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SUMMARY

Robots are likely to become important social actors in our future and so require
more human-like ways of assisting us. We state that collaboration between hu-
mans and robots is fostered by two cognitive skills: intention reading and trust.
An agent possessing these abilities would be able to infer the non-verbal inten-
tions of others and to evaluate how likely they are to achieve their goals, jointly
understandingwhat kind andwhich degree of collaboration they require. For this
reason, we propose a developmental artificial cognitive architecture that inte-
grates unsupervised machine learning and probabilistic models to imbue a hu-
manoid robot with intention reading and trusting capabilities. Our experimental
results show that the synergistic implementation of these cognitive skills enable
the robot to cooperate in a meaningful way, with the intention reading model al-
lowing a correct goal prediction and with the trust component enhancing the like-
lihood of a positive outcome for the task.

INTRODUCTION

Human beings are social creatures held together by communal bonds and organized into complex social

structures. This tendency to aggregation and to work as part of groups is not to be dismissed as a quirk but

rather constitutes an important characteristic that has been proved being at least partially hardwired in our

genes (Ebstein et al., 2010). The ability to collaborate with others to achieve common goals has been one of

the key factors for our success as a species.

Researchers in the social sciences agree to distinguish collaboration from cooperation, as they represent

two different types of interaction (Roschelle and Teasley, 1995). In particular, we refer to ‘‘cooperation’’

when the involved parties work toward a shared goal by solving sub-tasks individually and then assembling

their partial results. In contrast, ‘‘collaboration’’ refers to the act of dividing the task among the participants,

who then engage in a mutual, coordinated effort to solve the problem together. Given these definitions,

themain difference between cooperation and collaboration is that the latter implies a deeper level of inter-

action, shared understanding, and coordination (Dillenbourg, 1999).

A body of scientific evidence points toward the early development of collaborative behaviors in human in-

fants: the latter are, in fact, able to engage in coordinate actions as early as their first birthday. This ability

continues to evolve through time and by experience, in parallel to their cognitive development, and by the

30th month of age, they become able to perform complementary actions (Henderson and Woodward,

2011).

Our hypothesis on collaborative intelligence stems from two statements. Bauer et al. (2008) break the

collaboration process in a series of sequential tasks, namely perception, intention estimation, planning,

and joint action. In other words, before an agent can collaborate with another, there is the need of recog-

nizing the pursued goal and to select appropriate actions tomaximize the chances of a successful outcome.

Groom and Nass (2007) declare that trust is an essential component to successfully perform joint activities

with common tasks. From these premises, we state that the two cognitive skills essential for successful

collaboration are ‘‘intention reading’’ and ‘‘trust’’.

We refer to intention reading as the ability to understand the goals of other agents based on the observa-

tion of their physical cues, for example, body posture, movements, and gaze direction. Generally speaking,

humans do not perceive biological motion as meaningless trajectories through space but instead are able
iScience 24, 102130, February 19, 2021 ª 2021 The Author(s).
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to view it in relation to an end objective (Malle et al., 2001). The cognitive process of estimating the inten-

tion is performed by dividing the observed continuous stream of actions in discrete intervals which are then

individually decoded (Baldwin and Baird, 2001). By giving us the ability to understand what is happening

around us, this ability lays the foundation of social awareness (Woodward et al., 2009), allowing us to reason

about the behavior of other agents in our environment and acting accordingly.

Trust shares with intention reading the same importance in scaffolding our social abilities, as it affects every

interaction we experience. Mayer et al. (1995) define it as the willingness of the trustor to rely on the actions

of the trustee despite the former not having any control of the latter. The ability to correctly direct our trust

has deep consequences on the success of our relationships, in our personal safety (Das and Teng, 2004) and

in team cooperation (Jones and George, 1998).

Both these cognitive skills are not innate in humans, meaning that newborns do not automatically possess

them. Instead, human phylogeny has provided each individual the tools to develop them in the scope of

one’s personal ontogeny, meaning that these traits will gradually arise during childhood and will refine

themselves through social interactions and experiences, until reaching their full maturity. In particular,

intention reading is facilitated in human beings by themirror neuron system present in their brain (Rizzolatti

and Craighero, 2004): a collection of neurons which activate both when the individual executes an action or

when it observes a similar action being performed by someone else. By mapping the visual perception with

the organism’s own motor representation, this neurological system enables action understanding and

imitation learning (Gallese and Goldman, 1998). This system is tuned by epigenetic processes during post-

natal development (Ferrari et al., 2013), so it is correct to say that intention reading is perfected through

experience; this is also confirmed by the fact that children are initially able to recognize biological motion,

with time they start associating social cues such as biological motion and eye gaze (Tomasello et al., 2005)

to goals and finally manage to understand the choice of plans (Woodward et al., 2009). In contrast, the

developmental evolution of trust is still under debate. Erikson (1993) has theorized the stages of psycho-

logical development, the first of which is known as the ‘‘trust vs mistrust’’ stage that occurs around the sec-

ond year of age: during this phase, the child’s propensity to trust is directly influenced by the quality of

cares he or she receives. This happens because infants depend entirely on their caregivers for sustenance,

so if their needs are regularly satisfied, they will learn that the world is a secure and trustable place, or vice

versa.

Both of these cognitive traits depend on a third one: theory of mind (ToM), the ability to understand that

other beings around us possess different sets of mental states, such as beliefs, goals, and desires (Vander-

bilt et al., 2011). Mastery of this capacity is a fundamental requirement for both the collaborative skills we

are analyzing. In particular, intention reading can be performed only if it is possible to determine which de-

sires are driving the actions of another agent, and trust can be estimated only if it is possible to compare

beliefs and motivations to verify their alignment with one’s owns (Premack and Woodruff, 1978). This de-

pendency is emphasized by the fact that both these skills fully mature around the fifth year of age, which

is also the same age at which ToM fully develops (Tomasello et al., 2005; Vanderbilt et al., 2011; Wellman

et al., 2001).

Given the importance of collaborative behavior for humans, it seems natural to transpose its value to arti-

ficial agents, in particular to social robots which are expected to act in human-shaped environments inter-

acting with us on a daily base. In particular, if we aim at designing robots able to blend themselves in our

present and future societies, a strict requirement for them will be to adapt to our social expectations and fit

in our natural environments. In other words, in a future where interactions between humans and robots will

be more common, we do not want to robotize people, but we hope to make the minds of these mechanical

companions a little more human. For this purpose, collaborative intelligence may be one of the most

important skills for these agents to possess.

Collaborative intelligence, under a technical perspective, can be defined as a multi-agent system where

each agent has the autonomy to contribute to a problem-solving network (Gill, 2012). For the purpose

of this paper, we are interested in considering the special case of two agents, one human and a robot,

which are collaborating to complete some task. In this work, we intend to expand the general collaboration

architecture for cognitive robotics provided by Bauer et al. (2008) adding trust estimation between the

intention reading and the action planning steps. Our proposed architecture is shown in Figure 1.
2 iScience 24, 102130, February 19, 2021



Figure 1. Overview of the mechanisms leading to joint action

Expanded from Bauer et al. (2008) through the addition of trust estimation.
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The scientific community has been investigating computational models for artificial intention reading for

many years, as this is an important skill for collaborative machines (Vinanzi et al., 2019a). Some techniques

seem to be more common than others, in particular hidden Markov models (Kelley et al., 2008) and

Bayesian networks (BNs) (Dindo et al., 2015) seem to have gained a large consensus, as well as a wide range

of machine learning methods such as neural networks (Singh et al., 2016) and support vector machines

(Manzi et al., 2017). Hybrid approaches have also been investigated, for example, Granada et al. (1995)

used a neural architecture to extract low-level features from camera images which are then used in a prob-

abilistic plan recognizer. The use of embodied agents such as robots for the exploration of intention

reading capabilities is promoted by Sciutti et al. (2015), who underline the importance of sharing the

same action space with the human partner. Robots have in fact been successfully used to investigate inten-

tion understanding and sharing in turn-based games that possess a strong learning-by-demonstration

aspect (Dominey and Warneken, 2011; Jansen and Belpaeme, 2006).

Trust has also been extensively researched in the context of human-robot interaction (HRI), themain reason

being that the quality of the interaction is usually shaped by how trustworthy the robot appears to the hu-

man. This means that even a perfect machine will not be able to perform at its fullest if the human partner is

not willing to trust its decisions and actions. This problem has generated a branch of research focused on

determining which behavioral and esthetic elements of a robot can influence its perception from the peo-

ple who interact with it, in other words there is a vast literature of human-centered trust in HRI (Floyd et al.,

2014; Zanatto, 2019). Here, we propose that the opposite, i.e., the trustworthiness of a human estimated by

a robot, is also fundamental during a collaborative activity: whereas a robot can fail, so can a person, and it

is important to keep this in mind when performing decisions that will try to optimize the achievement of the

shared goal. Unfortunately, literature is scarce for what concerns this kind of robot-centered trust. Patac-

chiola and Cangelosi (2016) proposed a probabilistic model which unifies trust and ToM to be used in a

simulation of Vanderbilt’s experiment about children’s trust willingness (Vanderbilt et al., 2011). This model

has been subsequently expanded into a cognitive architecture for a humanoid robot (Vinanzi et al., 2019b)

enhanced with an episodic memory system. The latter is a subcategory of the long-term declarative mem-

ory that stores memories about temporally dated episodes or events and temporal-spatial relations among

them (Tulving, 1972). This feature is relevant because the positive influence of one’s personal history on the

cognitive capabilities has been proven other than for the biological brain also for artificial agents (De Cas-

tro and Gudwin, 2010; Jockel et al., 2008). Episodic memory is also the key to reproduce the ‘‘trust vs

mistrust’’ stage theorized by Erikson (1993) in a developmental cognitive system.

In this paper, we present an integration of our previous studies on artificial intention reading (Vinanzi et al.,

2019a, 2020) and trust estimation (Vinanzi et al., 2019b) to create a collaborative intelligent embodied agent

able to direct its efforts in providing assistance in a shared activity with a human partner. Through the use of

this computational model, we aim at demonstrating the positive influence of trust on the synergistic efforts

of the two agents. Given this premise, our main contribution comes in the form of the novel cognitive artificial

architecture for human-robot collaboration shown in Figure 2, capable to perform both intention reading and

trust estimations on human partners. To achieve this, we have made use of a set of state-of-the-art techniques

ranging from unsupervised machine learningmethodologies to probabilistic modeling. We have validated this

architecture through a set of simulatedHRI experiments involving several humans anda robot collaborating in a

block placing game. The results we collected demonstrate that the pairing of these two cognitive skills can

greatly enhance the outcome of the joint action by providing the robot with some decision-making parameters

that are used to fine-tune the assistive behavior.
iScience 24, 102130, February 19, 2021 3



Figure 2. The proposed artificial cognitive architecture which integrates intention reading and trust mechanisms

for the purpose of collaborative intelligence

Please refer to the Transparent methods section of the Supplemental information for the detail of each component.
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RESULTS

Experiments

Many of the considerations made throughout this section refer directly to the methodology involved in this

line of research. For this reason, we invite the reader to consult the Transparent methods section of the Sup-

plemental information to gain a better insight on the experiments that are described below.

Having already validated the performance of our intention reading (Vinanzi et al., 2020) and trust (Vinanzi

et al., 2019b) models in our previous publications, the aim of our current experiment is to verify our hypoth-

esis on the positive influence of trust mechanisms on the overall collaborative performance. For this reason,

we are going to use the same experimental setup of our previous investigation on robotic mind reading

and compare the results achieved from our new, integrated architecture (referred as trust architecture,

or TA) with the baseline obtained from our previous intention reading model (Vinanzi et al., 2020) which

we will hereafter be referring to as the no trust architecture, or NTA.

The experimental setup is shown in Figure 3A. A Sawyer robot and a human are facing each other on the

two sides of a table. Four different colored blocks are positioned on the corners of the playing area; anti-

clockwise from the top left they are blue (B), orange (O), red (R), and green (G). The central area of the table

is denoted as the building space.

The aim of the game is to use the 4 available blocks to form a line, following a simple rule only known by the

demonstrator: the blocks must be chosen one by one from a different side of the table (left or right). The 8

legal combinations of blocks are reported in Figure 3B and each of them forms a goal for our intention

reading purposes. During the training phase, the human will demonstrate each goal once and the robot

will learn to associate the demonstrator’s body posture and eye gaze direction to their intentions. Addition-

ally, the robot will always naively trust its teacher, while the beliefs regarding other subsequent partners will

be generated using episodic memory. For more details on our adopted methodology, please refer to the

Transparent methods section of the Supplemental information.
4 iScience 24, 102130, February 19, 2021



Figure 3. Experimental setup for the block building game

(A) Schematic of the playing table, depicting the position of the 4 colored blocks: blue (B), orange (O), red (R), and green

(G).

(B) The 8 admissible block sequences obtained by picking blocks alternatively from each side. These sequences are the

goals for this scenario.
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During the execution phase, the robot will follow the workflow described in the Transparent methods (Sec-

tion S1.3). In our setting, a total output represents a full line of 4 colored blocks, while the partial output (PO)

is the sequence of cubes that the human has arranged before the artificial agent was able to perform inten-

tion reading. If the human is trusted or the PO is valid, the robot will collect the next predicted blocks and

hand them over to him or her. If not, the robot will position the blocks itself on the building area in what it

considers to be the correct order, attempting to rectify the errors that have been committed. In the latter

case, the robot will also offer an explanation of why it thinks the PO is invalid (in our experimental setting,

this happens when two blocks from the same side of the table are placed one next to another).

In the scope of this experiment, an interaction will be considered successful if its outcome is a structure that

follows the game’s rules, in other words one of those listed in Figure 3B. This is true even if the true goal was

not the one predicted by the robot: this is because we do not wish to measure the performance of the inten-

tion reading model (which has already been quantified) but rather we want to evaluate the collaborative

effort itself. From here on, we will define a ‘‘positive’’ interaction one in which the human correctly achieves

a valid goal and a ‘‘negative’’ one where he or she takes an unsuccessful course of action. The human might

violate the rules more or less intentionally, but for our purposes, we consider both these cases as a failure

that will lead to a decrease of their trust level.

To verify and measure the trust model’s impact on the collaborative effort driven by the intention reading

architecture, we have conducted a batch of simulated experiments (The use of virtual agents in a simulated

environment is a COVID-19 lockdown contingency choice) using a virtual robot which has been modeled in

accordance to the empirical data collected during our latest experiment on intention reading (Vinanzi et al.,

2020).

After training the robot, we let it interact with a set of simulated humans which possess different behavior

patterns. It is important to note that in most of these experiments we do not make an explicit use of

episodic memory. This is because, having only familiarized with the demonstrator, the robot would

generate a fully trustful network for the novel informant because it will be sampling episodes from a batch

of positive memories. This mean that, for the purpose of the simulated experiment, we can simply assume

that the robot will naively trust its new informant. Thereafter, we continue not using the memory system
iScience 24, 102130, February 19, 2021 5
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because we do not want our results to depend on the order in which the robot has experienced the users,

rather we want to study how each robot would respond to each user independently. For completeness, one

of our simulated humans is initialized with a distrustful BN to simulate the effects of the episodic memory.

We have divided the simulated humans in two groups. The first one involves the ‘‘deterministic’’ agents,

which have a fixed behavioral pattern, as follows:

� H1: always negative;

� H2: 50% positive, then 50% negative;

� H3: 50% negative, then 50% positive;

The second group categorizes the ‘‘stochastic’’ agents: the latter possess different success-to-failure ratios,

but the order of their actions is randomized and not fixed. In particular, we have the following:

� H4: 50% success rate;

� H5: 80% success rate;

� H6: 20% success rate;

� H7: 80% success rate, but initialized with a distrustful BN;

The deterministic humans have been tested through a batch of 100 iterations each. For the stochastic ones,

we have performed 10 random initializations, and for each of them, we have executed 100 interactions with

the simulated robot. The only exception is H4, for which we performed 20 random initializations due to its

high variance. During each test, we have recorded the success rate and the opinion value, both of which are

described in the following section.
Evaluation metrics

Success rate

Given a human partner Hi, we define the success rate S as follows:

SðHiÞ = successful goals

total interactions
˛½0;1� (Equation 1)

We wish to formulate a comparison between the integrated cognitive architecture and the NTA. To do so,

we refer to the success rate calculated on the latter as S+ðHiÞ and we formalize the difference between the

two systems as follows:

DSðHiÞ = SðHiÞ � S+ðHiÞ (Equation 2)

Positive values of DSðHiÞ will denote a more performative collaboration obtained by our current architec-

ture over the NTA and vice versa.
Artificial opinion

We define a quantitative index which reflects the willingness of the robot to change its opinion about a

partner. For a partner Hi at a certain time step t, this artificial opinion is calculated as follows:

OðHi; tÞ =
np � nn

np + nn
˛½ � 1; 1� (Equation 3)

where np and nn indicate, respectively, the number of positive and negative episodes experienced by the

robot with partner Hi at time t. We will sometimes use a more simple notation, where we indicate the

opinion of a robot toward a generic partner at a certain timestep simply as OðHÞ.

When the robot trusts the person, that is, when PXI
ðaÞ>PXI

ðbÞ, it is also true that OðHÞR0 and vice versa,

when the BN is distrustful toward them OðHÞ<0. The choice of having the robot to trust when PXI
ðaÞ=

PXI
ðbÞ and OðHÞ= 0 is made by design since we wish the robot to act more friendly toward its users, giving

them the benefit of doubt. The closestOðHÞ is to 0, the easier it will be for the agent to flip its trust and vice

versa, and the more this value tends toward the extremes, the less inclined the robot will be to alter its
6 iScience 24, 102130, February 19, 2021



Figure 4. Comparison of the collaboration success rates with and without the trust model for each of the

simulated informants
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belief. Of course, OðHÞ=G1 indicates a very strong opinion and it is possible only when the agent has

experienced solely positive or negative episodes with that specific user.

Success rates

In our last experiment on intention reading (Vinanzi et al., 2020), we have considered partners which always

act toward one of the correct goals. This means that for a hypothetical human H0 acting always positively,

SðH0Þ=S+ðH0Þ= 1:0 despite the fact that the empirical results we collected during that experiment indicate

that the robot succeeds 80% of the time: this is because in the current investigation, we are not testing the

intention reading capabilities, which enable the collaboration in the first place, rather we want to analyze

the effect of a trust mechanism to correct partners who are not capable or willing to achieve a valid goal.

However, if we start considering humans which can (more or less intentionally) fail the task, the NTA’s suc-

cess rate drops drastically as it does not possess the ability to adopt any corrective actions. In this case,

each action failed by the human will result in a failed collaboration. Figure 4 shows a comparison between

the success rates of the two architectures measured on the 7 simulated humans. H1 always fails the task so

S+ðH1Þ = 0, while the trust-enabled model is able to score SðH1Þ= 0:97 with a significant increase of

DSðH1Þ = 0:97.

Both H2 and H3 provide a mixed scenario in which the behavior of the simulated human is quite regular by

being respectively positive and negative for half of the time, in inverse order. In both these cases, the NTA

could only score S+ðH2Þ = S+ðH3Þ = 0:5. The trust mechanism did not prove itself of much use for H2 since

the robot builds up a strong trust for the user and is not able to change its mind in time to correct the new

behavior: as we will see in the next section, this is because the agent should be observing at least np + nn +

1 negative cases to completely change its mind about the informant, which is not possible in this 50-50 split

case initialized with positive episodes. In summary, SðH2Þ= 0:5 and DSðH2Þ = 0, in other words the perfor-

mance is the same as the one obtained through NTA. H3 behaves similarly: not having enough time to

change its mind, the robot continues to distrust the human nearly until the end. The difference is that in

this condition the robot maintains a strict supervision on the interactions, leading to SðH2Þ= 0:97 with an

increase of DSðH3Þ = 0:47.

To better evaluate the stochastic humans, we have recorded the success rates achieved through the

batches of random initializations and we have calculated the mean m and the standard deviation s. The suc-

cess rates reported in Figure 4 for these simulated people represent the mean score, supplied with error

bars representing s. These values are also recorded in Table 1 for better visualization.

H4 is the agent who achieved the highest s, that is because its behavior is the most unpredictable. This is

explainable by considering what this behavioral pattern represents: with 50 positive and 50 negative
iScience 24, 102130, February 19, 2021 7



Table 1. Mean and standard deviation of the success rates calculated on the interactions performed by the

stochastic simulated humans

Partner Mean (m) Standard deviation (s) Initializations

H4 0.66 0.15 20

H5 0.8 0.0 10

H6 0.95 0.01 10

H7 0.81 0.01 10
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episodes with randomized order of appearances, the trust levels can fluctuate significantly. This is also the

reason behind our decision to execute double the number of trials with this simulated human. In this case,

the NTA would have achieved S+ðH5Þ = 0:5, but the trust-enabled architecture is able to score SðH2Þ =
0:66, with s = 0:15, achieving on average DSðH4Þ = 0:16. The performance of the TA has a theoretical lower

bound equal to the one obtained by the NTA and in fact we have registered scores per batch not lower than

0.5, up to a maximum of 0.93. We can conclude that a success rate of 50% is a critical point of uncertainty in

which the human’s behavior is too variable for the robot to adapt efficiently. As we will see shortly, above

this value, the human becomes more skilled and the value of trust-based corrective mechanisms gradually

fades away and vice versa, lower success rates benefit more from the TA.

H5 is a fairly expert human who succeeds 80% of the time, which means that S+ðH5Þ = 0:5. The robot builds

a very solid trust toward this partner, at the point that the 20 failures are, in our experiments, sufficiently

sparse in the set of 100 interactions to never make the trust flip to negative. The latter is of course theoret-

ically possible, but they should appear clustered at the beginning of the batch to make that occur. This

means that the robot never looses trust toward this confident human but that also those 20% failures are

not being captured, hence SðH5Þ = 0:8, DSðH5Þ = 0, and s = 0. This result is quite important because, as

we mentioned previously, it demonstrates that the overall effectiveness of trust evaluations on the collab-

oration is inversely proportional to the skill of the partner.

The behavior ofH6 is quite the opposite ofH5, succeeding only 20% of the times. In this case, S+ðH6Þ = 0:2,

but the full architecture was quickly able to detect the negative attitude of this simulated human and it

promptly started distrusting them, achieving SðH6Þ= 0:95with s = 0:01, leading to an averageDSðH6Þ = 75.

H7 has the same behavioral pattern than H5, which is an 80% success rate, but the robot facing him or her is

not initialized with a trusting BN but rather with a naively distrustful network. This is meant to test the effects

of the episodic memory on the performance of the architecture. As we can see from Figure 4, we achieve a

similar result as H5, just slightly better because the robot will tend to not trust them and take over the task

until it is persuaded about their skill. The mean result for this scenario is SðH7Þ = 0:81, with s= 0:01 and

DSðH6Þ = 0:1. What this result stands for is the fact that the episodic memory has only a local effect on

the robot’s behavior, which is tuned on the long term through real interactions which take over its initial

prejudice.

Overall, the experiments showed an average success rate increase equal to the following:

1

7

X7

i = 1

DSðHiÞ = 0:33 (Equation 4)

Thus confirming the positive impact of trust estimation in support of intention reading during collaborative

HRI.

Trust dynamics

During the simulated interactions, we have recorded the opinion value for each of the human partners. By a

design choice, the robot is initialized with a trustful BN built from 4 positive episodes. This network yields an

initial opinionOðH;0Þ = 0:4. After that, we recordedOðH; tÞ for t˛f1; 100g and we reported them in a set of

graphs.

Figure 5 shows the dynamics of the robot’s opinion through the various interactions for the deterministic

humans.H1 always acts incorrectly, but the network is initially willing to trust them. This changes very quickly
8 iScience 24, 102130, February 19, 2021



Figure 5. Variation of the opinion value at each turn of interaction for the 3 deterministic simulated informants

(H1, H2, and H3), initialized with a trusting BN

When OðHÞ becomes less than 0, the robot starts distrusting the informant and taking more control on the task.
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since we can observe the opinion dropping to 0 after only a few negative episodes and then decreasing

close to the lower limits. This value never actually reaches the minimum value of �1 because this would

only be possible if the robot had experienced 100% negative episodes, which is not the case due to

how its BN was initialized. In any case, we can see how the opinion of the robot stays low, meaning that

the human will have to put a lot of effort to regain its trust.

H2 behaves 50 times positively and, subsequently, 50 times negatively. During the first half of the inter-

actions, the opinion raises to its maximum since the robot has only experienced successful interactions

with that person. From turn 51 onward, the human starts failing the block building game and the

opinion slowly decreases but it is not able to flip. This is because, by the end of the session, the robot

possesses 54 positive and 50 negative episodes in its memory, meaning that it has not enough time to

change its mind (other 4 negative episodes will bring the opinion to 0 and another one after that will flip

the trust).

H3 acts in the opposite way as for the previous simulated agent. The trust quickly drops in the distrusting

side of the graph and slowly rises after turn 50. In contrast with H2, this human is able to flip the trust back to

positive by the end of the session because of the way it was initialized. If the BNwas originally set to distrust,

these two graphs would result inverted.

As previously mentioned, the random nature of the stochastic humans required several batches of itera-

tions, performed with different random initializations, to fully understand the behavior of each agent.

Figure 6 reports the dynamics of the robot’s opinion during 10 out of the 20 iterations performed for H4,

which is the simulated agent with a success rate of 50%. What is immediately noticeable from these graphs

is that the opinion always converges around 0: this is an expected result since this value is the midpoint in

the scale, representing partners with mixed, indecisive behaviors. It is worth remembering that the robot

will trust a human when OðHÞR0.

Regarding H5, having a success rate of 80%, we expected the robot to terminate each iteration with a high

opinion. This prevision was confirmed by the graphs reported in Figure 7, which show that the robot never

fully changed its impression of the partner, in other words the 20 errors randomly scattered among the 100

interactions were not sufficient to flip the trust. The closest the robot got to distrust them happened in the
iScience 24, 102130, February 19, 2021 9



Figure 6. Opinion dynamics for the stochastic human H4 (50% success rate) during its first 10 iterations
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first diagram, where a sequence of negative episodes were experienced right at the beginning, dropping

the opinion to 0, which by our design still represents a trusting situation.

Similar considerations are valid for H6, the virtual agent capable of a very low, 20% success rate. The 10 di-

agrams of Figure 8 differ mostly on the very first interactions, when a sequence of positive episodes may

impact the limited memory of experiences of the robot and in fact some of the iterations have managed

to achieve trust for some turns. Ultimately, the opinion always ends up settling on the lower side of the

graph, in the distrust domain, which is what we expect from a human who consistently fails the majority

of the tasks.

All the previous simulations have been executed on a simulated robot initialized with a trustful BN, for the

reasons we have explained in the preceding sections. We now wish to analyze what would happen if the

network was created through episodic memory, that is, if it does not contain 4 positive episodes but a

certain number of negative ones. For this reason, we have built H7 with a BN composed of 4 negative ep-

isodes: this yieldsOðH7;0Þ = � 0:4. Figure 9 shows the result of this experiment, which is comparable to the

one performed for H5 since these two simulated humans behave in the same way, with the only difference

being the initial prejudice. Despite the variance in the early interactions, which can make the opinion oscil-

late quite widely, on the long run, the latter settles for similar values registered for H5. This demonstrates

that the episodic memory can create a local effect which influences strongly the early interactions of the

robot with a person but that fades gradually once the actual experience takes over the initial prejudice.

This is exactly how the episodic memory system was intended to operate. Having tested the two types

of BN that can be generated by the episodicmemory system (completely polarized toward trust or distrust),

we do not feel the need to investigate the cases which lie in between: these will produce similar, but more

mitigated, effects than the ones we have observed.

DISCUSSION

Collaboration between people has been, through history, the key to obtain the grand achievements of the

human species. In a future world where humans and robots will be living closely, we want to be able to
10 iScience 24, 102130, February 19, 2021



Figure 7. Opinion dynamics for the stochastic human H5 (80% success rate) during 10 iterations
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collaborate with them too. With this purpose in mind, we state that a true collaborative robot able to op-

erate in human-sized environments must possess the same cognitive skills that drive our own social life. In

this paper, we defined collaborative intelligence as the mutual interaction between intention reading and

trust estimation, two mental abilities toward which humans are biologically oriented. The former allows an

agent to understand the actions and goals of other agents acting around it, thus providing clues andmean-

ing to simple sensory perceptions, while the latter is essential to estimate the level of skill or knowledge of

another agent so to formulate an appropriate plan. Following the developmental robotics principles, our

cognitive architecture takes inspiration from scientific findings in human cognition, and both the intention

reading and trust models are designed according to the current psychological literature. We have devel-

oped a cognitive system which is able to learn goals by demonstration in an unsupervised and probabilistic

way and to estimate trust using an artificial ToM. We have applied this architecture to a block building

game where a robot is engaged with several humans to pick and place some colored cubes from a table

to form constructions that obey to certain patterns.

Overall, we can conclude that the synergistic combination of intention reading and trust leads to better re-

sults than the ones obtainable by just predicting the human’s goal. The experiments that we conducted

have shown that the complementary use of both these cognitive skills enhances the collaborative perfor-

mance, making the robot act as a better teammate. This confirms our initial hypothesis, which is that collab-

orative intelligence is enabled by the ability to read another agent’s intention and is fostered by the capac-

ity to correctly estimate the trustworthiness of the other party. The robot’s ability to take control of the task

whenever the partner demonstrates a lack of skill results in a significant increase in the success of the joint

task.

Both the intention reading and the trust models offer directions in which to orient future investigations. The

former, for example, could benefit from the addition of hierarchical goals, i.e., goals composed by multiple

sub-goals (for example, uncapping a bottle might be one step to achieve the ‘‘drink’’ goal). Another

possible study could explore the use of more social clues and the investigation of their order of application

within Feature-Space Split Clustering, the multi-modal clustering algorithm which we use within the
iScience 24, 102130, February 19, 2021 11



Figure 8. Opinion dynamics for the stochastic human H6 (20% success rate) during 10 iterations
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intention reading module, described in detail in the Supplemental information. Both these components

will be revised in the near future to apply them to multi-agent systems: ensembles of heterogeneous

agents, each of which has the ability to contribute to a greater problem-solving network. In this kind of sce-

nario, it would be possible to take into account the contemporary influence of two or more agents, similarly

to what has been done by Butterfield et al. (2009). This, of course, would also imply the adaptation of this

cognitive architecture to collaborate not only with humans but also with other artificial agents.

Another future direction could involve the use of this architecture within a more continuous representation

of trust, where a partner possesses a degree of trustworthiness as opposed to a binary state. Having access

to a more refined representation could provide further benefits for the robot: for example, this could trans-

late in a continuous definition of the collaboration process, where the agent might decide to take over only

a subset of the actions based on their complexity.

LIMITATIONS OF THE STUDY

Due to the inability to access appropriate research facilities due to COVID-19 lockdown in the United

Kingdom, it was not possible to perform experiments on the physical robot, which were instead replaced

by simulations. By providing the virtual robot the same empirical error rates obtained during the founda-

tional experiments, which have all been executed in the real world, we have tried to minimize any approx-

imation errors between the simulated and the real interactions.
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Figure 9. Opinion dynamics for the stochastic human H7 (80% success rate, against a naively distrusting BN) during 10 iterations
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1 Transparent Methods

The aim of our research is to develop a comprehensive cognitive architecture
that encompasses both intention reading and trust abilities for a humanoid
robot engaged in HRI. To do so, we are going to build on the foundations of
our previous models (Vinanzi et al., 2020, Vinanzi et al., 2019) and build an
integration that, following the schematic presented in Figure 1, will allow a
robot to act collaboratively towards a human partner. This architecture will be
used in a scenario in which the robot will have to infer the goal of its partner by
the observation of their social cues and subsequently perform decision-making
to formulate an action plan that will try to optimize the chances of successfully
achieving the intended objective.

For the design of both the artificial intention reading and trust capabilities,
we made use of the developmental robotics approach. Cangelosi et al. (2015)
defined this subject as “the approach to the design of behavioral and cognitive
capabilities in artificial agents that takes direct inspiration from the develop-
mental principles and mechanisms observed in the natural cognitive systems of
children”. In other words, our computational models are inspired by scientific
findings in human cognition.

1.1 Intention Reading

1.1.1 Motivation

In the pursuit of the developmental robotics approach, the intention reading
model lacks a pre-existing plan library, rather it follows the psychological theo-
ries which state that this cognitive ability is learned by experience (Malle et al.,
2001). Furthermore, it follows the principles theorized by Tomasello et al. (2005)
which state that the intention decoding task is divided in a low-level action un-
derstanding based on social cues and a high-level goal prediction. The lack of
a hand-crafted plan library means that the robot will be able to learn goals in
a more flexible and scalable way, while the use of unsupervised an probabilistic
models, rather than supervised ones such as neural networks, makes the robot
learn on the fly with no need for big datasets or long traning times, making this
architecture lightweight on a computational point of view.

An overview of the intention reading architecture is shown in Figure 1. Ad-
ditional details about this section can be found in our previous publications
(Vinanzi et al., 2019, 2020).

1.1.2 Low-level social cue clustering and action representation

The low-level module of the intention reading architecture tries to encode tem-
poral sequences of human configurations, expressed as sets of social cues, into a
more compact representation that will be used to recognize actions. The main
idea is to observe the human acting to achieve the goals, then cluster the set of
their social cues and analyze how their actions unravel through these clusters
to form an encoding that will be used by the high-level goal prediction module.
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Supplemental Figure 1: Overview of the intention reading architecture. The
low-level extracts social data from the optical stream, forms clusters and uses
them to represent actions as transitions through clusters. The high-level uses
this encoding to probabilistically infer the pursued goal. The robot control
manages sensors and actuators. Related to Figure 2.

Following the psychological literature (Tomasello et al., 2005), we chose to
employ body posture and eye gaze direction as the features that the robot is
going to observe from the human.

We collect postural information by generating skeleton data through the use
of a pre-trained deep convolutional neural network architecture named Open-
Pose (Cao et al., 2016), specialized in real-time multi-person 2D pose estimation.
This neural network receives in input the images from the robot’s eye camera
and outputs a 18x2 feature vector representing the detected skeleton keypoints
as 18 joints expressed in 2D spatial coordinates, as reported in Figure 2a. In
order to optimize memory and speed requirements and to comply with recent
findings which state that classification tasks achieve better results with a re-
duced set of joints (Manzi et al., 2017), we operate a keypoint reduction to
diminish the volume of data required for each skeleton. To do so, we discard
the keypoints corresponding to the eyes, ears and shoulders, whilst calculating
a new torso keypoint as a median between the two hips: doing so, we obtain a
more compact 11x2 representation shown in Figure 2b.

The skeletons generated by this procedure cannot be used directly for classi-
fication purposes, as they are dependent on the position and size of the subject.
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Supplemental Figure 2: A comparison between the skeletal keypoints extracted
from the camera image (a) and the reduced keypoint set computed by the system
(b). Related to Figure 2.

To overcome this problem and obtain spacial invariance, we apply a normaliza-
tion process introduced by Cippitelli et al. (2016). For a skeleton with n joints,
the feature vector f is defined as:

f = [J1, J2, ..., Jn] (1)

where Ji is a vector containing the normalized 2D coordinates of the ith
keypoint:

Ji =
Ji − J0
‖J1 − J0‖

(2)

where J0 and J1 are, respectively, the neck and torso joint. The latter will
be located on the origin of the cartesian space, so its components will all be
zero. For this reason, it is removed from the feature vector, which at this point
will have a dimension of 10x2: this corresponds to a 44.5% size reduction from
to the original representation.

Another social cue that we collect from the robot’s partner is gaze direction.
We use Deepgaze (Patacchiola and Cangelosi, 2017), a convolutional neural
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network specialized in head pose estimation, to retrieve a 3D vector representing
estimated roll, pitch and yaw of the human for each image acquired by the robot.
We chose to approximate gaze direction with head orientation to avoid some
computational overheads that would impair the real-time computation of several
frames per second. This has been proved to be an acceptable approximation
(Jha and Busso, 2017).

We create action representations from the perceptual data through an unsu-
pervised clustering procedure, using a novel algorithm that combines multiple
sets of features in several increasingly refined stages, which we call Feature-Space
Split Clustering (FSSC). This strategy is adopted because it is possible to distin-
guish complex and potentially ambiguous actions by increasing the granularity
of the clustering operation, which means taking into account a multitude of
social cues. The main idea behind FSSC is a multi-level clustering process that
uses only a subset of the features at each level.

Consider a set of M training samples:

X =
{
x(1), x(2), . . . , x(M)

}
(3)

Each sample can be seen as defined by N groups of features:

x(i) =
{
f
(i)
1 , f

(i)
2 , . . . , f

(i)
N

}
(4)

Each group defines the feature-space fn with n ∈ [1, N ] and contains data
extracted from a different perceptual input. In our scenario we use N = 2

and for each image i we have that f
(i)
1 is a 20D vector containing the skeleton

keypoints configuration and f
(i)
2 is a 3D vector that specifies the gaze direction.

FSSC works by implicitly computing a tree of depth L = N whose nodes
contain the refined clusters. The root node (` = 0) contains all the data samples
and is considered as a single cluster, while nodes of each subsequent level ` > 0
are the clusters obtained by clustering the samples belonging to the parent node
in the feature-space f`. At each level, we perform Principal Component Analysis
(PCA) dimensionality reduction to project the data in a 2D space to avoid the
curse of dimensionality (Bellman, 2013). We do so also because clustering relies
on euclidean distance as a metric, but in high dimensional spaces the concept
of distance becomes less precise, since it tends to converge. Finally, we chose
X-Means (Pelleg et al., 2000) as the internal clustering method, which is a
variation on the traditional K-Means algorithm that overcomes its principal
limitation: the need to manually specify the parameter K that defines the
desired number of clusters. The model selects the optimal one by performing
model selection among a finite set of models through the optimization of the
Bayesian Information Criterion. Algorithm 1 describes this computation.

Given the hierarchical and nonlinear nature of this algorithm, we can’t per-
form classification (intended as the association of a new data sample to one of
the existing clusters) through a simple Euclidean distance search for the closest
centroid. Instead, the procedure described in Algorithm 2 must be adopted.
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Algorithm 1: Feature-Space Split Clustering (FSSC)

Input: training samples X; number of feature sets N
Output: A tree of clusters
tree← {}
Initialize the root node with all the samples X
for `← 0 to N do

foreach cluster of level ` do
x ← samples belonging to cluster

f ← f
(x)
`+1

f ′ ← Dimensionality reduction on f
newClusters← CLUSTERING(f ′)
Set newClusters to level `+ 1
tree← tree ∪ newClusters

end

end
return tree

The latter searches through the cluster tree, comparing the centroids in their
respective feature-space coordinates until a leaf node is found.

It is important to note that, despite this approach splits the feature-spaces,
in fact it does not decouple the multi-modal features extracted from the human,
as they share a temporal dependence on the frame from which they were gen-
erated. In other words, the features never lose their alignment.

During its initial training, the agent will observe the actions of its human
partner, record the image frames and extract all the relevant features. This
assembled dataset will be used to create the clusters using the method described
in Algorithm 1: each of them represents a group of similar but not identical
postures. These will be used in the next stage, Transition Analysis, to create
the low-level encoding: each action will be represented by the sequence of the
cluster ids encountered during its performance. To obtain temporal invariance,
we include in the encoding only transitions through different clusters, discarding
the persistence in the same group: in this way, the representation of an action
won’t depend on the speed of its execution. The results of this analysis, plus
a set of unique names for each goal which are generated automatically by the
robot, are forwarded to the high-level module to train it as described in Section
1.1.3.

After being trained, the system will be able to perform intention reading: the
agent will observe its human partner during the execution of the action, each of
their physical configurations will be classified to one of the known clusters using
the procedure described in Algorithm 2 and the discovered id will be forwarded
to the high-level module for probabilistic inference.

The low-level intention reading process is sensitive to noise because it is
learning each intention and its sequence of actions from a single training ex-
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Algorithm 2: Cluster classification

Input: cluster tree T , testing sample s
Output: cluster to which s belongs
parentNode← root node of T
`← 1
Loop

C ← descendants of parentNode in T

cluster ← min distance(f
(s)
` , c ∈ C)

if cluster has descendants then
parentNode← cluster
`← `+ 1

else
return cluster

end

EndLoop

ample, which is in turn obtained from a non-deterministic and unsupervised
process. To reduce this effect, we implement a post-processing computation
that aims to ground this general architecture to our specific experiment by cap-
turing the regularities of the data and assigning to each end position of our
actions (i.e. the grasping position for each of the blocks) one of the cluster ids
based on its statistical mode in the computed training dataset. Training actions
are then eventually corrected by merging the two representations to avoid any
errors in the training set.

1.1.3 High-level goal prediction

The high-level module is in charge of goal probabilistic inference from the ob-
served actions. What we are trying to achieve is not action recognition but
rather prediction, this means that only one part of the action will be known
and observable. Our objective is to determine the intention based on as few
observations as possible, so that the robot will be able to contribute to the task
before it is over.

To achieve this, we have employed the BN shown in Figure 3. The top node
denoted as I represents the intention of the human partner and its probability
distribution is equal across all the possible goals. The bottom nodes marked
as Ok with k ∈ [1,K], where K is the maximum length of the encoded ac-
tions, represent the observations. The values of these nodes span in the range
of the possible cluster ids identified by the low-level module. The conditional
probability tables of the observation nodes are fitted from the training data
provided by the low-level Transition Analysis (i.e. the action encoding associ-
ated to each goal name) using Maximum Likelihood Estimation (MLE) (Aldrich
et al., 1997). We assume that the probability of each observation depends on
the driving intention and by the precedent symbol encountered:
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Supplemental Figure 3: The BN used for high-level probabilistic goal prediction.
The top node represents the intention of the observed partner, whilst the bottom
node symbolize the observations (the action encoding symbols produced by the
low-level module). Related to Figure 2.

P (O1 | I) (5)

P (Ok | Ok−1, I) : k ∈ [2,K] (6)

Once the probabilistic model is trained, it can be used for inference. During
the execution phase, the robot will be observing the human and recording each
cluster transition in real-time. The low-level module will forward these sym-
bols to the high-level, which will treat them as sequential observations. Each
time a new piece of evidence is added to the model, we use Pearl’s Message-
Passing algorithm (Lauritzen and Spiegelhalter, 1988) to calculate the marginal
probability distribution for node I given the evidence. As soon as one of the
goals is predicted with a probability greater than 0.5, it is sent forward in the
processing chain to instantiate appropriate collaborative behavior. The value
of this threshold was chosen in compliance to the time restrictions: we could
choose to wait for a higher confidence, but this may slow the prediction time up
to the point in which the robot’s intervention in the joint task would become
irrelevant.

1.1.4 Robot control

The robot control module deals with the direct interface between the cognitive
architecture and the robotic platform, in this case a Sawyer: an industrial col-
laborative robot designed for object manipulation, equipped with a 7-DOF arm
(Figure 4). In particular, it provides interaction with the ROS middleware to
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Supplemental Figure 4: The Sawyer robot which was simulated for the col-
laborative intelligence experiments involving an interactive block placing game.
Related to Figure 2 and Figure 3.

control its sensors and actuators and perform vision, movement and grasping
for the shared goal task.

1.2 Trust Estimation

1.2.1 Motivation

The trust model has been designed to be able to reproduce the psychology
experiment on ToM maturity by Vanderbilt et al. (2011). In the latter, 90
preschool-age children equally divided in 3-, 4-, and 5-years-olds were exposed
to a video in which an adult actor gave advice to another adult who was trying
to locate a sticker hidden in one or two boxes. The informant could be either
a helper or a tricker, suggesting respectively the correct or the wrong location.
In the second phase of the experiment, a child would be involved in the game
and would receive the same kind of suggestion by the informant. Based on
the children’s choices and on some meta-cognitive questions submitted to them,
Vanderbilt theorized that only the 5-year-olds were able to differentiate the
helpers from the trickers, therefore demonstrating to possess a mature ToM.

1.2.2 Bayesian approach in trust reasoning

In our previous research (Vinanzi et al., 2019) we developed a probabilistic
model that could allow a robot to take part in the same sticker finding experi-
ment and to act as a child with mature or immature ToM, learning to predict
the beliefs and attitudes of the informants. The trust estimation architecture
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Supplemental Figure 5: Overview of the trust estimation architecture. The
robot uses its sensors to identify each human and select their own BN or even-
tually generate a new one using episodic memory. The selected model is then
used for inference. Related to Figure 2.

is reported in Figure 5. We employed a BN using discrete Boolean variables
that assume two states: a and b, each corresponding to one of the two positions
where the stickers can be located in the experiment. A graphical illustration of
this BN can be observed in Figure 6: the two nodes XR and YR represent re-
spectively the beliefs and actions of the robot. The posterior distribution of the
node YR allows the agent to choose the action to perform: that means searching
for the sticker in position a or b. The connection between YI and YR represents
the influence that the opinions of the informant have on the agent’s action. The
action of the agent is then a consequence of its own belief XR and the informant
action YI . Lastly, the estimation of XI , the informant’s belief, makes the agent
able to effectively discriminate a trickery from a non-malevolent human error.
The cognitive architecture we designed creates one of these BNs for each human
it interacts with and uses it to predict their future behavior. Every partner is
detected and recognized using Haar Cascade (Viola and Jones, 2001) and Local
Binary Pattern Histogram (Ojala et al., 2002) on the robot’s camera live stream.

For our current purposes, we intend to employ this model to check whether
the human has the knowledge or skill to achieve a given goal: if this is not the
case, the robot will have to perform corrective actions to ensure the success
of the task. To do so, we have employed the same Bayesian network chang-
ing the meaning of its binary nodes: a will represent a correct goal whilst b
will symbolize an incorrect goal. Following this convention, XI and XR will
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Supplemental Figure 6: The BN that models the relation between the robot
and an informant. The agent generates a separate network for each user, with
the same structure but different probability distribution. Related to Figure 2.

represent, respectively, knowledge of the informant and of the robot about the
correct goals, YI will symbolize the choice of a correct or incorrect action by the
informant and finally YR will depict whether the robot should adopt a trusting
or a corrective action.

The trust model is built from episodes, which are data structures that encode
interaction outcomes. Once the agent has collected a certain amount of episodes
from an informant, it can generate a BN associated to him or her using MLE
to determine the conditional probability tables of its nodes. For the root nodes
XI and XR we calculate these probabilities as:

PY (a) = θ

PY (b) = 1− θ
(7)

Denoting Na and Nb as the number of times the human demonstrates a or
b, we can estimate θ as:

θ̂ =
Na

Na +Nb
(8)

For the nodes YI and YR, instead, we have to also take into consideration
the influence of the parents.

Once a BN has been created for a certain user and its parameters have been
learned from the interactions, it is possible to infer the posterior probability of
the nodes given some observations. We calculate posterior distributions using
Pearl’s Message-Passing algorithm (Lauritzen and Spiegelhalter, 1988).
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The outcome of each interaction is saved as a new episode that will modify
the parameters of the probabilistic model. This means that while experiencing
new interactions, the BN can acquire new statistical data and adapt its behavior
over time, eventually switching between trust and distrust.

1.2.3 Episodic Memory

The power to use one’s own past memories to take decisions in the present and
future is an important ability that enhances the cognitive processes. In the
original experimental design by Vanderbilt et al. (2011), the child (or, in our
case, the robot) would familiarize with the partner before the real interaction.
We make use of episodic memory to let the artificial agent be able to instantly
interact even with unfamiliar people. On a technical level, the main problem is
to generate on the fly a new BN with adequate parameters to use with that un-
known person. These parameters will depend on the robot’s personal character
which, in turn, depends on the way it has been treated in the past: an agent
which has often experience human failures would learn to be mistrustful and
vice versa, as in the “trust vs mistrust” phase in child development (Erikson,
1993).

The design guidelines that we followed in the creation of our algorithm were
the following: memories fade away with time, the details become blurred pro-
portionally to the amount of memories possessed and, finally, shocking events
such as surprises and betrayals should be more difficult to forget. Our algo-
rithm draws inspiration from the particle filter technique widely used in mobile
robot localization (Rekleitis, 2004). Whenever an unknown informant is met,
this component generates on the fly a certain number of episodes to train a new
BN.
We define the set of BNs memorized by the agent as:

S = [s0, s1, ..., sn] (9)

Where n is the number of humans known by the agent.
Each BN si was generated by a set of episodes, and these are going to be denoted
as replay datasets for that BN:

Esi = [ε
(si)
0 , ε

(si)
1 , ..., ε(si)m ] : si ∈ S (10)

Where m is equal to the number of episodes of the replay dataset. So, in

this notation ε
(si)
j represents the j-th episode of the replay dataset that formed

the BN si.
The equation we are about to introduce uses information theory to quantify
the amount of information each specific episode represents. Our goal is to find
how much this value differs from the total entropy of its replay dataset: a high
difference means that the event is to be considered surprising and must be easier
to recall than ordinary, unsurprising events. For example, if a person who is
always been trustful suddenly tricks the agent, this betrayal will be remembered
with a greater impact. At the same time, all of the memories are subject to a
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progressive time degradation that tends to blur them with a timing dependent
on their importance.
Formally, a real factor denoted as importance value v defined in the interval

[0, 1] is calculated for every episode ε
(si)
j as the difference between the amount of

information of the episode, I(ε
(si)
j ), and the total entropy of its replay dataset,

H(Esi), divided by the discrete temporal difference from the time when the
memory was formed.

v(ε
(si)
j ) =

| I(ε
(si)
j )−H(Esi) |

∆t+ 1

=
| − log2 P (ε

(si)
j ) +

∑
ε∈Esi

P (ε) log2 P (ε) |
tpresent − tε(si)j

+ 1

(11)

Equation 11 is used to weight every episode from each replay dataset in
the agent’s memory in order to perform a systematic resampling (Douc and
Cappé, 2005) to pick the new episodes that will form the replay dataset for
the new BN we intend to create, Esn+1

. Finally, MLE is applied to the new
reply dataset to evaluate the parameters of the network. This new BN will be
stored in the agent’s long term memory as sn+1 and will be used to predict the
trustworthiness of the new informant.

1.3 Integrated Cognitive Architecture

Now that we have described both the intention reading and the trust estimation
models, we are going to focus on their integration with the purpose of achieving a
cognitive architecture suitable for human-robot collaborations. As described in
Figure 1, the main idea is that the trust model will act as a cognitive support for
the intention reading, allowing the robot to fine-tune its behavior after having
decided a general course of action. In particular, the robot will initially be
trained on a set of goals and will thereafter try to understand which one is being
pursued by its partner. Once a confident prediction is formulated, it will offer
assistance in order to achieve the shared objective. The degree of help provided
is influenced by the amount of trust the robot has in that specific person: if it
thinks he or she have the appropriate knowledge or skills to complete the task,
then it will act as an assistive peer, on the contrary it will start behaving more
like a supervisor, observing more closely the partner, correcting their mistakes
and, in general, assuming more of the responsibilities to ensure that the goal is
eventually reached.

The workflow we are about to discuss is shown graphically in Figure 7. The
interaction starts with the robot trying to identify the partner: in case of success
it fetches their trust belief BN, otherwise it generates one on-the-fly through its
episodic memory. The robot is assumed to naively trust the person that has
trained it, so it will possess at least one BN in its memory. After this process is
completed, it will start observing the human to read his or hers intention. Once
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a goal is predicted, the robot will perform a proactive trust evaluation in which
it will ask itself if it expects the human to fail or succeed in the task at hand:
this is done by setting XR and YR as evidence and using the Message Passing
algorithm to calculate the posterior probabilities for the rest of the network. At
this point, the agent can use the probability distributions in nodes XI and YI to
infer the informant’s behavior. Based on this evaluation, the robot will adopt
one of two different approaches.

If the robot decides to trust the human, then it will collaborate towards the
achievement of the predicted goal. Once the task is complete, it will judge the
Total Output (TO) of the joint action: if the shared effort led to a successful,
valid outcome its trust level towards the partner will increase, on the contrary
it will decrease. If however the robot decides to distrust the partner, it will
immediately inspect the Partial Output (PO), that is the portion of the task
that has already been completed before an intention prediction was formulated.
If the PO appears invalid, the robot will lower its trust level and will thereafter
try to correct the mistake and take over the rest of the task. If instead the PO
is a valid one, even if not the one which the robot had predicted, the agent will
give the partner a chance to regain trust by collaborating and evaluating the
TO, as described previously.

This workflow penalizes human partners who are both incapable or unwilling
to contribute with an appropriate effort to the shared task, but at the same
time gives distrusted people a chance to regain the trust of the robot. This
is important, because failures could arise from temporary situations such as
injuries or fatigue.

In an effort to include some features of Explainable AI (Hagras, 2018) into
our system, the robot will try to be transparent and constantly communicate to
its human partner any estimation results and any changes in its levels of trust.
So, for example, if the robot doesn’t trust the human to be able to accomplish
a pursued goal, it will state that clearly, thus justifying its much more strict
behavior. In particular, the robot will always state: the predicted goal, the
estimated trust levels including any changes from trust to distrust or vice versa,
its evaluation of the TO or PO and the explanation of why it believes that a
task was unsuccessful. Finally, the agent will also try and justify its own errors:
for example, if it realizes that the achieved goal was not the predicted one, but
nevertheless was valid.
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Supplemental Figure 7: The collaborative workflow. The robot reads the inten-
tion and decides if to trust or not its partner. In the former case, it provides
assistance and evaluates the total output resulting from the collaboration, oth-
erwise it adopts a more strict supervision on the human: if the partial output
seems valid it gives them a chance to regain trust, otherwise it will take over
the task and attempt to correct the mistakes. Related to Figure 2.
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