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Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little
is known about their biogeochemical traits. In the present study, a novel sulfate-
reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring
in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding
anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1,
indicating it has a potential ability to oxidize arsenite under anaerobic condition. In
anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount
of arsenate was detected in the beginning but became undetectable over longer
time. Thioarsenates (AsO4−xSx

2− with x = 1–4) formed with mono-, di- and tri-
thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end
of the experiment. These results suggest that thermophilic microbes might be involved
in the formation of thioarsenates and provide a possible explanation for the widespread
distribution of thioarsenates in terrestrial geothermal environments.
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INTRODUCTION

High concentrations of arsenic have been reported in global terrestrial hot springs (McKenzie et al.,
2001; Cleverley et al., 2003; Aiuppa et al., 2006; Pascua et al., 2007; Landrum et al., 2009; McCleskey
et al., 2010). Traditionally, the predominant form of inorganic arsenic in aqueous environments is
arsenate [As(V) as H2AsO4

− and HAsO4
2−] and arsenite [As(III) as H3AsO3

0 and H2AsO3
−]

in oxic and anoxic environments, respectively (Oremland, 2003). However, recently pentavalent
arsenic-sulfur species, so-called thioarsenates (AsO4−xSx

2− with x= 1–4), have also been reported
as important arsenic species in a number of sulfidic geothermal environments (Wilkin et al., 2003;
Stauder et al., 2005; Planer-Friedrich et al., 2007, 2009; Härtig and Planer-Friedrich, 2012; Hug
et al., 2014). For example, Hug et al. (2014) found that di- (x = 2) and tri-thioarsenates (x = 3)
represented up to 25% of total arsenic in an acidic-sulfidic hot spring in New Zealand. Keller et al.
(2014) investigated the arsenic speciation in natural alkaline-sulfidic geothermal waters (pH 8.56–
9.60) and found that sulfide concentration and pH are the predominant factors determining the
arsenic species distribution.
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Extensive studies have shown that microbial activities can
strongly influence the speciation and mobility of arsenic in
natural environments through arsenic oxidation and reduction
(Oremland et al., 2005; Paez-Espino et al., 2009). Most (if
not all) of known arsenite-oxidizing microorganisms contain
arsenite oxidases, which catalyze the transformation of arsenite
[As(III)] to arsenate [As(V)] (Lett et al., 2012). The arsenite
oxidases are encoded by aioA and arxA genes for aerobic and
anaerobic arsenite-oxidizing bacteria, respectively. Thus the aioA
and arxA genes have become molecular biomarkers to study the
distribution and activity of arsenite-oxidizing bacteria in natural
environments (Hamamura et al., 2009, 2010, 2014; Zargar et al.,
2012; Engel et al., 2013; Jiang et al., 2014; Wu et al., 2015;
Hernandez-Maldonado et al., 2016). Recently, it is speculated
that filamentous microbial mats might play an important role in
thioarsenate transformation in an alkaline, sulfidic hot spring in
Yellowstone National Park, which is the first evidence showing
microbially mediated thioarsenate species transformation by
(hyper) thermophilic prokaryotes (Härtig and Planer-Friedrich,
2012). A subsequent investigation showed that the thermophilic
microbial mats were mainly composed of Aquificales represented
by Thermocrinis spp. and Sulfurihydrogenibium spp. (Planer-
Friedrich et al., 2015). However, little is known about which
microbial group was involved in the observed thioarsenate
species transformation. In addition, one geochemical study on
arsenic speciation in the Tengchong geothermal zone (TGZ) of
Yunnan Province, China reported that thioarsenates are widely
distributed in the high-sulfidic Tengchong hot springs (Guo
et al., 2017). Thus, the TGZ hot springs are suitable sites for
retrieving microorganisms potentially involved in thioarsenates
transformation.

In the present study, we provided biological evidence on
the potential involvement of a novel sulfate-reducing bacterium
isolated from a TGZ hot spring, designated as Desulfotomaculum
sp. TC-1, in the formation of thioarsenates. The strain TC-1
cells coupled sulfate reduction with arsenite oxidation, in which
thioarsenates, instead of arsenate, were the main products. The
results in this study suggested that microbial activities may be
involved in the formation of thioarsenates in geothermal features
and thus could explain the reported distribution of thioarsenates
in sulfidic hot springs.

MATERIALS AND METHODS

Site Description and Sample Collection
The TGZ is located at the collision boundary between the Indian
and Eurasian plates. The TGZ is known for its various geothermal
features, which contains more than 800 hot springs (Du et al.,
2005; Guo and Wang, 2012). Previous studies have shown that
Tengchong hot springs host very diverse microbial communities
(Hedlund et al., 2012; Hou et al., 2013; Song et al., 2013a;
Briggs et al., 2014), which play important roles in the elemental
cycling (e.g., carbon, nitrogen, sulfur) and arsenic transformation
(Jiang et al., 2010, 2014; Song et al., 2013b; Li et al., 2015;
Wu et al., 2015; Yang et al., 2015; Chen et al., 2016). A hot
spring (N24.95318◦; E98.43838◦) was found downstream of the

Dagunguo (DGG) spring in the Rehai Geothermal National Park
in the TGZ and was therefore named Dagunguo-2 (DGG-2)
(Supplementary Figure S1) (Guo et al., 2017). In June 2014,
water temperature and pH were measured in the field with
a portable meter (LaMotte, Chestertown, MD, United States).
Water chemistry (S2−, Fe2+, NO2

− and NH4
+) measurements

were performed by using Hach kits (Hach Company, Loveland,
CO, United States). Sediment samples of the sampled hot spring
were aseptically collected for cultivation.

Enrichment and Isolation of
Thermophilic Sulfate Reducing Bacteria
Hungate techniques were used for enrichment and isolation.
The hot spring sediment samples were transferred into 25 mL
Balch tubes containing 5 mL DSMZ medium 63, which was
pre-prepared anaerobically with the headspace filled with 100%
N2 gas. In situ enrichments (by putting the culture tubes in
the hot spring) were incubated for 48 h and then the resulting
enrichment cultures were transported to laboratory for further
isolation and purification. To avoid light effects, the balch tubes
were covered with foil in situ and ex situ during incubation.
Inoculation, sampling, and isolation were performed in an
anaerobic glove box (COY Laboratory Products, Grass Lake, MI,
United States) with aseptic techniques (The gas chamber was
filled with 100% N2). The incubation temperature was 60◦C.
Cultures with positive growth (as indicated by the formation of
black ferrous iron sulfide) were transferred three times for further
purification. Isolation was performed by using the rolling-tube
method with a high-melting-point agar, GELRITE gellan gum
(Sigma) (Hungate and Macy, 1973).

SEM Observation
The morphology of strain TC-1 cells was examined with a Zeiss
Supra 55 SAPPHIRE scanning electron microscope (SEM) using
7–10 keV accelerating voltage and 8.5 mm working distance. SEM
sample preparation and observation were performed according
to previously described methods (Zhao et al., 2013, 2015).

Phylogenetic Analysis of Strain TC-1
Total DNA of strain TC-1 was extracted with Bacterial
DNA extraction kit (ABigen, Hangzhou, China) according
to manufacturer’s protocol. The 16S rRNA and arxA genes
were amplified with the primer sets of Bac27F/Univ1492R and
arxA_Deg_F_B (5′-CCA TCW SCT GGR ACG AGG CCY
TSG-3′)/arxA_Deg_R_B (5′-GTW GTT GTA GGG GCG GAA
S-3′) (Zargar et al., 2012), respectively. PCR amplification,
sequencing, and phylogenetic analysis of the 16S rRNA and arxA
genes were performed as previously described (Weisburg et al.,
1991; Zargar et al., 2010, 2012). The arxA and 16S rRNA gene
sequences of strain TC-1 were deposited in the GenBank under
accession numbers of KX242336 and KX242337, respectively.

Test for Arsenite Oxidation of Strain TC-1
Strain TC-1 was grown at 60◦C in anoxic DSMZ 63 medium (1 L)
made of solution A [K2HPO4 0.5 g; NH4Cl,1.0 g; Na2SO4,1.0 g;
CaCl2 × 2 H2O, 0.1 g; MgSO4 × 7 H2O, 2.0 g; Na-DL-lactate,
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2.0 g; yeast extract, 1.0 g; Na-resazurin solution (0.1% w/v),
0.5 ml; distilled water, 980.0 ml], solution B (FeSO4 × 7 H2O,
0.5 g; Distilled water, 10.0 ml) and solution C (ascorbic acid,
0.1 g; distilled water, 10.0 ml). The initial pH was 6.8, and pH
varied less than 0.2 units during growth. To remove oxygen, the
growth medium was boiled for >10 min, purged with N2 upon
cooling and immediately transferred into an anoxic chamber
(100% N2) for dispensing into glass serum bottles, which were
subsequently sealed with thick butyl rubber stoppers. The sets of
experiments were inoculated with TC-1 in DSMZ 63 medium
with solution B replaced by 0.5 mM arsenite; Two types of
abiotic controls were set up: one was in the DSMZ 63 medium
with solution B replaced by 5 mM sulfide (Na2S·9 H2O, Sigma–
Aldrich) and 0.5 mM arsenite (Sigma–Aldrich), and the other
was in the DSMZ 63 medium with solution B replaced by 5 mM
sulfide and 0.5 mM arsenate (Sigma–Aldrich). All experimental
treatments were performed in triplicate. Liquid sampling for
arsenic measurement was performed with aseptic syringes in
an anaerobic chamber according to a previous method (Planer-
Friedrich et al., 2015).

Arsenic Speciation Measurement for
Total Arsenic, As (III) and As(V)
Total arsenic concentration and arsenic speciation (arsenite
and arsenate) were measured according to previously described
methods (Wu et al., 2015). Briefly, total arsenic concentration
was measured with inductively coupled plasma atomic emission
spectroscopy (ICP-AES) (iCAP ICP Spectrometer, Thermo
Fisher Scientific, United States) with argon torch and iTeva
software (Thermo Fisher Scientific, United States). Arsenic
speciation (arsenite and arsenate) was determined with
high performance liquid chromatography (HPLC)-atomic
fluorescence spectroscopy (AFS). If the sum of measured As(III)
and As (V) was not equal to total arsenic, those samples were
oxidized by H2O2, in which As(III) and Thio-arsenate will
be transferred to As(V) (Pettine et al., 1999), and then were
measured for total As by ICP-AES.

Characterization of Thioarsenic Species
with Liquid Chromatography-High
Resolution Mass Spectrometry
(LC-HRMS)
The relative abundances of four major thioarsenic species in the
samples, including H3AsSO3, H3AsS2O2, H3AsS3O and H3AsS4,
were identified by injecting a liquid sample (5 µL) into a
liquid chromatography-high resolution mass spectrometry (LC-
HRMS, Q Exactive, Thermo Scientific, Germany) according to
previously described methods (Chang et al., 2015; Yang et al.,
2016). The mobile phase contained 50% acetonitrile (v/v) and
0.1% acetic acid (m/v) with a flow rate of 0.25 mL min−1.
The mass spectrometer system was operated with a heated
electrospray ionization (HESI) source in a negative ion mode
with a spray voltage of −3.2 kV, an S-lens RF level of 50%,
a capillary temperature of 300◦C, and a mass resolution of
70,000. The runtime was 2 min for each sample. The mass
tolerance of the Precursor ion was below 5 ppm. Mass spectra

were processed by using the Xcalibur 2.1 software (Thermo
Scientific). The relative abundance of each thioarsenic species was
calculated according to their corresponding chromatographic
peak area.

RESULTS

Water Chemistry of the Dagunguo-2 Hot
Spring
The pH and temperature of the Dagunguo-2 hot spring were
5.5 and 58.3◦C, respectively. The spring water contained S2−

(1.53 µM), Fe2+ (5 µM), NO2
− (0.065 µM), and NH4

+

(37.8 µM).

Isolate Identification and Physiological
Characterization
One strain was obtained and designated as strain TC-1
(Supplementary Figure S2). Phylogenetic analysis on the
basis of 16S rRNA gene sequence identified strain TC-1as a
close (sequence identity: 99.7%) relative of a sulfate-reducing
bacterium Desulfotomaculum carboxydivorans CO-1-SRB, which
was isolated from a sludge of an anaerobic bioreactor treating
paper mill wastewater (Pettine et al., 1999) (see Figure 1A
and Table 1). The arxA gene of strain TC-1 was successfully
amplified and was closely related (sequence identity: 99%) to
those recovered from Tukh Lake (represented by HJ1A27 in
Figure 1B). The morphology of Desulfotomaculum TC-1 cells
was rod-shaped with rounded ends, 0.8–1.5 µm in length and
0.2–0.4 µm in width (Supplementary Figure S2). The optimum
growth temperature and pH for TC-1 were 60◦C and 6.8,
respectively. The optimum growth temperature was consistent
with the environmental condition of the spring where the TC-1
strain was isolated (57◦C). Under optimum conditions, the
doubling time of strain TC-1 was approximately 30 h. Strain
TC-1 cannot grow on As(III) in the DSMZ 63 medium (without
lactate).

Variations of Total Arsenic, Arsenite and
Arsenate during Arsenite Oxidation by
Strain TC-1
Arsenic speciation was examined for 84 h after inoculation with
strain TC-1 (Figure 2). Arsenite (0.5 mM) was nearly exhausted
in 60 h. As arsenite was consumed, some amount of arsenate was
initially detected after 24 h (Figure 2). After 60 h, both arsenite
and arsenate were not detectable in the experimental tubes, but
the total arsenic in the solution remained unchanged, indicating
no formation of insoluble arsenic precipitates. In the abiotic
control containing Na2S and arsenite, white flocs formed in
solution immediately. The resulting white flocs were separated by
high speed centrifugation (12,000 rpm), and then were observed
by SEM-EDS for element mapping. The results showed that
arsenite could react with Na2S to form the flocs which contained
S and As (Supplementary Figure S3). The resulted supernatant
was treated with H2O2 followed by ICP-AES measurement, but
no arsenic was detected (data not shown).
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FIGURE 1 | Phylogenetic trees of 16S rRNA (A) and the deduced amino acid sequences of ArxA (B) encoded by arxA genes of strain TC-1 showing their
relatedness to its close relatives in the GenBank. The GenBank accession numbers are listed in parentheses. Bootstrap values (per 1000 trials) > 50% are indicated.
NJ/ML/ME indicates Neighbor-Joining/Maximum Likelihood/Minimum-Evolution algorithms.

Variation of Thioarsenic Species Formed
during Arsenite Oxidation by Strain TC-1
The LC-HRMS analysis showed that the missing arsenite had
been transformed to thioarsenic species (mono-thioarsenate
[HAsSO3]2−, di-thioarsenate [HAsVS2O2]2−, tri-thioarsenate
[HAsS3O]2− and tetra-thioarsenate [HAsS4]2−) (Figure 3),
and the relative concentrations of each identified thioarsenic

species varied during the oxidation process: In the first 60 h,
monothioarsenate, di-thioarsenate and tri-thioarsenate were
dominant species in the solution, while no tetra-thioarsenate was
detected. As arsenite oxidation experiment proceeded, a small
amount of tetra-thioarsenate was detected at 84 h (at the end
of the experiment) (Figure 3). In the abiotic control containing
Na2S and arsenate, only a tiny amount of di-thioarsenate was
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TABLE 1 | Physiological, phylogenetic and phenotypic comparisons between strain TC-1 and known arxA gene-containing strains.

Strain name Temperature (◦C) Species Isolation source Reference

Desulfotomaculum TC-1 60 Firmicutes A hot spring of Tengchong, China The present study

Alkalilimnicola ehrlichii str. MLHE-1 20 Proteobacteria Water column of Mono Lake, CA,
United States

Oremland et al., 2002; Zargar et al.,
2010, 2012

Ectothiorhodospira strain PHS-1 43 Proteobacteria A hot spring in Paoha Island of
Mono Lake, CA, United States

Kulp et al., 2008

Halorhodospira halophila SL1 20 Proteobacteria Summer Lake, OR, United States Challacombe et al., 2013

Halomonas sp. ANAO-440 20 Proteobacteria An alkaline saline lake in Mongolia Hamamura et al., 2014

FIGURE 2 | Time-course variations of arsenite and arsenate concentrations
and total arsenic concentration during anaerobic arsenite oxidation by strain
TC-1. Triplicate samples were performed, and error bars were smaller than the
sizes of the symbols.

FIGURE 3 | Time-course variation of thioarsenate composition (expressed as
the corresponding chromatographic peak area of each identified thioarsenic
species) produced during anaerobic arsenite oxidation by strain TC-1.

observed, but other thioarsenic species (i.e., monothioarsenate,
tri-thioarsenate, and tetra-thioarsenate) were not detected.

DISCUSSION

Anaerobic Arsenite Oxidation in Hot
Springs
High levels of arsenic has been extensively reported in global
terrestrial hot springs. Thus, terrestrial hot springs are an
excellent setting for investigating arsenic biogeochemical cycling
(Qin et al., 2009). In geothermal environments, microbially
mediated aerobic arsenite oxidation has been frequently reported
(Oremland, 2003), while few studies up to date discovered
anaerobic arsenite oxidation by microbes. For example, Rhine
et al. (2006) reported anaerobic arsenite oxidation phenomenon
by novel denitrifying isolates from an arsenic contaminated
industrial soil, while no function genes related to anaerobic
arsenite oxidation were amplified; Zhao et al. (2015) reported
anaerobic arsenite oxidation by an autotrophic arsenite-
oxidizing bacterium from an arsenic-contaminated paddy soil
and aioA gene was successfully amplified from those pure
cultures, although the aioA gene is putatively involved in
aerobic arsenic oxidation (Lett et al., 2012). Zargar et al.
(2010) identified a novel arsenite oxidase gene, arxA, from
Alkalilimnicola ehrlichii strain MLHE-1, an anaerobic arsenite-
oxidizing bacterium from Mono Lake. However, little is reported
on anaerobic arsenite oxidation by microbes in geothermal
features. To our best knowledge, the only case of microbially
mediated anaerobic arsenite oxidation in hot springs was
reported in a hot spring (temperature 43◦C) biofilm on
the shore of the Paoha Island in Mono Lake (Kulp et al.,
2008), which showed anaerobic photosynthetic arsenic(III)
oxidation by strain Ectothiorhodospira strain PHS-1. However,
in the present study, strain TC-1 can anaerobically oxidize
arsenite at high temperature (60◦C) independent of light
or photosynthesis, indicating that photosynthesis-independent,
microbially mediated anaerobic arsenic oxidation could take
place in geothermal features.

To our best knowledge, strain TC-1 is the first known sulfate-
reducing strain containing arxA gene. To date, only four other
known arxA gene-containing strains have been obtained in pure
cultures (Table 1) and they all fall within α-Proteobacteria,
among which A. ehrlichii MLHE-1, Halorhodospira halophila
SL1, and Halomonas sp. ANAO-440 were isolated from alkaline
and/or saline environments, while Ectothiorhodospira strain
PHS-1 was retrieved from a geothermal feature (temperature
43◦C) (Oremland et al., 2002; Kulp et al., 2008; Zargar et al.,
2010, 2012; Challacombe et al., 2013; Hamamura et al., 2014;
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Hernandez-Maldonado et al., 2016). In contrast, strain TC-1
belongs to Firmicutes and is the only known strain within
Firmicutes possessing the arxA gene. The affiliation of strain TC-1
with Firmicutes indicated that the microbes involved in anaerobic
arsenic oxidation may be more phylogenetically diverse than
currently known. It is possible that the arxA gene of strain TC-1
might have originated from other microbes via horizontal gene
transfer as in strain PHS-1 (Zargar et al., 2012).

Formation of Thioarsenate under
Anaerobic Conditions in Hot Springs
It is notable that thioarsenates could be formed by sulfate
reducing bacteria under anaerobic conditions in hot springs.
Previous work on arsenic speciation in geothermal environments
reported the dominance of As(III) and As(V) in the bulk
arsenic speciation (Ballantyne and Moore, 1988; Yokoyama
et al., 1993; Macur et al., 2004). While studies with improved
sample preservation techniques revealed that thioarsenate species
were present or even abundant in geothermal features (Wilkin
et al., 2003; Stauder et al., 2005; Planer-Friedrich et al., 2007;
Wallschläger and Stadey, 2007; Guo et al., 2017), which can
possibly make up to more than 50% of total dissolved arsenic in
sulfidic waters (Wilkin et al., 2003; Hug et al., 2014). Most (if not
all) of the geothermal features with reported high thioarsenates
were sulfidic. The potential underlying reason for the formation
of thioarsenates could be explained by the following equation:

[HAsVO4]
2−
+ [HS]− → [HAsVS−II

xO4−x]
2−
+ [OH]−,

in which arsenate reacted with sulfide, leading to the formation
of thioarsenate (Planer-Friedrich et al., 2015). The reactant
arsenate could be extant or derived from arsenite oxidation.
Commonly anoxic condition dominates sulfidic habitats, thus
anaerobic arsenite oxidation could take place to produce arsenate.
In the present study, strain TC-1 could oxidize As(III) to As(V),
which reacted with S2− or HS− and thus formed thioarsenate
species. This reaction could also explain the wide distribution
of thioarsenates in sulfidic aquifers (Wood et al., 2002; Wilkin
et al., 2003; Bostick et al., 2005; Hollibaugh et al., 2005; Stauder
et al., 2005; Wallschläger and Stadey, 2007), although no exact
reasons were provided for the predominance of thioarsenates in
those previous studies. The present study provides evidence for
possible microbial involvement in the formation of thioarsenates
in hot springs.

Environmental Implication of
Thioarsenate Formed by Sulfate
Reducing Bacteria
Thioarsenate may be an important arsenic species in sulfidic
and arsenic-rich environments (Hollibaugh et al., 2005; Hug
et al., 2014; Guo et al., 2017). Based on the results presented
above, high arsenic geological settings (e.g., groundwater and
acid mine drainage that have the potential of sulfate reducing
process) may contain significant amounts of thioarsenates, which
to date have received little attention. Thioarsenates are more toxic
than arsenate and tri-thioarsenate is almost as bioavailable and
toxic as arsenite (Hinrichsen et al., 2015). Thus more attention

should be paid to thioarsenates in high arsenic, sulfidic habitats.
Previous studies have shown that arsenic in solution could be
removed through combination with sulfide minerals derived
from microbial SO4

2− reduction (Moore et al., 1988; Rittle
et al., 1995; Kirk et al., 2004), and that the enhanced SO4

2−

reduction may be useful for arsenic remediation (Rittle et al.,
1995; Newman et al., 1997; Castro et al., 1999; Macy et al.,
2000; Jong and Parry, 2003; Lee et al., 2005; Saunders et al.,
2005; Keimowitz et al., 2007; Saunders et al., 2008; Kirk et al.,
2010; Luo et al., 2013). However, recently an experiment with
permeable reactive barriers (PRB) was performed to test the
effect of arsenic remediation in the presence microbial sulfate
reduction, and found that up to 47% of total As initially present
in the sediment was leached out in the form of mobile thio-
As species (Kumar et al., 2016). Thus, more cautions should be
taken on the geochemical behaviors of arsenic and sulfate in the
environment (where the arsenite and arsenate have the potential
to transform to mobile thioarsenates) when sulfate reducing
bacteria are employed for arsenic remediation (Burton et al.,
2014; Stucker et al., 2014).
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FIGURE S1 | The location (A) and geothermal features (B) of DGG-2 in the Rehai
Geothermal Field, Tengchong, Yunnan, China.

FIGURE S2 | Scanning electron microscope images of strain Desulfotomaculum
sp. TC-1 cells (Scale bar = 1 µm).

FIGURE S3 | Scanning electron microscope images of flocs and the S-As
distribution in floc as indicated by the yellow line in (A). (A–C) Indicate the SEM
morphology of the flocs and the EDX multi element mapping/line scanning spectra
for As (arsenic) and S (sulfur) elements, respectively.
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