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The most popular RNA library used for RNA sequencing is the poly(A) captured RNA library. This library captures RNA based
on the presence of poly(A) tails at the 3 end. Another type of RNA library for RNA sequencing is the total RNA library which
differs from the poly(A) library by capture method and price. The total RNA library costs more and its capture of RNA is not
dependent on the presence of poly(A) tails. In practice, only ribosomal RNAs and small RNAs are washed out in the total RNA
library preparation. To evaluate the ability of detecting RNA for both RNA libraries we designed a study using RNA sequencing
data of the same two breast cancer cell lines from both RNA libraries. We found that the RNA expression values captured by both
RNA libraries were highly correlated. However, the number of RNAs captured was significantly higher for the total RNA library.
Furthermore, we identify several subsets of protein coding RNAs that were not captured efficiently by the poly(A) library. One of
the most noticeable is the histone-encode genes, which lack the poly(A) tail.

1. Introduction

With the advancement of high throughput sequencing tech-
nology, advanced data mining techniques have been devel-
oped for high throughputDNA sequencing data [1, 2]. Similar
data mining techniques can be applied to RNAseq data.
RNAseq technology can be categorized into three subclasses
by the types of RNA sequenced: messenger RNA (mRNA
or protein coding RNA), micro RNA (miRNA), and total
RNA. The sequencing method is the same but each differs in
the RNA species present for cDNA synthesis and subsequent
library construction. The cDNA library for mRNAseq is
made only from the poly(A) mRNA. Small RNAs are not
captured during oligo-dT based mRNA enrichment. To
date, the most popular application of RNAseq technology is
mRNA sequencing because most researchers use RNAseq as
a replacement for microarray to perform high throughput
gene expression profiling [3–6] and coding regions remain
the focus of human disease research.

Long noncoding RNA (lncRNA), on the other hand, was
traditionally believed to be nonfunctional. However, many
recent studies have shown evidence for the functionality
of lncRNA [7, 8], such as roles in high-order chromoso-
mal dynamics [9], embryonic stem cell differentiation [10],
telomere biology [11], subcellular structural organization [12],
and breast cancer [13, 14]. The interest in lncRNA grew
considerably as the evidence of lncRNA’s role in various
biological contexts accumulated in the recent years. LncRNAs
are usually defined as noncoding RNAwith lengthmore than
200 base pairs [7, 15]. Structurally, lncRNAs and mRNAs are
very similar, as both can exhibit polyadenylation (poly(A)).
The number of definable lncRNAs varies by study. An early
study in 2007 estimated that there are 4 times more lncRNAs
than protein coding RNA [16]. Another study claims to
have identified 35,000 lncRNAs [17], and many of them
have characteristics similar to mRNA such as 5 capping,
splicing, and polyadenylation, with the exception of open
reading frames [17]. In the latest effort to quantify human
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lncRNA, the Encyclopedia of DNAElements (ENCODE) [18]
project identified 13,333 lncRNAs and further categorized
them into four subclasses: (1) antisense, (2) large intergenic
noncoding RNAs (lincRNA), (3) sense intronic, and (4)
processed transcripts.

While it is possible to study lncRNAs using traditional
microarrays, RNAseq has been proven to be the superior
technology for this purpose due to its greater sensitivity and
the ability to detect novel lncRNAs [19, 20]. The rise in the
popularity and affordability of RNAseq technology is primar-
ily responsible for the growing interest in and understanding
of lncRNAs as researchers explore the presence of these
stowaways in their mRNA data sets. In mRNA sequencing,
mRNAs are captured based on the presence of a poly(A)
tail. LncRNAs can also be captured provided they have a
poly(A) tail. According to a study in 2005, it is estimated that
40% of lncRNA transcripts are nonpolyadenylated [21]. An
alternative library preparation method for studying lncRNA
is the total RNA library. Only ribosomal RNA is removed
leaving small RNAs, mRNAs, and all forms of lncRNAs.
This library preparation method is the most inclusive of
RNA species but requires more sequencing reads due to the
multiple RNA species present in the library, and ribosomal
RNA reduction does not completely remove ribosomal RNA
from the library due to their high abundance.

Total RNA sequencing theoretically should detect more
lncRNAs due to its RNA selection independent of the
poly(A) tail. However, total RNAseq costs more than mRNA
sequencing (mRNA $500 versus total RNA $650) and the
question of how many more lncRNAs does total RNA
sequencing capture compared to mRNA sequencing has not
been answered. Moreover, whether the mRNAs captured in
total RNA sequencing are comparable to mRNA sequenc-
ing also remains unknown. To answer these questions, we
designed the following study. We hypothesized that total
RNA sequencing generates more relevant data than mRNA
sequencing for the purpose of lncRNA research. Total RNA
and mRNA libraries of two breast cancer cell line samples
were built and sequenced. We analyzed the sequencing
data and compared their usability for lncRNA and mRNA
research.

2. Methods

Total RNAseq on two breast cancer cell lines HS578T and
BT549 was performed by the Vanderbilt Technologies for
Advanced Genomics (VANTAGE) core. Total RNA was iso-
lated with the Aurum Total RNA Mini Kit. All samples were
quantified on theQuBit RNA assay. RNA quality was checked
using Agilent Bioanalyzer. RNA integrity number (RIN) for
both samples was 10. RNAseq data was obtained by first
using the Ribo-Zero Magnetic Gold Kit (human/mouse/rat)
(Epicentre) to perform ribosomal reduction on 1 𝜇g total
RNA following the manufacturer’s protocol. After riboso-
mal RNA (rRNA) depletion, samples were then purified
using the Agencourt RNAClean XP Kit (Beckman Coulter)
according to the Epicentre protocol specifications. After
purification, samples were eluted in 11 𝜇L RNase-free water.

Next, 1 𝜇L ribosomal depleted samples were run on the
Agilent RNA 6000 Pico Chip to confirm rRNA removal.
After confirmation of rRNA removal, 8.5 𝜇L rRNA-depleted
sample was input into the Illumina TruSeq Stranded RNA
Sample Preparation kit (Illumina) for library preparation.The
libraries were sequenced on Illumina High HiSeq 2500 with
paired-end 100 base pair long reads. RawRNAseq sequencing
data generated from the poly(A) library of the same two cell
lines were downloaded from the Gene Expression Omnibus
(GEO) (GSM1172877: 19.8 million reads and GSM1172855:
15.3 million reads) for comparative purpose. The poly(A)
libraries were prepared using Illumina TruSeq RNA Sample
Preparation kit. Poly(A) RNA was purified with oligo dT
magnetic beads, and the poly(A) RNA was fragmented with
divalent cations followed by reverse transcription into cDNA
and ligation of Illumina paired-end oligo adapters to the
cDNA fragments.More detail of poly(A) library construction
can be found at GEO website.

The raw data quality was examined using QC3 [22].
Alignment against human genome reference HG19 was per-
formed using TopHat2 [23]. Novel gene quantification was
performed using Cufflinks [24]. Additional quality control
was carried out at alignment level based on the alignment
quality control concept described in [25]. ENSEMBL gene
transfer format (GTF) version GRCh37.35 was used to anno-
tate the gene expression. We categorized the RNA into
three subclasses: protein coding RNA, lncRNA, and other
RNAs. This GTF contains 20327 protein coding RNAs, 13346
lncRNAs, and 24100 other RNAs (such as pseudogene and
antisense). Read count per RNA was computed using HTSeq
[26]. To avoid variation caused by total reads sequenced,
raw read counts were normalized to the total read count by
sample. Log2 transformationswere performedonnormalized
read counts. To avoid log of zeroes, all read counts were
increased by 1 before taking the log transformation. Dif-
ferential expression analyses and additional quality control
were conducted between poly(A) capture method and total
RNA method using MultiRankSeq [27] which embeds three
different RNAseq differential expression analysis methods:
DESeq2 [28], edgeR [29], and baySeq [30]. DEseq2’s results
were selected for further analysis due to its ability to take
paired samples into consideration. Cluster analysis was per-
formed using Heatmap3 [31]. Functional analysis was carried
out using gene set enrichment analysis (GSEA) [32], and gene
ontology (GO) analysis was conducted using WebGestalt
[33].

3. Results

Even though the RNAseq data were generated from the same
cell lines, there could be potential heterogeneity and batch
effect because the cell lines were cultured at two different
labs and sequenced at two different facilities. To test if there
is potential heterogeneity and batch effect, we conducted a
cluster analysis using Heatmap3 [31]. Unsupervised cluster
results showed cluster of cell line type rather than sequencing
batch (Figure 1) which suggested that the RNAseq data of
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Figure 1: Cluster results of the two breast cancer cell lines.The poly(A) and total RNA libraries were constructed and sequenced by separated
facilities. The samples clustered together by cell line type rather than library type or sequencing facility, which suggests that there is no severe
heterogeneity of cell line and batch effect between sequencing.

these two cell lines were similar; no severe heterogeneity and
batch effect were observed.

The sequencing data went through rigorous quality con-
trol. To account for variation in number of reads sequenced
within the 4 samples, read counts were adjusted by normaliz-
ing the total read count of each sample. In terms of proportion
of reads mapped to lncRNA, total RNA library samples
(3.62% and 3.23%) had a higher proportion than poly(A)
library samples (0.85% and 1.02%). For protein coding RNA,
poly(A) library samples (96.34% and 95.38%) mapped a
higher proportion of reads than total RNA samples (92.47%
and 93.45%). For other species of RNAs, poly(A) library
samples (2.81% and 3.59%) and total RNA library samples
(3.91% and 3.32%) had similar proportion of reads aligned.

The distributions of read normalized read counts for
protein coding RNA, lncRNA, and other RNAs can be seen
in Figure S1 (in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/862130). All three types of
RNAs were detected by both poly(A) and total RNA library
building methods. To compare whether RNA expressions are
comparable between the two RNA library building meth-
ods, we drew a scatter plot and computed their Pearson’s
correlation coefficients (Figure 2). All three types of RNA
expression are highly agreeable between the two methods
(protein coding RNA 𝑟 = 0.92, lncRNA Pearson 𝑟 = 0.79,
and other RNAs 𝑟 = 0.69). These results are consistent with
previous findings [34] which suggest that RNA expression is
consistently measured for poly(A) and total RNA sequencing
library.

Next, we examine the number of RNAs detectable by
each library construction method. To determine whether
RNA is detected, a cutoff value of the normalized read
count was applied. Because this cutoff is arbitrary, we choose
several different thresholds for sensitivity analysis. An RNA
is considered detected if its normalized read count is above
the detection threshold. We used the following thresholds:
>0.1, >0.5, >1, >1.5, and >2. Regardless of which threshold
we applied, samples from the total RNA method consistently
showed higher numbers of RNAs detected for all three types
of RNAs (Figure 3). This suggests that without the restriction
of poly(A) selection, the total RNA library is capable of
identifyingmore expressed RNAs (lncRNA 𝑡-test𝑃 < 0.0001,
protein coding RNA 𝑡-test 𝑃 < 0.0001, and other RNAs 𝑡-
test 𝑃 < 0.0001). Furthermore, we compared the number
of genes that are differentially expressed between the two
libraries’ construction methods and found there were much
higher expressed RNAs (log2 fold change > 2) for total RNA
library samples than poly(A) library samples (Figure 4). We
also counted the potential novel transcripts identified from
Cufflinks. The two poly(A) library samples detected 4122
and 6169 potential new transcripts, and the two total RNA
samples detected 53282 and 58111 potential new transcripts,
roughly a 10-fold increase.

It has been shown that not all mRNAs necessarily con-
tain a poly(A) tail at their 3 ends [35]. For example, the
mRNA that encodes histone proteins is nonpolyadenylated
[36]. Another study has shown that a significant portion
of the mRNA transcript has no poly(A) tail [37]. This can
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Figure 2: RNA expression level consistency between poly(A) and total RNA library samples. Read counts were normalized by total read
count per sample and log2 transformed. (a) Consistency of expression of protein coding RNAs. The red color indicates histone-encoding
genes. (b) Consistency of expression of lncRNAs. (c) Consistency of expression of other RNAs.

potentially explainwhywe observemore protein codingRNA
detected by total RNA than the poly(A) method. To test this
hypothesis, we searched through the ENSEMBL database and
found 38 histone-encoding genes. We conducted enrichment
analysis in GSEA using results from DESeq2 against the
histone-encoding genes and found that our datasetwas highly
enriched (FDR < 0.0001) (Figure 5(a)). The expression value
of the histone-encoding genes was clearly higher for total
RNA library samples (Figure 5(b)). The GSEA showed that

total RNA library samples captured histone-encoding genes
at a much higher efficiency than the poly(A) library samples.
Based on fold change results from DESeq2, there were 737
protein coding RNAs that have a log2 fold change greater
than 2 (overexpressed in total RNA samples), which suggests
that additional subsets of protein coding RNAs may be better
captured using total RNAmethods. To better categorize these
potential subcategories of protein coding RNAs, we con-
ducted GO analysis using WebGestalt (Figure S2) (Table 1).
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Figure 3: Number of RNAs detected at different detection thresholds for all three types of RNA. Total RNA library samples detected
significantly more RNAs than poly(A) RNA library samples at all RNA detection thresholds. (a) Protein coding RNA. (b) lncRNA. (c) Other
RNAs.

The top 10 subcategories of genes were found within all three
big GO categories: biological process, molecular function,
and cellular component. Eleven out of the 30 subcategories
primarily consisted of histone-encoding genes. The other 19

subcategories were protein-DNA complex, chromatin, and so
forth. No obvious pattern was recognizable. There were also
592 protein coding genes that were captured better by the
poly(A) library samples (log2 fold change < −2). We also
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Figure 4: Using log2 fold change >2 as cutoffs, total RNA library samples hadmore RNAs with higher expression levels than poly(A) samples
for all three types of RNAs.
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Figure 5: (a) Enrichment plot of histone-encoding genes from GSEA. Based on fold change ranked (total RNA versus poly(A)) gene list,
histone-encoding genes were highly enriched (adjust 𝑃 < 0.0001). (b) Normalized read count distribution of the 38 histone-encoding genes
between poly(A) and total RNA libraries.
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Table 1: Gene ontology results of genes that are captured more by total RNA library.

Major category Subcategory Number of genes Adjusted 𝑃

Biological process

Nucleosome assembly (histone) 30 4.81𝐸 − 16

Protein-DNA complex assembly (histone) 33 6.27𝐸 − 16

Chromatin assembly (histone) 30 2.58𝐸 − 15

Protein-DNA complex subunit organization (histone) 33 9.36𝐸 − 15

Nucleosome organization (histone) 30 2.36𝐸 − 14

Chromatin assembly or disassembly (histone) 30 1.81𝐸 − 13

DNA packaging (histone) 30 2.51𝐸 − 12

DNA conformation change (histone) 30 7.46𝐸 − 10

Cellular macromolecular complex assembly (histone) 38 6.50𝐸 − 03

Detection of virus 3 7.30𝐸 − 03

Molecular function

Protein heterodimerization activity (histone) 32 5.00𝐸 − 04

Ketosteroid monooxygenase activity 3 4.00𝐸 − 03

Phenanthrene 9,10-monooxygenase activity 3 4.00𝐸 − 03

cGMP binding 5 4.00𝐸 − 03

Oxidoreductase activity 7 6.30𝐸 − 03

Androsterone dehydrogenase activity 3 6.30𝐸 − 03

Dehydrogenase activity 3 6.30𝐸 − 03

Cyclic nucleotide binding 6 1.48𝐸 − 02

N,N-Dimethylaniline monooxygenase activity 3 1.48𝐸 − 02

Metal ion transmembrane transporter activity 25 2.83𝐸 − 02

Cellular component

Nucleosome (histone) 29 8.22𝐸 − 23

Protein-DNA complex 30 4.93𝐸 − 17

Chromatin 35 1.22𝐸 − 08

Chromosomal part 40 1.00𝐸 − 04

Chromosome 41 2.60𝐸 − 03

Extracellular region part 59 1.33𝐸 − 02

Axoneme 9 2.28𝐸 − 02

Platelet dense tubular network membrane 3 6.32𝐸 − 02

Platelet dense tubular network 3 1.15𝐸 − 01

Desmosome 4 1.57𝐸 − 01

performed GO analysis on these genes (Figure S3) (Table 2).
No clear gene pattern was detected.

4. Discussion

In this study, we examined the difference between the RNAs
captured through poly(A) and total RNA libraries. Our study
was also designed with several limitations. First, we were only
able to collect two samples with sequencing data from both
RNA libraries.The small sample sizemight limit our ability to
identify true signals. Also, the sample type is limited to breast
cancer cell lines. Other tissue types might behave differently.

Using sequencing data from two breast cancer cell lines
captured using both libraries, we found that, in terms of
expression level, both libraries were highly correlated and the
correlation was the highest for protein coding RNAs. This
suggests that both methods of RNA library construction are
capable of generating consistent data for studying protein
coding RNAs. For the three types of RNAwe defined: protein
coding RNA, lncRNA, and other RNAs; at all gene detection
thresholds, total RNA library samples consistently identified

more RNAs than poly(A) library samples which suggests
that the total RNA library is capable of detecting additional
RNA not detected by the poly(A) library. Through gene set
enrichment analysis we were able to identify that histone-
encoding genes were not captured efficiently by the poly(A)
RNA library due to their lack of poly(A) tails. This finding
is consistent with previous reports [36, 37]. Through gene
ontology analysis we identified several additional subgroups
of RNA which were better captured by the total RNA library.
This could be explained in several ways. First, the results
could be due to random variation, thus not holding any
biological significance. Second, the poly(A) tails might have
degraded prior to the construction of the poly(A) RNA
library. Third, some unknown mechanisms may prevent
proper capture of such RNAs through poly(A) identification.

Total RNA library construction costs around $150 more
than a poly(A) library, but it allows the detection of additional
RNAs.Whether the extra cost is justifiable should be decided
during the experimental design stage of RNAseq study. If the
goal is to study lncRNA, then it is better to use total RNA
library; if the goal is to study protein coding RNAs, then total
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Table 2: Gene ontology results of genes that are captured more by poly(A) RNA library.

Major category Subcategory Number of genes Adjusted 𝑃

Biological process

RNA metabolic process 174 1.30𝐸 − 03

Nucleic acid metabolic process 188 4.50𝐸 − 03

Cellular macromolecule metabolic process 260 5.30𝐸 − 03

Positive regulation of cell development 17 5.50𝐸 − 03

Transcription from RNA polymerase II promoter 75 5.50𝐸 − 03

Cellular component organization 174 5.80𝐸 − 03

Cellular component organization or biogenesis 177 6.90𝐸 − 03

Positive regulation of cell morphogenesis 7 6.90𝐸 − 03

Negative regulation of viral entry into host cell 3 7.00𝐸 − 03

Regulation of transcription, DNA-dependent 126 7.00𝐸 − 03

Molecular function

Chromatin binding 27 1.00𝐸 − 03

Protein binding 276 1.60𝐸 − 03

Binding 400 3.90𝐸 − 02

D-Erythro-sphingosine kinase activity 2 5.57𝐸 − 02

Transcription cofactor activity 28 5.57𝐸 − 02

Lipid kinase activity 3 5.57𝐸 − 02

Sphinganine kinase activity 2 5.57𝐸 − 02

Transcription factor binding transcription factor activity 28 6.34𝐸 − 02

Nucleic acid binding 127 9.22𝐸 − 02

Protein binding transcription factor activity 28 9.22𝐸 − 02

Cellular component

Nucleus 251 4.99𝐸 − 09

Membrane-bounded organelle 349 1.44𝐸 − 06

Intracellular membrane-bounded organelle 349 1.44𝐸 − 06

Intracellular organelle 375 5.83𝐸 − 06

Organelle 375 5.83𝐸 − 06

Nuclear lumen 128 6.62𝐸 − 06

Nuclear part 139 8.80𝐸 − 06

Intracellular organelle lumen 144 3.83𝐸 − 05

Organelle lumen 145 4.64𝐸 − 05

Nucleoplasm 77 5.05𝐸 − 05

RNA library might not be necessary unless histone-encoding
genes are of interest.
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