only in the bottom-up (feed-
forward) connections between successive layers of the network.
Furthermore, no top-down connections were included in the
model even though these are known to exist in the primate
ventral visual pathway. The rationale for using this simplified
architecture in the current study was that it is sufficient to
replicate how neurons in V4, TEO, and posterior TE are able to
learn to encode the conformation of boundary contour elements
at a particular position within an object. However, Zhou et al.
(2000) have shown that the responses of neurons in earlier
stages of visual processing such as V1 and V2, which have
preferred responses to oriented edges, are also modulated by
which side of a figure the edge occurs on. This is the case even
when the figure/background cues lie well-outside the classical
receptive field of the neuron. This suggests that global image
context specifying border ownership modulates the activity these
neurons. This contextual information must be conveyed to these
early stage visual neurons by some combination of top-down
connections between layers and recurrent connections within
layers.
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Another question is whether the approach proposed here
can be extended to 3D shape. Yamane et al. (2008) have
demonstrated the existence of neurons that encode the 3D
configuration of localized surface fragments defined by their
conformation, orientation and position with respect to the center
of mass of the object. A population of such neurons provides a
distributed representation of an object’s 3D shape. The response
characteristics of these neurons are also invariant as the object
is shifted through different locations on the retina. It will be
important to evaluate if a model such as VisNet, trained using
stereoscopic input, can begin to capture the partonomic structure
of 3D objects. Furthermore, it will be critical to assess whether
learning rules, such as trace learning, can still be used to generate
translationally invariant recognition processes.

However, theorists have long posited that the visual system
in fact represents complex three-dimensional shapes, such as
a table or a chair, by decomposing it into volumetric parts
with axial symmetry (Biederman, 1987). A recent fMRI study in

humans has provided evidence for this at the level of the neuronal
population, where it was found that the visual system explicitly
represents the relationships between the medial axes of linked
object parts (Lescroart and Biederman, 2013). Consequently,
more recently, Hung et al. (2012) have investigated medial axis
shape coding in the inferotemporal cortex. This work extended
their studies of parts-based spatial representations to “skeletal”
representations involving a configuration of volumetric parts,
where each part has an axis of radial symmetry or medial
axis. The three-dimensional structure of an object may then be
represented by a combination of the relationships between the
medial axes of the object parts as well as the conformations of
the surfaces of the object parts. Hung et al. (2012) confirmed
that individual neurons in IT do in fact encode a configuration
of both medial axis and surface fragments. In future work, we
shall investigate whether the computational learningmechanisms
demonstrated in this paper may also give rise to these kinds of
skeletal representations.

References

Biederman, I. (1987). Recognition-by-components: a theory of human image

understanding. Psychol. Rev. 94, 115–147. doi: 10.1037/0033-295X.94.2.115

Booth, M. C., and Rolls, E. T. (1998). View-invariant representations of familiar

objects by neurons in the inferior temporal visual cortex. Cereb. cortex 8,

510–523. doi: 10.1093/cercor/8.6.510

Brincat, S. L., and Connor, C. E. (2004). Underlying principles of visual shape

selectivity in posterior inferotemporal cortex. Nat. Neurosci. 7, 880–886. doi:

10.1038/nn1278

Cadieu, C., Kouh, M., Pasupathy, A., Connor, C. E., Riesenhuber, M., and Poggio,

T. (2007). A model of v4 shape selectivity and invariance. J. Neurophysiol. 98,

1733–1750. doi: 10.1152/jn.01265.2006

Cox, D. D., Meier, P., Oertelt, N., and DiCarlo, J. J. (2005). ’Breaking’ position-

invariant object recognition. Nat. Neurosci. 8, 1145–1147. doi: 10.1038/nn1519

Cumming, B. G., and Parker, A. J. (1999). Binocular neurons in v1 of awake

monkeys are selective for absolute, not relative, disparity. J. Neurosci. 19,

5602–5618.

Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial

frequency, and orientation optimized by two-dimensional visual cortical filters.

J. Opt. Soc. Am. A 2, 1160–1169. doi: 10.1364/JOSAA.2.001160

Evans, B. D., and Stringer, S. M. (2012). Transformation-invariant visual

representations in self-organizing spiking neural networks. Front. Comput.

Neurosci. 6:46. doi: 10.3389/fncom.2012.00046

Findlay, J. M., and Gilchrist, I. D. (2003). “Natural scenes and activities,” in

Active Vision: The Psychology of Looking and Seeing, Vol. 26 (Oxford : Oxford

University Press), 129–150. doi: 10.1093/acprof:oso/9780198524793.001.0001

Foldiak, P. (1991). Learning invariance from transformation sequences. Neural

Comput. 3, 194–200. doi: 10.1162/neco.1991.3.2.194

Freeman, J., and Simoncelli, E. P. (2011). Metamers of the ventral stream. Nat.

Neurosci. 14, 1195–1201. doi: 10.1038/nn.2889

Giersch, A. (2001). The effects of lorazepam on visual integration

processes: how useful for neuroscientists? Vis. Cogn. 8, 549–563. doi:

10.1080/13506280143000115

Hansen, K. A., Kay, K. N., and Gallant, J. L. (2007). Topographic organization

in and near human visual area v4. J. Neurosci. 27, 11896–11911. doi:

10.1523/JNEUROSCI.2991-07.2007

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.2. doi:

10.1113/jphysiol.1962.sp006837

Hung, C. C., Carlson, E. T., and Connor, C. E. (2012). Medial axis shape

coding in macaque inferotemporal cortex. Neuron 74, 1099–1113. doi:

10.1016/j.neuron.2012.04.029

Hung, C. P., Kreiman, G., Poggio, T., and DiCarlo, J. J. (2005). Fast readout of

object identity from macaque inferior temporal cortex. Science 310, 863–866.

doi: 10.1126/science.1117593

Isik, L., Leibo, J. Z., and Poggio, T. (2012). Learning and disrupting invariance in

visual recognition with a temporal association rule. Front. Comput. Neurosci.

6:37. doi: 10.3389/fncom.2012.00037

Jones, J. P., and Palmer, L. A. (1987). The two-dimensional spatial structure of

simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1187–1211.

Kobatake, E., and Tanaka, K. (1994). Neuronal selectivities to complex object

features in the ventral visual pathway of the macaque cerebral cortex. J.

Neurophysiol. 71, 856–867.

Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biol. Cybern. 43, 59–69. doi: 10.1007/BF00337288

Kohonen, T. (2000). Self-Organizing Maps, 3rd Edn. New York, NY: Springer.

Larsson, J., and Heeger, D. J. (2006). Two retinotopic visual areas in human lateral

occipital cortex. J. Neurosci. 26, 13128–13142. doi: 10.1523/JNEUROSCI.1657-

06.2006

Lescroart, M. D., and Biederman, I. (2013). Cortical representation of medial axis

structure. Cereb. Cortex 23, 629–637. doi: 10.1093/cercor/bhs046

Li, N., and DiCarlo, J. J. (2008). Unsupervised natural experience rapidly alters

invariant object representation in visual cortex. Science 321, 1502–1507. doi:

10.1126/science.1160028

Mumford, D. (1992). On the computational architecture of the neocortex. Biol.

Cybern. 66, 241–251. doi: 10.1007/BF00198477

Olshausen, B. A., Anderson, C. H., and Van Essen, D. C. (1993). A neurobiological

model of visual attention and invariant pattern recognition based on dynamic

routing of information. J. Neurosci. 13, 4700–4719.

Pasupathy, A. (2006). Neural basis of shape representation in the primate brain.

Progr. Brain Res. 154, 293–313. doi: 10.1016/S0079-6123(06)54016-6

Pasupathy, A., and Connor, C. E. (2001). Shape representation in area v4: position-

specific tuning for boundary conformation. J. Neurophysiol. 86, 2505–2519.

Available online at: http://jn.physiology.org/content/86/5/2505.article-info

Pasupathy, A., and Connor, C. E. (2002). Population coding of shape in area v4.

Nat. Neurosci. 5, 1332–1338. doi: 10.1038/972

Perrett, D. I., Hietanen, J. K., Oram, M. W., and Benson, P. J. (1992). Organization

and functions of cells responsive to faces in the temporal cortex. Philos. Trans.

R. Soc. Lond. B Biol. Sci. 335, 23–30. doi: 10.1098/rstb.1992.0003

Perrett, D. I., and Oram, M. W. (1993). Neurophysiology of shape

processing. Image Vis. Comput. 11, 317–333. doi: 10.1016/0262-8856(93)

90011-5

Perrett, D. I., Rolls, E. T., and Caan, W. (1982). Visual neurones responsive

to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329–342. doi:

10.1007/BF00239352

Frontiers in Computational Neuroscience | www.frontiersin.org 22 August 2015 | Volume 9 | Article 100

http://jn.physiology.org/content/86/5/2505.article-info
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Eguchi et al. Neural representation of object shape

Petkov, N., and Kruizinga, P. (1997). Computational models of visual neurons

specialised in the detection of periodic and aperiodic oriented visual stimuli:

bar and grating cells. Biol. Cybern. 76, 83–96. doi: 10.1007/s004220050323

Pettet, M. W., and Gilbert, C. D. (1992). Dynamic changes in receptive-field size

in cat primary visual cortex. Proc. Natl. Acad. Sci. U.S.A. 89, 8366–8370. doi:

10.1073/pnas.89.17.8366

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition

in cortex. Nat. Neurosci. 2, 1019–1025. doi: 10.1038/14819

Rodríguez-Sánchez, A. J., and Tsotsos, J. K. (2012). The roles of endstopped and

curvature tuned computations in a hierarchical representation of 2D shape.

PLoS ONE 7:e42058. doi: 10.1371/journal.pone.0042058

Rolls, E. T. (2000). Functions of the primate temporal lobe cortical visual areas

in invariant visual object and face recognition. Neuron 27, 205–218. doi:

10.1016/S0896-6273(00)00030-1

Rolls, E. T., Cowey, A., and Bruce, V. (1992). Neurophysiological mechanisms

underlying face processing within and beyond the temporal cortical

visual areas [and discussion]. Philos. Trans. Biol. Sci. 335, 11–21. doi:

10.1098/rstb.1992.0002

Rolls, E. T., and Deco, G. (2002). Computational Neuroscience of Vision, 1st Edn.

Oxford: Oxford University Press.

Rolls, E. T., and Milward, T. (2000). A model of invariant object recognition in

the visual system: learning rules, activation functions, lateral inhibition, and

information-based performance measures.Neural Comput. 12, 2547–2572. doi:

10.1162/089976600300014845

Rolls, E. T., and Treves, A. (1998). Neural Networks and Brain Function, , 1st Edn.

Oxford: Oxford University Press.

Rolls, E. T., Treves, A., Tovee, M. J., and Panzeri, S. (1997). Information in

the neuronal representation of individual stimuli in the primate temporal

visual cortex. J. Comput. Neurosci. 4, 309–333. doi: 10.1023/A:10088999

16425

Rumelhart, D. E., and Zipser, D. (1985). Feature discovery by competitive

learning∗. Cogn. Sci. 9, 75–112. doi: 10.1207/s15516709cog0901.5

Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., and Poggio, T. (2005).

A Theory of Object Recognition: Computations and Circuits in the Feedforward

Path of the Ventral Stream in Primate Visual Cortex. Cambridge, MA: MIT

CSAIL.

Serre, T., Oliva, A., and Poggio, T. (2007). A feedforward architecture accounts

for rapid categorization. Proc. Natl. Acad. Sci. U.S.A. 104, 6424–6429. doi:

10.1073/pnas.0700622104

Silver, M. A., and Kastner, S. (2009). Topographic maps in human frontal and

parietal cortex. Trends in Cogn. Sci. 13, 488–495. doi: 10.1016/j.tics.2009.08.005

Stringer, S. M., Perry, G., Rolls, E. T., and Proske, J. H. (2006). Learning invariant

object recognition in the visual system with continuous transformations. Biol.

Cybern. 94, 128–142. doi: 10.1007/s00422-005-0030-z

Stringer, S. M., and Rolls, E. T. (2008). Learning transform invariant object

recognition in the visual system with multiple stimuli present during training.

Neural Netw. 21, 888–903. doi: 10.1016/j.neunet.2007.11.004

Stringer, S. M., Rolls, E. T., and Tromans, J. M. (2007). Invariant object recognition

with trace learning and multiple stimuli present during training. Network 18,

161–187. doi: 10.1080/09548980701556055

Tanaka, K., Saito, H., Fukada, Y., and Moriya, M. (1991). Coding visual images of

objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol.

66, 170–189.

Tromans, J. M., Harris, M., and Stringer, S. M. (2011). A computational

model of the development of separate representations of facial identity

and expression in the primate visual system. PLoS ONE 6:e25616. doi:

10.1371/journal.pone.0025616

Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., and Tootell, R. B. H.

(2003). Faces and objects in macaque cerebral cortex.Nat. Neurosci. 6, 989–995.

doi: 10.1038/nn1111

Tsotsos, J. K. (1993). “An inhibitory beam for attentional selection,” in Proceedings

of the 1991 York Conference on Spacial Vision in Humans and Robots, (New

York, NY: Cambridge University Press), 313–331.

Tsunoda, K., Yamane, Y., Nishizaki, M., and Tanifuji, M. (2001). Complex objects

are represented in macaque inferotemporal cortex by the combination of

feature columns. Nat. Neurosci. 4, 832–838. doi: 10.1038/90547

vanRullen, R. (2008). The power of the feed-forward sweep. Adv. Cogn. Psychol. 3,

167–176. doi: 10.2478/v10053-008-0022-3

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the

striate cortex. Kybernetik 14, 85–100.

Wallis, G. (2013). Toward a unified model of face and object recognition in the

human visual system. Front. Psychol. 4:497. doi: 10.3389/fpsyg.2013.00497

Wallis, G., and Rolls, E. T. (1997). Invariant face and object recognition

in the visual system. Progr. Neurobiol. 51, 167–194. doi: 10.1016/S0301-

0082(96)00054-8

Yamane, Y., Carlson, E. T., Bowman, K. C., Wang, Z., and Connor, C. E. (2008).

A neural code for three-dimensional object shape in macaque inferotemporal

cortex. Nat. Neurosci. 11, 1352–1360. doi: 10.1038/nn.2202

Yarbus, A. L. (1967). Eye Movements During Perception of Complex Objects. New

York, NY: Springer US.

Zhou, H., Friedman, H. S., and von der Heydt, R. (2000). Coding of border

ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Eguchi, Mender, Evans, Humphreys and Stringer. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 23 August 2015 | Volume 9 | Article 100

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Computational modeling of the neural representation of object shape in the primate ventral visual system
	1. Introduction
	1.1. Hierarchical Representations in the Primate Ventral Visual Pathway
	1.2. Computer Modeling Study
	1.3. Hypothesis
	1.3.1. Neurons Learn to Respond to Individual Boundary Contour Elements by Exploiting Statistical Decoupling
	1.3.2. Neurons Develop Translation Invariant Responses Through Trace Learning (Temporal Association)

	1.4. Overview of Simulation Studies Carried Out in this Paper

	2. Materials and Methods
	2.1. Hierarchical Neural Network Architecture of the Model
	2.2. Pre-processing of the Visual Input by Gabor Filters
	2.3. Calculation of Cell Activations within the Network
	2.4. Lateral Interaction between Neurons Within each Layer
	2.4.1. Competitive Network Architecture
	2.4.2. Self-organizing Map

	2.5. Contrast Enhancement of Neuronal Firing Rates within Each Layer
	2.6. Training the Network: Visually-guided Learning of Synaptic Weights
	2.6.1. The Hebb Learning Rule
	2.6.2. The Trace Learning Rule

	2.7. Testing the Network
	2.8. Information Analysis

	3. Results
	3.1. Study 1: VisNet Simulations with Artificial Visual Objects Constructed from Multiple Boundary Elements
	3.1.1. Development of Neurons that Respond to Localized Boundary Conformation
	3.1.2. How the Responses of Neurons to their Preferred Boundary Elements Depend on the Position of the Boundary Element in the Frame of Reference of the Object
	3.1.3. How the Number of Object Sides (n) and the Number of Possible Boundary Elements at Each Side (p) Affect the Learned Neuronal Response Properties
	3.1.4. The Effect of a Self-Organizing Map (SOM) Architecture on Learned Neural Selectivity for Boundary Contour Elements
	3.1.5. Response properties of Neurons through Successive Layers of VisNet
	3.1.6. Translation Invariance of Neuronal Responses as Objects are Shifted Across Different Locations on the Retina

	3.2. Study 2: VisNet Simulations with Visual Stimuli of Pasupathy and Connor
	3.2.1. Development of Neurons Encoding Local Boundary Conformation in an Object-centered Frame of Reference
	3.2.2. Development of Translation Invariant Neuronal Responses

	3.3. Study 3: VisNet Simulations with Images of Natural Objects
	3.3.1. Development of Neurons Encoding Local Boundary Conformation in an Object-centered Frame of Reference
	3.3.2. Development of Translation Invariant Neuronal Responses


	4. Discussion
	4.1. Future Work

	References


