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Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be
metabolized to a biologically active substance, compound K. Previous research showed that compound K
could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study
investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable
level of compound K has cognitive improving and neuroprotective effects.
Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as
the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains
were collected, histologically examined (hematoxylin and eosin staining), and the expressions of anti-
oxidant proteins analyzed by western blot.
Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg
body weight reversed scopolamine-induced learning and memory deficits. Histological examination
demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was
reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-
factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase
and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hip-
pocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity
by decreasing the intracellular levels of reactive oxygen species.
Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-
mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-
stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.
� 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Korean ginseng (Panax ginseng Meyer) is a traditional medicine
in East Asian countries. The root of P. ginseng is well known to
contain diverse pharmacologically active compounds, such as
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ginsenosides, polyacetylenes, and phenolic compounds. Among the
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the heating process of red ginseng production [1,2]. In particular,
orally administered PPD-type saponins, such as Rb1, Rb2, and Rc,
can be further bioconverted into compound K (20-O-b-D-gluco-
pyranosyl-20(S)-protopanaxadiol) by intestinal microflora [3].

Unlike other ginsenosides, compound K is absorbed through
the gut lining and has numerous biological activities, such as
antidiabetic [4], anticarcinogenic [5,6], antimelanogenic [7,8],
neuroprotective [9,10], and cognitive-enhancing effects [11,12].
Multiple studies have focused on the transformation of ginseno-
sides into compound K by various methods, including enzymatic
hydrolysis, to take advantage of the in vivo effects of compound K
[13,14].

Previous studies have demonstrated that pectinase-mediated
hydrolysis enriched compound K in Korean Red Ginseng extract
(RGE) [15,16]. Hydrolyzed Korean Red Ginseng extract (HRGE) has
been reported to exert diverse in vivo effects, such as restored
antioxidant activity in aged rats [17,18], enhanced testicular func-
tion in rats [16,18], and lowered postprandial glucose levels in
humans [19].

In this context, we investigated the benefits of HRGE in the
improvement of learning and memory abilities using scopolamine-
induced hypomnesic mice. Scopolamine is a muscarinic cholinergic
receptoreantagonizing agent that is widely used to produce
memory deficits in animal models [20,21]. Studies have shown that
scopolamine can trigger the production of reactive oxygen species
(ROS) by decreasing the activities of antioxidant enzymes and
increasing lipid peroxidation, thereby aggravating oxidative stress
in the cerebral cortex and hippocampus in mice [22e27]. Oxidative
stress is due to a disturbance in reductioneoxidation balance and is
one of the critical causes of neurodegeneration and memory loss
[28e32].

In the present study, we examined the neuroprotective and
memory-improving effects of the compound-K-enriched HRGE in
scopolamine-treated mice and compared these effects with non-
hydrolyzed RGE.
2. Materials and methods

2.1. Preparation of RGE and HRGE

The samples RGE and HRGE were prepared in compliance with
the methods approved by the Ministry of Food and Drug Safety in
South Korea, as previously described [8,15]; these materials were
generously provided by the Ginseng Biotech Research Team, Ilhwa
Co., Ltd. (Guri, South Korea). Briefly, dried red ginseng was
extracted in 50% (v/v) ethanol at 80e85�C for 8 h, filtered, and
rotary-evaporated. The red ginseng ethanol extract (referred to as
RGE in this paper) was hydrolyzed by treatment with pectinase
(Connell Bros Company Australasia Pty Ltd., Croydon South,
Australia) at 58�C for 24 h and then concentrated. The concentrate
was denoted as HRGE. In vitro and in vivo examinations of RGE and
HRGE, which presented solid contents of 60% (w/w) or higher,
were conducted.
2.2. Analysis of ginsenoside contents

Ginsenosides in RGE and HRGE were quantified as previously
described with minor modifications [33]. Briefly, the Acquity UPLC
system (Waters Corporation, Milford, MA, USA) equipped with an
Acquity UPLC BEH C18 column (100 mm � 2.1 mm,1.7 mm;Waters
Corporation) was used. The column temperature was 40�C, and the
UV detector was set at 203 nm. The mobile phase consisted of a
mixture of water and acetonitrile, applied at a gradient of 82:18e
20:80 over 24.5 min, at a flow rate of 0.5 mL/min. The sample
injection volume was 0.2 mL. Data were analyzed using Empower
Pro software (Waters Corporation).
2.3. Animal behavioral tests

The protocol for this studywas approved by the Animal Care and
Use Committee of Kyungpook National University (approval num-
ber: KNU2015-0124). Five-week-old male C57BL/6J mice (nuclear-
factor-E2-related factor 2 wild-type, Nrf2-WT) were purchased
from Daehan Biolink Co., Ltd. (Eumseong, South Korea), and C57BL/
6J/Nrf2-knockout (Nrf2-KO) mice were kindly provided by Profes-
sor Masayuki Yamamoto (Tohoku University, Sendai, Japan). Mice
were housed under controlled laboratory conditions (temperature,
22� 2�C; relative humidity, 50� 5%; 12-h light/dark cycle with free
access to chow and water).

After a week of acclimation, mice with a body weight of 18e22 g
were divided into 10 groups (8 mice per group). A total of 56 Nrf2-
WT mice were divided into seven groups; each group was admin-
istered one of the following options: (1) a vehicle only, and no
scopolamine injected, (2) a vehicle and scopolamine, (3) tacrine at
10 mg/kg BW and scopolamine, (4) RGE at 300 mg/kg BW and
scopolamine, (5) HRGE at 50 mg/kg BW and scopolamine, (6) HRGE
at 100 mg/kg BW and scopolamine, or (7) HRGE at 300 mg/kg BW
and scopolamine. A total of 24 Nrf2-KO mice were divided into
three groups: (1) vehicle only and no scopolamine, (2) vehicle and
scopolamine, and (3) HRGE at 300 mg/kg BW and scopolamine.

The test samples (RGE and HRGE) and tacrine (positive control)
were dissolved in 10% (v/v) Tween 80 (Sigma-Aldrich, St. Louis, MO,
USA) in sterilized saline (Sigma-Aldrich) and orally administered
every day at a designated dosage using an oral gavage needle for 10
days. The samples or tacrine were given 1 h before subjecting the
mice to the behavioral tasks. After 30min of sample administration,
scopolaminewas peritoneally injected at a dosage of 1mg/kg BW to
induce learning and memory impairment.

Behavioral examinations were performed using three different
tasks by following previous protocols [9,34,35]. The initial day of
sample administration was set as Day 1. The Y-maze task was
conducted on Day 2; spontaneous alteration of behavior was
examined. The passive avoidance task was performed on Day 3e5.
On the first day (Day 3), mice were allowed to experience the
testing apparatus (Gemini Avoidance System, San Diego, CA, USA).
On the second day (Day 4), they were trained to remain in the
bright chamber by avoiding the dark chamber where an electrical
foot shock was delivered. On the third day (Day 5), test trials were
performed, and data were acquired. Lengthened latency times
represented improved learning and memory ability. The Morris
water maze task was conducted on Day 6e10. After adaptation to
the swimming environment on Day 6 (the first day of swimming),
the mice were dedicated to platform finding in the swimming pool
for four consecutive days (Day 7e10). The arrival times for each
mouse to the platform and the latency times in the platform
quadrant were monitored.
2.4. Hematoxylin and eosin (H&E) staining

After the behavioral tests, themicewere sacrificed for brain tissue
collection. Each tissue was fixed in formalin solution and further
processed, as previously described with minor modifications [36].
Briefly, the tissues were dehydrated in ethanol and xylene succes-
sively, followedbyparaffinembedding. Eachparaffinblock containing
a whole-brain sample was coronally sectioned to 5-mm thickness us-
ing a microtome (RM-2125 RT, Leica, Nussloch, Germany). The sliced
sections were stained with H&E, mounted, and then photographed
using an optical microscope (Eclipse 80i, Nikon, Tokyo, Japan).



Table 1
Ginsenoside Compositions of RGE and HRGE

Ginsenoside (mg/g dry matter1) RGE HRGE

Rb1 9.67 � 0.13 0.40 � 0.00
Rg1 2.14 � 0.01 2.02 � 0.02
Rb2 3.71 � 0.03 ND2

Rc 7.23 � 0.12 0.86 � 0.01
Rd 1.96 � 0.00 0.65 � 0.00
F2 0.04 � 0.00 5.76 � 0.01
Rg3s 1.23 � 0.02 0.93 � 0.01
Rg3r 0.62 � 0.01 0.53 � 0.00
Rh2 ND 0.57 � 0.00
Compound K ND 4.62 � 0.03
Total 26.60 ± 0.15 16.34 ± 0.03

1 Total solid contents of RGE and HRGE were 61% and 66% (w/w), respectively.
2 ND, not detected.
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2.5. Western blot analysis

The hippocampi were dissected from the sacrificed mice and
subjected to the NE-PER Nuclear and Cytoplasmic Extraction Re-
agents (Thermo Fisher Scientific, Rockford, IL, USA). The cyto-
plasmic and nuclear fractions of the protein extracts were
quantified, denatured, electrophoretically separated on sodium
dodecyl sulfateepolyacrylamide gels, and transferred onto poly-
vinylidene fluoride membranes (Millipore, Bedford, MA, USA), as
previously described [36].

The primary antibodies used in this study were against Nrf2,
heme oxygenase-1 (HO-1) (both from Abcam, Cambridge, UK),
lamin B, and b-actin (both from Santa Cruz Biotechnology, Santa
Cruz, CA, USA). The secondary antibodies used were antirabbit or
antimouse immunoglobulin G, conjugated to horseradish peroxi-
dase (Santa Cruz Biotechnology).

2.6. Measurement of NAD(P):quinone oxidoreductase 1 (NQO1)
activity

The dissected hippocampal tissues were homogenized using a
microultrasonic cell disrupter (KT50, Kimble Kontes, Vineland, NJ, USA).
After centrifugation at 12,000� g, 4�C for 15min, the protein content in
each supernatantwas quantified by the Lowry assay [37], and the enzy-
matic activity of NQO1 was assayed by spectrophotometrically moni-
toring the reduction of 2,6-dichlorophenolindophenol at 600nm[38].

2.7. Cell viability assay

Mouse hippocampal HT22 cells were obtained and maintained
as previously reported [39]. The cells were plated in a 96-well
culture plate at a density of 4 � 103 cells per well. After 24 h of
incubation, they were treated with the samples at various con-
centrations with or without 5 mM glutamate for 24 h, followed by
determination of cell viability using the cell counting kit-8 (CCK-8,
Dojindo Laboratories, Kumamoto, Japan) [40].

2.8. Dichlorofluorescein (DCF) assay

The intracellular ROS level was quantified as previously
described [41,42] by measuring the level of highly fluorescent
DCF, which is the oxidized form of 2,7-
dichlorodihydrofluorescein (DCFH) intracellularly generated
from DCFH diacetate (DCFH-DA; Sigma-Aldrich). Briefly, HT22
cells were plated in a 96-well black polystyrene plate (Nunc,
Rochester, NY, USA) at 4 � 103 cells per well or in a 24-well
transparent plate (Nunc) at 3 � 104 cells per well. After
incubating for 24 h, they were treated with samples with or
without 5 mM glutamate in 0.5% fetal bovine serumecon-
taining culture medium for 6 h. The cells were then treated
with 30 mM DCFH-DA at 37�C for 1 h. The fluorescence of
intracellular DCF was detected at excitation and emission
wavelengths of 485 and 535 nm, respectively, using a micro-
plate reader (Infinite 200, Tecan, Grödig, Austria).

2.9. Determination of free-radical scavenging capacity and ferric-
reducing antioxidant power (FRAP)

The antioxidant activities of RGE and HRGE were assessed using
the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) free-radical scav-
enging assays, as well as the FRAP method [41]. a-Tocopherol
served as a positive control at concentrations of 50, 100, 500, and
1,000 mM.
2.10. Statistical analysis

Significance differences were determined by one-way analysis
of variance, followed by Duncan's multiple-range post hoc test
using SPSS software (SPSS Inc., Chicago, IL, USA). Significance was
set at p < 0.05. Statistical differences were indicated by different
alphabetical letters.

3. Results

3.1. Compositions of ginsenosides of RGE and HRGE

The HRGE was prepared by enzymatic hydrolysis of RGE with
pectinase. Ten ginsenosides contained in RGE and HRGE were
quantitatively analyzed (Table 1). The total content of ginsenosides
was lower in HRGE than in RGE. In particular, the contents of the
PPD-type ginsenosides were greatly decreased after pectinase
treatment. Among the PPD-type ginsenosides, the major ones in
RGE (Rb1, Rb2, and Rc) were found to exist at very low levels in
HRGE. Simultaneously, their metabolites, such as F2, Rh2, and
compound K, were remarkably increased in HRGE compared with
those in RGE. These data indicated that thereweremore hydrolyzed
PPD-type ginsenosides, including F2 and compound K, in HRGE
than in RGE. In addition, RGE and HRGE were capable of
concentration-dependently scavenging DPPH or ABTS radicals, as
well as effectively reducing ferric ion (Suppl. Fig. S1).

3.2. Improvement of cognitive function by oral administration of
RGE or HRGE in scopolamine-induced hypomnesic mice

C57BL/6J micewere orally administeredHRGE (at 50,100, or 300
mg/kg BW), RGE (at 300 mg/kg BW), or tacrine (at 10 mg/kg BW;
positive control). The memory impairment was induced by intra-
peritoneal injection of scopolamine at 1 mg/kg BW 30 min before
the mice were subjected to daily behavioral tests.

Scopolamine-induced memory loss was manifested by a
decreased spontaneous exploration in the Y-maze test (Fig. 1A), a
reduced latency staying in a bright chamber in the passive avoid-
ance test (Fig. 2A), and a shortened time to find the platform and
swim in the platform quadrant in the Morris water maze test
(Fig. 3A, C). Moreover, HRGE or RGE administration at 300 mg/kg
BW significantly restored exploration reduction (Fig. 1A), amelio-
rated associative learning impairment (Fig. 2A), and improved
spatial learning and memory ability (Fig. 3A, C). The memory-
improving effects of HRGE or RGE were found to be comparable
to that of tacrine. Interestingly, the effects were observed only in
Nrf2-WT mice, not in Nrf2-KO mice (Figs. 1B, 2B and 3B, D), sug-
gesting that learning and memory enhancement by HRGE or RGE
was mediated through Nrf2 signaling.
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3.3. Protective effect of HRGE administration from scopolamine-
induced hippocampal damage

The animals were sacrificed at the termination of behavioral
tests for the collection of the brain tissues, which were sectioned,
stained, and observed for histological injury. While scopolamine
treatment caused significant damage in the hippocampal CA1 re-
gion, as expected, HRGE administration at 300 mg/kg BW attenu-
ated the scopolamine-induced abnormality (Fig. 4).
3.4. Upregulation of antioxidant enzymes in the hippocampus by
HRGE administration

Western blot analysis demonstrated that the oral administration
of HRGE or RGE increased the expressions of nuclear Nrf2 (Fig. 5A),
as well as cytoplasmic NQO1 and HO-1 in the hippocampus
(Fig. 5B). In particular, HRGE treatment at 300 mg/kg BW signifi-
cantly increased the levels of nuclear Nrf2 and cytoplasmic NQO1
compared with the control (approximately 2- and 1.3-fold increase,
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respectively). Moreover, hippocampal NQO1 enzyme activity was
enhanced by the administration of either RGE or HRGE (Fig. 5C).

3.5. Cytoprotective effect of HRGE by reducing intracellular
oxidative stress

Mouse hippocampal HT22 cells were challenged with 5 mM
glutamate, an inducer of oxidative stress and neuronal cell death,
and treated with RGE or HRGE at concentrations of 0, 10, 50, 100,
and 250 mg/mL (Fig. 6A). While glutamate treatment caused a
prominent reduction of HT22 cell viability, pretreatment with RGE
or HRGE attenuated the glutamate-induced cell death in a
concentration-dependent manner. In addition, the intracellular
ROS level was significantly increased by glutamate treatment
(Fig. 6BeD). However, pretreatment with RGE or HRGE
concentration-dependently lowered the ROS levels. These findings
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suggested that RGE and HRGE can protect hippocampal cells from
the deleterious effect of ROS-induced oxidative stress.

4. Discussion

Ginsenosides, a group of triterpene saponins contained in
Korean Red Ginseng, are appreciated for their biologically beneficial
effects [43]. Compound K, a bioactive metabolite of PPD-type gin-
senosides [12], can be enriched in HRGE by pectinase-mediated
hydrolysis of RGE, as reported elsewhere [15,16]. The present
study examined the cognition-enhancing effect of orally adminis-
tered HRGE in scopolamine-induced memory-deficit mice.

Multiple studies have reported that scopolamine, a classical
muscarinic receptor antagonist [44], is capable of elevating oxida-
tive stress in the murine hippocampus [22e26], which
consequently affects neuronal cell survival and causes neurode-
generative disorders [28e31]. The behavioral examinations in this
study demonstrated that the intraperitoneal injection of scopol-
amine at 1 mg/kg BW induced significant learning and memory
impairments and hippocampal damage in mice.



Fig. 4. Oral administration of HRGE ameliorated scopolamine-induced hippocampal damage. The whole-brain tissues were obtained after the mice were sacrificed following
completion of the behavioral tests, then sectioned to 5-mm thickness, and stained with H&E for microscopic observation. Representative images are shown at 100 � magnification;
the CA1 pyramidal cell layer was further magnified.
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Behavioral tests indicated that oral administration of HRGE at
300mg/kg BW improvedworkingmemory, as well as associative or
spatial learning and memory performance in scopolamine-treated
mice. Interestingly, these observations manifested only in Nrf2-
WT mice, whereas the memory-improving effect of HRGE was
not shown in Nrf2-KOmice. This finding indicates that HRGEwould
likely ameliorate scopolamine-induced cognitive impairment
through Nrf2-mediated mechanisms. It is consistent with our un-
published data that neither RGE nor HRGE at the concentrations of
up to 500 mg/mL affected acetylcholinesterase activity in vitro,
while tacrine significantly inhibited the activity by about 20% at 10
mM and by about 40% at 50 mM (data not shown). Thus, the
memory-improving effect of HRGE is presumed to be achieved by
stimulating the Nrf2-mediated antioxidant defense system, rather
than by affecting cholinergic neurotransmission in the
scopolamine-treated mouse brain.

Nrf2 is a redox-sensitive transcription factor that triggers
cellular antioxidant response and so protects cells from intrinsic or
extrinsic oxidative stress [45,46]. Nrf2 exists in a dimeric formwith
its cytosolic inhibitor, Kelch-like ECH-associated protein 1 (Keap1),
and undergoes ubiquitin-dependent proteasomal degradation in an
unstressed condition. Upon exposure to oxidative stress or elec-
trophiles, Nrf2 is liberated from Keap1 and translocated to the
nucleus where it activates the transcription of a number of genes
that encode antioxidant enzymes, including NQO1, HO-1, gluta-
thione peroxidase, glutathione reductase, and g-glutamylcysteine
synthetase [47,48].

Consistent with previous studies [17,18], RGE and HRGE were
found to have strong antioxidative activities by effectively
scavenging free radicals and reducing ferric ions in a
concentration-dependent manner. In addition, RGE or HRGE
treatment decreased the intracellular ROS level and upregulated
Nrf2-mediated antioxidant enzymes, thereby increasing cell
viability in glutamate-treated hippocampal neuronal cells. These
findings further support the notion that the neuronal-cell-pro-
tective effects of HRGE and RGE against ROS-producing
glutamate insults are, in part, attributable to their antioxidative
capabilities.

The brain, with its high oxygen consumption and lipid-rich
content, is highly susceptible to oxidative stress, and ROS in the
brain is strongly correlated with learning and memory impairment
[49,50]. Considering that scopolamine treatment can elevate
oxidative stress in the mammalian brain [22,25], it is reasonably
speculated that the amelioration of cognitive impairment in the
scopolamine-treated mice is a consequence of indirect antioxidant
effects of RGE and HRGE or their metabolites. These effects decrease
the intracellular ROS level in neuronal cells by promoting Nrf2
activation and subsequent induction of antioxidant enzymes,
including NQO1 and HO-1, in the hippocampal region.

The total ginsenoside content was lower in HRGE than in RGE.
Nevertheless, HRGE treatment was similar to or more potent than
RGE treatment in increasing the expressions of NQO1 and HO-1 and
attenuating histological injury in the hippocampus. Considering
that compound K is the superior bioactive substance among the
ginsenosides [12] and can protect against oxidative-stress-induced
neuronal cell death [9], it is conceivable that compound K, which
was enriched in HRGE, played a pivotal role in neuroprotection and
cognitive improvement via upregulating the intracellular antioxi-
dant defense system, such as antioxidant enzymes. For instance,
HO-1 is involved in the conversion of heme into carbon monoxide
(CO) and biliverdin. Subsequently, biliverdin is enzymatically
transformed into bilirubin, one of the most potent endogenous
antioxidants in the body. Furthermore, there are increasing lines of
evidence to support that CO is a major player in anti-inflammation,
mitochondrial biogenesis, and redox control [51].

In conclusion, orally administered HRGE can exert neuro-
protective effects and alleviate scopolamine-induced learning and
memory deficits in vivo, most likely through upregulation of Nrf2
and its downstream antioxidant enzymes. The functional compo-
nents of HRGE and their mechanisms of action in the brain,
including the transport of the ginsenoside metabolites across the
bloodebrain barrier, await further study.
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