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When divergent populations form hybrids, hybrid fitness can vary with genome composition, current environmental conditions,

and the divergence history of the populations. We develop analytical predictions for hybrid fitness, which incorporate all three

factors. The predictions are based on Fisher’s geometric model, and apply to a wide range of population genetic parameter regimes

and divergence conditions, including allopatry and parapatry, local adaptation, and drift. Results show that hybrid fitness can be

decomposed into intrinsic effects of admixture and heterozygosity, and extrinsic effects of the (local) adaptedness of the parental

lines. Effect sizes are determined by a handful of geometric distances, which have a simple biological interpretation. These dis-

tances also reflect the mode and amount of divergence, such that there is convergence toward a characteristic pattern of intrin-

sic isolation. We next connect our results to the quantitative genetics of line crosses in variable or patchy environments. This

means that the geometrical distances can be estimated from cross data, and provides a simple interpretation of the “composite ef-

fects.” Finally, we develop extensions to themodel, involving selectively induced disequilibria, and variable phenotypic dominance.

The geometry of fitness landscapes provides a unifying framework for understanding speciation, and wider patterns of hybrid

fitness.
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When genetically distinct populations meet and mate, their di-

vergent alleles are brought together in new combinations. The

fitness of these novel genotypes will influence the outcome of

the hybridization, which might be as various as population fu-

sion, hybrid speciation, or reinforcement selection for new prezy-

gotic barriers.

Broadly speaking, the fitness of hybrids might depend on

three factors. The first factor is the type of hybrid genotype.

For example, the initial F1 cross is often fitter than subsequent

crosses, and even than the parental lines (Frankel 1983; Price and

Bouvier 2002; Escobar et al. 2008; Fraïsse et al. 2016). The sec-

ond factor is the environmental conditions in which the hybrid

is formed (Bordenstein and Drapeau 2001). For example, when

parental lines are adapted to different habitats, hybrids might

be selected against in those habitats, and yet enjoy a selective

advantage in novel environments, due to transgressive variation

(Moore 1977; Yakimowski and Rieseberg 2014). The third fac-

tor is the divergence history of the parental lines. This includes

not only the amount of divergence (Bateson 1978; Waser 1993;

Edmands 2002), but also how it was accrued. For example, ben-

eficial heterosis is often observed when parental lines have been

subject to severe inbreeding, such that the divergence comprises

partially recessive deleterious mutations (Wright 1922; Neal

1935). This third factor implies that the outcome of hybridization

might be used to make inferences about the divergence history

(Dobzhansky 1937; Lynch 1991; Rundle and Whitlock 2001;

Gavrilets 2004; Welch 2004; Demuth and Wade 2005; Rosas

et al. 2010; Fraïsse et al. 2016; Yamaguchi and Otto 2020).
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To study all of these factors, and the interactions be-

tween them, one approach uses the quantitative genetics of line

crosses (Cockerham 1980; Hill 1982; Lynch 1991; Lynch and

Walsh 1998, chs. 9-10; Rundle and Whitlock 2001; Demuth and

Wade 2005). This approach is fully general, and widely applied,

but it does have limitations. With the quantitative genetics of

single populations, a large body of theory can help us to inter-

pret the variance components (Hill et al. 2008; Mäki-Tanila and

Hill 2014; Barton 2017; Walsh and Lynch 2018), but with line

crosses, the “composite effects” are more difficult to interpret.

For this reason, a lot of research on hybridization uses fitness

landscapes (Dobzhansky 1937; Hill 1982; Orr 1995; Gavrilets

2004). With this alternative approach, clear understanding can

come from simple models, with a few, biologically meaningful

parameters. But such models can be difficult to fit to data, and

often apply to a limited range of cases (such as the evolution of

intrinsic incompatibilities).

Here, following previous authors, we combine these two ap-

proaches (Lynch 1991; Demuth and Wade 2005; Yamaguchi and

Otto 2020), drawing an explicit connection between the quanti-

tative genetics of line crosses (Hill 1982; Rundle and Whitlock

2001), and a class of fitness landscapes based on Fisher’s ge-

ometric model (Fisher 1930, ch. 2). Fisher’s model is a well-

studied model of both divergence (Hartl and Taubes 1998; Orr

1998b; Walsh and Lynch 2018, ch. 27) and hybridization, and

it can account for a large number of empirical patterns (Mani

and Clarke 1990; Barton 2001; Rosas et al. 2010; Chevin et al.

2014; Fraïsse et al. 2016; Simon et al. 2018; Thompson et al.

2019; Yamaguchi and Otto 2020). As such, it allows us to ex-

plore the effects of hybrid genome composition, environmental

heterogeneity, and parental divergence history, all in a common

framework.

This article is in three parts. In Part 1, we rederive analyt-

ical predictions from Fisher’s model (Simon et al. 2018), and

show that they apply to very wide range of divergence condi-

tions and population genetic parameter regimes. We also present

the results in a new way, to clarify the geometrical and biologi-

cal meaning of the key quantities. In Part 2, we connect Fisher’s

model to quantitative genetics, providing a simple interpretation

of the composite effects. We then express results for standard line

crosses in different environments, unifying results from previous

studies (Wright 1922; Lynch 1991; Hatfield and Schluter 1999;

Rundle and Whitlock 2001; Chevin et al. 2014; Simon et al. 2018;

Yamaguchi and Otto 2020). Finally, in Part 3, we introduce two

extensions to the model, involving selectively induced associa-

tions between heterospecific alleles, and phenotypic dominance.

These extensions address cases where the simplest model gives

misleading or implausible predictions. We end by discussing

some implications of our results for understanding the process of

speciation.

Fisher’s Geometric Model and
Hybridization
MODEL DESCRIPTION AND NOTATION

Description of hybrid genotypes
We consider hybrids between two diploid parental lines P1 and

P2, which differ by d substitutions. For simplicity, we ignore ge-

netic variation within the parental lines at the time of hybridiza-

tion, so that d is equal to the genetic distance between hybridizing

individuals. This will be a reasonable approximation if within-

line variation is much smaller than between-line divergence.

Hybrids will contain some combination of alleles from the

two parental lines. We characterize hybrid genotypes in terms of

their heterozygosity, p12, and hybrid index, h. The heterozygosity

is the proportion of the d divergent sites where the hybrid carries

one allele from each line; the hybrid index is the total proportion

of the divergent alleles that come from line P2. As such, h ranges

from 0 for a pure P1 genotype, to 1 for a pure P2 genotype. We

will also use the notation p1 and p2 to refer to the proportion of

divergent sites that are homozygous for alleles from P1 and P2,

such that p1 + p2 + p12 = 1, and

h ≡ p2 + 1

2
p12 (1)

(Turelli and Orr 2000; Simon et al. 2018). Our overall aim is to

show how hybrid fitness varies with h and p12, and how this vari-

ation might be determined by environmental conditions and the

history of parental divergence.

Fisher’s model as a fitness landscape
Under Fisher’s geometric model, each genotype is associated

with the values of n continuously varying phenotypic traits, and

so it can be represented as a point in an n-dimensional trait

space: z =(z1, z2, . . . , zn). The fitness of the genotype depends

on the distance of its phenotype from an optimal phenotype:

o =(o1, o2, . . . , on). We use a weighted Euclidean distance:

‖z − o‖λ ≡
√∑n

i=1
λi(zi − oi )2, (2)

where the λi determine the strength of selection on each trait.

Fitness is a decreasing function of distance (Turelli and Moyle

2007; Simon et al. 2018), such as

ln w = −α‖z − o‖k
λ, (3)

where α is a constant, and k denotes the curvature of the fitness

landscape, that is, how quickly fitness declines with the distance

from the optimum (Peck et al. 1997; Tenaillon et al. 2007; Fraïsse

et al. 2016; Fraïsse and Welch 2019). This model assumes a sin-

gle phenotypic optimum at any given time and location, but the

position of the optimum can vary in space and time, so that we
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Figure 1. Under Fisher’s geometric model, each genotype is associated with the values of n quantitative traits (illustrated with n = 2),

and its fitness depends on the distance of this phenotype from an optimum. The position of the optimum can change over time and space.

Shown are two parental lines, P1 and P2, which differ by d = 7 substitutions, each represented by a vector, denoted m j for j = 1..d. These

vectors represent the effects of the P2 allele, whether this is derived or ancestral. But they are ordered so that the chain passes through

the most recent common ancestor (MRCA) of P1 and P2. Also shown are cartoons of the parental genomes, with the derived alleles as

colored boxes. Hybrid genomes contain a mix of the parental alleles. In the hybrid shown, 1/7 of the divergent sites contains an allele

from each line, so that p12 = 1/7; and two further P2 alleles are present as homozygotes (one ancestral and one derived), yielding a

hybrid index of h = 2.5/7. The illustration shows that fixed differences can be physically linked. Such linkage reduces the variance in the

hybrid indexes within a given cross, but plays no other role in our analyses.

can investigate divergence and hybridization under different en-

vironmental conditions.

How seriously should we view this simple phenotypic

model? Although one or a few of the traits might be identified

with real-world quantitative traits, which might be measured in

the field (Barton 1990; Thompson 2019), it is usually a mistake to

treat all n of the traits in this way. Instead, Fisher’s model is best

viewed as an approximation to phenotypic models that are more

realistic but less tractable (such as models of gene-regulatory net-

works, as studied in systems biology; Martin 2014; Schiffman

and Ralph 2017; Fraïsse and Welch 2019), or simply as a map-

ping between genotype and fitness. Under this interpretation, n is

a parameter of the distribution of fitness effects, with no explicit

phenotypic interpretation (and no effect on our major results—

see below). Nevertheless, as we show below, thinking about the

trait values is a useful way of deriving and interpreting testable

predictions about hybrid fitness.

Hybrids under Fisher’s model
Figure 1 shows how Fisher’s model can be used to study hy-

bridization. Under the model, the parental lines, P1 and P2, are

represented by points in n-dimensional trait space. Each of the d

substitutions, which differentiate the lines, are represented as n-

dimensional vectors of change, notated m j for j = 1 . . . d . In any

given genome, each of these substitutions can appear in either

homozygous or heterozygous form. These substitutions accrued

during the evolutionary divergence of P1 and P2 from their most

recent common ancestor (MRCA), and so they can be represented

as a chain, passing through the ancestral phenotype (Fig. 1).

However, there is no important distinction between ancestral and

derived alleles in this model, and so we define the direction of

each substitution such that the chain starts at P1.

With this definition, the P2 genotype contains all of the

substitutions in homozygous state, and so its phenotype on trait

i = 1 . . . n can be written as

zP2,i = zP1,i +
d∑

j=1

mij (4)

where zP1,i denotes the value of trait i in parental line P1, and

the mi j describe the effects on trait i of introducing substitution j

EVOLUTION DECEMBER 2020 2577
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(A) (B) (C)

Figure 2. Predictions for hybrid fitness depend on a small number of geometric quantities. The distances are defined in some multi-

dimensional trait space, but are estimable, in principle. (A) With additive phenotypes, and a single environmental optimum, predictions

depend on just three distances: the distances of the two parental phenotypes from the optimum (r21O and r22O), and the distance between

the parental phenotypes (r212). Results can also be written in terms of ρ, which measures the extent to which the parental populations

are maladapted to the current environment in similar ways. Also shown is the midparental phenotype, P. This is the expected phenotype

of balanced hybrids, and so hybrid advantage is maximized when P coincides with the optimum. (B) With two environments, A and B,

characterized by different optima, onemeasure of local adaptation is ρ∗: the cosine similarity between the vectors linking the optima, and

the parental phenotypes. When the two parental phenotypes are close to the two optima, results depend on r212 alone. (C) With variable

phenotypic dominance, results depend on the phenotype of the global heterozygote, G, which is equivalent to the initial F1 cross under

strictly biparental inheritance and expression, and which may differ from the midparental phenotype, P. In the example shown, G is closer

to the P2 phenotype than the P1 phenotype, this implies directional dominance, with P2 alleles being dominant on average.

(i.e., the P2 allele, whether derived or ancestral). The phenotype

of any given genotype can be written in the same way:

zi = zP1,i +
∑

j∈Jhom

mij +
∑
j∈Jhet

1

2
mij (5)

where Jhom denotes the subset of d × p2 loci that are homozygous

for the P2 allele, and Jhet denotes the nonoverlapping subset of

d × p12 loci that are heterozygous.

The key assumption of equations (4) and (5) is that all substi-

tutions act additively on all traits, both within and between loci.

This means that the phenotypic effects of a substitution will not

depend on the genomic background (although its fitness effects

can vary). To make equation (5) useful, we will make a second

key assumption: that Jhom and Jhet can be treated as randomly

chosen subsets of loci. Both of these assumptions—phenotypic

additivity, and random choice of loci in hybrids—play a major

role in the results below, but both are relaxed in the final section.

A useful distance measure
Results below will concern fitness, but in most cases, we will

not work with fitness directly (Turelli and Orr 2000; Demuth

and Wade 2005; Turelli and Moyle 2007). Instead, following

Simon et al. (2018), we express most results in terms of a scaled

squared distance to the optimum, which for brevity we will call

“distance”. In particular, for a hybrid H, with phenotype zH (as

defined via eq. 5), this distance is defined as

r2
HO ≡ 4

‖zH − o‖2
λ

d‖1‖2
λ

(6)

where 1 is the unit vector, so that the scaling factor is

‖1‖2
λ =

n∑
i=1

λi (7)

The major purpose of this scaling is to remove any dependence

on parameters such as n and the λi, so that our results depend

solely on distances. The most important distances are between the

optimum and the two parental phenotypes; these are illustrated in

Figure 2A.

r2
1O ≡ 4

‖zP1 − o‖2
λ

d‖1‖2
λ

r2
2O ≡ 4

‖zP2 − o‖2
λ

d‖1‖2
λ

(8)

Each of these distances is a scaled transformed fitness (eq. 3), or,

equivalently, a measure of maladaptation to the current environ-

mental conditions, such that larger distances correspond to lower

fitness. We return below to the interpretation of the scaling factor.

THE BROWNIAN BRIDGE APPROXIMATION

Simon et al. (2018) presented an approximation for the expected

distance from the optimum of a hybrid with a given hybrid in-

dex and heterozygosity. This quantity is notated as E (r2
HO|h, p12),

where the expectation is defined over all hybrid genotypes with

the same values of h and p12. In this section, and Appendix 1 in

the Supporting Information, we rederive this Brownian bridge ap-

proximation, and clarify its assumptions. We also present the key

results in a new form, which clarifies their biological meaning

(see next section).

The first assumption of the approximation is that the fixed

effects on each trait, the mi j , can be treated as realizations of nor-

mally distributed random variables with unit variances and no
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correlations between traits. This is justified by a transformation

called simultaneous diagonalization, introduced in a very similar

context by Martin and Lenormand (2006), and described in detail

in Appendix 1 section A1.1 in the Supporting Information. The

transformation assumes that the original distribution of effects

is multivariate Gaussian (Waxman and Welch 2005; Martin and

Lenormand 2006). However, if the divergence, d , is sufficiently

large, then the summations in equation (5) lead to central-limit-

type behavior, and so to approximate normality in a wider range

of cases (Barton et al. 2017, section 3.2). After the transforma-

tion is applied, the λi capture between-trait differences in both

the strength of selection, and the typical sizes of fixed factors.

Given statistical independence of the trait values, we have

E
((

r2
HO

∣∣ h, p12
) = 4

∑
λiVar (zi )

d
∑

λi
+ 4

∑
λiE2 (zi − oi )

d
∑

λi
(9)

≡ V + M (10)

To derive the quantities V and M, we will next treat the mi j

on each trait as the increments of a Brownian bridge, that is, a

random walk or Brownian motion, constrained at each end by

the parental phenotypes, and split into d equal steps (Revuz and

Yor 1999; Simon et al. 2018). For the term V , which captures the

variation in hybrid phenotypes, Appendix 1 section A1.2 in the

Supporting Information shows that

V = 4p2(1 − p2) + p12(1 − p12) − 4p2 p12 (11)

= 4h(1 − h) − p12 (12)

where the three terms in equation (11), come from variation in

the effects of homozygous P2 alleles, variation in the effects of

heterozygous alleles, and a negative covariance term (because a

given allele cannot appear in both homozygous and heterozygous

state in the same genome).

For the term M, we note that the expected hybrid phe-

notype will lie on the line connecting the parental phenotypes

(Figure 2A). Appendix 1 section A1.2 in the Supporting Infor-

mation shows that

M ≡ (1 − h)2r2
1O + h2r2

2O + 2h(1 − h)r1Or2Oρ (13)

= r2
.O +

(
h − 1

2

) (
r2

2O − r2
1O

) − h(1 − h)r2
12 (14)

where we have used equation (8), and the notation r2
.O ≡ 1

2 (r2
1O +

r2
2O). We also use two new quantities that are illustrated in

Figure 2A. The first quantity, ρ, which appears in equation (13),

is the “cosine similarity” of the vectors connecting the parental

phenotypes to the optimum. ρ can vary between 1, when these

vectors point in the same direction, and −1, when they point in

opposite directions (see also eq. 41 in the Supporting Informa-

tion). The second quantity, r2
12, which appears in equation (14), is

the distance between the parental phenotypes:

r2
12 ≡ 4

‖zP1 − zP2‖2
λ

d‖1‖2
λ

(15)

ρ and r2
12 are related to each other via the cosine rule

r2
12 = r2

1O + r2
2O − 2r1Or2Oρ where − 1 ≤ ρ ≤ 1 (16)

We now have an expectation for the expected fitness of any

type of hybrid, using only its genomic composition (p12 and h),

and the three distances, r2
1O, r2

2O, and r2
12. Notably, we have as-

sumed almost nothing about the history of divergence between

the parental lines, nor their common ancestral state. One way to

understand this is to imagine all the possible paths between P1

and P2 that could be obtained by shuffling the order of the d

substitution steps. One of these paths is the true history of di-

vergence, and passes through the MRCA, but hybrids can lie on

any of the paths. As a result, the Brownian bridge approxima-

tion is based on the notion of a random walk, but it does not

require that the true process of divergence resembled a random

walk.

To verify that the Brownian Bridge approximation works

well for a wide range of divergence histories, Appendix 2 in

the Supporting Information presents an individual-based sim-

ulation study. We simulated the divergence between diploid

populations under a full population genetic model, vary-

ing the parameter regime, and the patterns of demographic

and environmental change. Our simulations included diver-

gence in allopatry, and in parapatry, with ongoing gene flow

(Endler 1977). We also simulated different levels of drift, se-

lection, standing variation, and recombination. Results show

that the Brownian bridge approximation is robust in all

cases.

BIOLOGICAL INTERPRETATION

Let us now consider a group of hybrids that might vary in their

values of h and p12. Combining results above, the expected dis-

tance of these hybrids from the optimum is

E
(
r2

HO

) = r2
.O

+
(

h̄ − 1

2

) (
r2

2O − r2
1O

)
− p̄12

+ (
h̄

(
1 − h̄

) − Var (h)
) (

4 − r2
12

)
(17)
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where p̄12 is the mean level of heterozygosity in the hybrids of

interest, and h̄ and Var(h) are the mean and variance of their hy-

brid indexes. All four of the terms in equation (17) have a clear

biological interpretation. First, and simplest, r2
.O is the mean dis-

tance to the optimum of the parental lines, as measured in the

environment where the hybrids were scored; it tells us that hy-

brids will be fitter, on average, if their parents are fitter, on av-

erage, in the current environment. The second term depends on

the difference in the parental distances in the current environ-

ment: (h̄ − 1
2 )(r2

2O − r2
1O); it tells us that hybrids will be fitter if

they contain more alleles from the fitter parent. The third term,

−p̄12, is an intrinsic benefit of heterozygosity; it states that, for

any given value of h, hybrids are fitter when they are more het-

erozygous. This is a form of heterosis (Frankel 1983). The effect

is “intrinsic” because, unlike the two previous terms, it does not

depend on the current position of the environmental optimum.

The final term in equation (17) is the intrinsic effect of

admixture. The level of admixture is measured by h̄(1 − h̄) −
Var(h). This means that admixture is low when most alleles come

from one of the parental lines (such that h̄ is close to 0 or 1),

or when there is a mix of alleles in the population, but most in-

dividual genomes are close to one or other parental type, such

that Var(h) is close to its maximal value: h̄(1 − h̄). The admix-

ture level is highest for a collection of balanced hybrids, where

h = 1/2 for all individuals. The effect of admixture is “intrin-

sic,” because it depends on the distance r2
12, which depends on

the parental phenotypes, but not on the current position of the

optimum (Fig. 2A; eq. 15). The effect changes qualitatively with

the size of r2
12. When r2

12 < 4, admixture brings a net fitness cost.

This reflects the breaking up of co-adapted gene complexes in

the parental lines (Lynch 1991; Wallace 1991; Simon et al. 2018).

When r2
12 > 4, admixture brings a net fitness benefit. This reflects

the potential benefits of transgressive variation in hybrids (Yaki-

mowski and Rieseberg 2014), and this benefit increases with r2
12.

Although each of the four terms of equation (17) has a dif-

ferent interpretation, variation among them is constrained. This is

because the distances r2
1O, r2

2O, and r2
12 are connected to each other

by the geometry (Fig. 2A; eq. 16). Most importantly, parental

lines cannot be, at once, highly divergent phenotypically (such

that r2
12 � 1), and close to the same environmental optimum

(such that r2
.O ≈ 0). This implies that large benefits of admixture

are impossible without large costs due to parental maladaptation.

However, the relative sizes of these terms can vary, according to

the current position of the optimum. For a given value of r2
12,

E (r2
HO) is minimized when the optimum matches the midparental

phenotype, denoted P in Figure 2A. (In this case, r2
1O = r2

2O and

ρ = −1, such that, from eq. 16, r2
.O = 1

4 r2
12). This restates a re-

sult of Yamaguchi and Otto (2020), and also follows intuitively:

hybrids will be fittest when the optimal phenotype is exactly in-

termediate between the parental phenotypes (Moore 1977).

HYBRID FITNESS AND THE PROCESS OF DIVERGENCE

The results above show that the outcomes of hybridization de-

pend strongly on the value of r2
12. So what exactly does this quan-

tity measure? The numerator of equation (15) is ‖zP1 − zP2‖2
λ:

the amount of phenotypic divergence that resulted from the ge-

nomic divergence between the parental lines. In Appendix 1

section A1.5 in the Supporting Information, we show that the de-

nominator, d‖1‖2
λ, is equivalent to the expected phenotypic diver-

gence under an unconstrained random walk in phenotypic space,

conditional on the walk having d steps, and a similar distribution

of effect sizes to the observed data (as parameterized by the λi).

For this reason, r2
12 can be thought of as the observed amount of

phenotypic divergence, divided by the expected amount of phe-

notypic evolution under a random walk.

As shown in Figure 3A–D, this implies that the value of r2
12

contains some information about the mode of divergence between

the populations.

For example, if r2
12 > 4, then the parents show more pheno-

typic divergence than expected under a random walk. This im-

plies that the d substitutions, which connect the parental pheno-

types, form a chain with relatively little meandering or changing

of direction. In terms of fitness effects, this implies that the P2 al-

leles are largely exchangeable, with all having similar effects on

fitness in any given background. Indeed, we show in Appendix 1

section A1.5 in the Supporting Information that r2
12 approaches a

maximum of max(r2
12) = 4d , when the P2 alleles are completely

exchangeable, causing changes of the same size and direction.

This sort of pattern is unlikely to arise without positive selec-

tion, and so an observation of r2
12 � 4 suggests that the parental

lines diverged via positive selection, either acting in one popula-

tion alone, or in both populations, but in opposite directions in

phenotypic space. This is illustrated in Figure 3A.

Similarly, an observation of r2
12 ≈ 4 is expected if the

parental phenotypes really did diverge by random-walk-like evo-

lution (Fig. 3B). One way this might occur is if parental lines

fixed mutations regardless of their fitness costs, for example, un-

der severe inbreeding. It is notable that the intrinsic effects of ad-

mixture vanish when r2
12 ≈ 4 (eq. 17). This agrees with the empir-

ical observation that heterozygosity, rather than admixture level,

is the major determinant of fitness in crosses between inbred lines

(Wright 1922; Neal 1935; Simon et al. 2018).

Finally, if r2
12 < 4, then populations have accrued less phe-

notypic divergence than would be expected under a random walk.

This could occur in two quite distinct ways. First, stabilizing

selection might maintain the phenotype at a (more-or-less) sta-

tionary optimum, while still allowing for divergence at the ge-

nomic level, perhaps by nearly neutral evolution (Barton 1989;

Hartl and Taubes 1998). This process is closely related to “sys-

tem drift” (Rosas et al. 2010; Schiffman and Ralph 2017), and is

illustrated in Figure 3C. Alternatively, divergence could involve
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(A)

(E) (F) (G)

(B) (C) (D)

r2
12 > 4 r2

12 ≈ 4 r2
12 < 4 r2

12 < 4

Figure 3. (A)–(D) the distance r212 can vary systematically with the mode of divergence between the parents. The variation depends on

the chain of d substitutions that differentiate the parental lines, and compares their trajectory to a random walk with the same number

of steps, and distribution of effect sizes. (A) When substitutions form a more-or-less direct path between the parental phenotypes, the

observed phenotypic difference is greater than would be predicted under a comparable random walk; this implies that r212 > 4 with a

maximum at max(r212) = 4d. (B) When the true path of divergence really did resemble a randomwalk, then r212 ≈ 4 is expected. This might

happen if stabilizing selection on the phenotype was ineffective, or if the optimum value wandered erratically. Systematically smaller

values of r212 are predicted under two conditions. Either (C) genomic divergence continued, despite effective stabilizing selection on the

phenotype, leading to “system drift.” Or (D) populations successfully tracked environmental optima, but without leading to a straight

path of substitutions. (E)–(G) r212 also plays a key role in determining patterns of hybrid fitness, especially with locally adapted parents.

Results are shown for the standard crosses, in three different environments, where the optimal phenotype coincides with: (E) the P1

phenotype, (F) the P2 phenotype, and (G) the midparental phenotype. Color shows variation in r212, including the inflection points at

r212 = 4/3 (equal fitnesses for the F1 and fitter backcross), and r212 = 4/7 (equal fitnesses for the less fit parent and the less fit backcross).

All results use equation (17), with Var(h) = 0, and the appropriate values of h̄ and p̄12 for each cross; but results are shown on an arbitrary

scale, such that fitter hybrids are higher on the plots.

adaptation to a moving optimum, but without leading to a straight

path of substitutions connecting P1 and P2. In the simplest case,

this could arise if the two populations adapted, independently,

to identical environmental change (Mani and Clarke 1990), be-

cause the chain of substitutions would then change direction as it

passed through the common ancestor. A more complex example,

involving an oscillating optimum, is illustrated in Figure 3D. In

both cases, the result is a chain of substitutions whose start and

end points are closer together than would be expected under a

random walk, such that r2
12 < 4.

Importantly, over large periods of time, at least one of these

two processes—system drift, or environmental change that does

not lead to a straight path—is very likely to occur. It is un-

likely that populations will diverge for large periods by fix-

ing exchangeable alleles. As such, at very large divergences, it

becomes increasingly likely that r2
12 ≈ 0 will hold. In fact, it

follows directly from equations (8) and (15) that all of the key

distances shown in Figure 2A will tend to vanish at large diver-

gences, and we have the limit:

lim
d→∞

E
(
r2

HO

) = 4h̄
(
1 − h̄

) − 4Var (h) − p̄12 (18)

where the scaling of equation (6) ensures that equation (18) is

bounded at 0 and 1. Biologically, equation (18) implies that, as

populations diverge genetically, both extrinsic fitness effects (as

determined by r2
1O and r2

2O), and any intrinsic benefits of ad-

mixture (as determined by r2
12), will tend to become less and

less important. The model predicts convergence to a charac-

teristic pattern of intrinsic isolation between the parental lines,
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where a fixed cost of admixture is mitigated by a fixed benefit of

heterozygosity.

In Appendix 2 in the Supporting Information, we present

simulations supporting all of the arguments in this section,

namely the relationship between r2
12 and the mode of divergence,

and the convergence over time to equation (18).

FISHER’S MODEL AND THE
QUANTITATIVE GENETICS OF LINE
CROSSES
In this second part of the article, we show how the distances

in phenotypic space, which govern the fitness of hybrids, re-

late to measurable quantities. To do this, we consider fitness

measures from controlled crosses, which differ in their values

of h̄ and p̄12. These crosses include the initial F1 (P1×P2: h̄ =
1/2, p̄12 = 1), the F2 (F1×F1: h̄ = p̄12 = 1/2), and the recip-

rocal backcrosses (BC(P1) = F1 × P1: h̄ = 1/4, p̄12 = 1/2; and

BC(P2) = F1 × P2: h̄ = 3/4, p̄12 = 1/2). The variance in the

hybrid index, Var(h), depends on both the cross type, and the

level of segregation and recombination (Lynch and Walsh 1998,

ch. 9). In particular, if c̄ is the mean rate of recombination among

pairs of loci, then Var(h) ≈ (1 − 2c̄)/4 among F1 gametes (Zeng

et al. 1990; Lynch and Walsh 1998); and so, with random union

of gametes, Var(h) will be half of this value for the F2, and a

quarter of this value for backcrosses. However, c̄ ≈ 0.5 for many

species (Lynch and Walsh 1998, ch. 9), and in those cases, Var(h)

can often be neglected.

THE COMPOSITE EFFECTS UNDER FISHER’S MODEL

Let us begin by following Hill (1982; see also Lynch 1991; Lynch

and Walsh 1998), and writing the expected value of an arbitrary

trait in a cross as

μ=μ0 + θS{α1}+ θ2
S{α2}+ θH {δ1}+ θ2

H {δ2} + θSθH {α1δ1} + · · ·
(19)

where θS ≡ 1 − 2h̄ and θH ≡ 2 p̄12 − 1. The curly brackets con-

tain the “composite effects,” which are defined in Table 1 (and

noting that, in this standard notation, {α1δ1} describes an interac-

tion term, and not a product). Equation (19) shows only pairwise

effects, but the model also includes higher order terms.

If we neglect Var(h), then both equations (17) and (19)

are polynomials in h̄ and p̄12. We can therefore choose “dis-

tance from the optimum” as the trait in equation (19). If we set

μ = E (r2
HO), and solve for the composite effects, the results are

found in Table 1 (column “single environment”). Table 1 shows

that Fisher’s model predicts three nonzero composite effects.

Their values reflect the biological distinctions discussed above.

In particular, the additive effect, {α1} = 1
2 (r2

1O − r2
2O), captures T
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the benefits of carrying alleles from the fitter parent, whereas

the dominance effect, {δ1} = − 1
2 , captures the intrinsic benefits

of heterozygosity. The pairwise epistatic effect, {α2} = 1
4 r2

12 − 1,

balances the intrinsic costs and benefits of admixture.

Rundle and Whitlock (2001) presented a useful extension of

equation (19) for traits scored in two environments. Introducing

an indicator variable, I , which is 0 for individuals scored in “envi-

ronment A,” and 1 for individuals scored in “environment B,” and

defining θE ≡ 2I − 1, their model contains the additional terms:

μAB =μ + θE {ε} + θEθS {α1ε} + θEθH {δ1ε} + · · · (20)

Fisher’s geometric model is trivially extended in the same

way, by adding a second environment, with a distinct optimum.

This is illustrated in Figure 2B. Again, we can solve for the com-

posite effects, and these are shown in Table 1 (column “two en-

vironments”). Results show that adding a second environment

leaves the dominance and epistatic effects unchanged, confirm-

ing that they represent the intrinsic effects of heterozygosity and

admixture. Of the remaining quantities, the additive effect, {α1},
is now averaged across environments (r2

1. − r2
2. ≡ 1

2 (r2
1A − r2

2A +
r2

1B − r2
2B)), whereas the main environmental effect, {ε}, is simply

the difference in fitness between environments, averaged across

the parental lines (r2
.B − r2

.A ≡ 1
2 (r2

1B − r2
1A + r2

2B − r2
2A)).

Finally, the additive-by-environment interaction is

{α1ε} = 1
4

[(
r2

1B − r2
1A

) − (
r2

2B − r2
2A

)]
(21)

= 1

2
r12rABρ∗ (22)

Here, −1 ≤ ρ∗ ≤ 1 is the cosine similarity of the vector link-

ing the parental phenotypes, and the vector linking the two op-

tima (Fig. 2B): {α1ε} will be large when the difference between

the phenotypes of P1 and P2 resembles the difference between

optima A and B. Indeed, the predicted values of {α1}, {ε}, and

{α1ε} are equivalent to the quantities described by Blanquart et al.

(2013) for measuring local adaptation (see their eqs. 1 and 2), but

applied to fitness values that have been transformed and scaled

(eq. 6). As shown in Appendix 1 section A1.6 in the Supporting

Information, the same framework is easily extendable to other

sorts of environmental heterogeneity, namely patchy ecotones,

and environmental gradients.

LOCAL ADAPTATION AND ECOLOGICAL ISOLATION

Although {α1ε} is a possible measure of local adaptation, it

does not describe the extent of ecological isolation between the

parental lines. For example, {α1ε} might be large, even if P1 were

fitter than P2 in both habitats (Kawecki and Ebert 2004; Blan-

quart et al. 2013). However, we do have a measure of isolation

in an important special case. If the two parental lines are well

adapted to different local optima, then r2
AB ≈ r2

12, and predictions

depend on r2
12 alone. The results with local adaptation are shown

in Table 1 (column “local adaptation”).

The effects of varying r2
12 are illustrated in Figure 3E–G.

Each panel shows the expected distance from the optimum, com-

paring the two parental lines, the initial F1 cross, and the recip-

rocal backcrosses. The position of the optimum varies across the

three panels, and matches (E): the phenotype of P1, (F): the phe-

notype of P2 and (G): the midparent (i.e., the mean of the P1 and

P2 phenotypes). Colors show the effects of varying r2
12. When

r2
12 is large (red lines), isolation in the parental habitats (Fig. 3E–

F) is purely ecological, with P2 and P1 kept distinct solely by

environment-dependent selection against their divergent alleles.

In the “intermediate habitat” (Fig. 3G), large r2
12 leads to hybrid

advantage, with all crosses fitter than the parental types (Moore

1977; Yamaguchi and Otto 2020). When r2
12 becomes small (blue

lines), results in all three habitats approach the same W-shaped

pattern of intrinsic isolation, where hybrids beyond the F1 are un-

fit in all environments (Rundle and Whitlock 2001). By changing

the value of r2
12, we can interpolate between these two extremes.

Taken together, results in Figure 3 show that r2
12 is both a

measure of the amount of meandering in the chain of fixed dif-

ferences (Fig. 3A–D), and a measure of the relative strengths of

ecological isolation versus intrinsic isolation (Fig. 3E–G).

HYBRID FITNESS ACROSS TIME AND SPACE

Figure 4 summarizes many of

the results above, showing how hy-

brid fitness varies with genomic composition, environmen-

tal conditions, and the amount of divergence. Figure 4 compares

analytical results to a single simulation run, which is described

in full in Appendix 2 in the Supporting Information. In the

simulation, two parental populations adapted to distinct optima

in allopatry (shown in cartoon in Fig. 4A). This local adaptation

involved fixing �50 substitutions, and after this, the populations

continued to diverge via system drift. Hybridization between

these populations was simulated in five distinct environments,

whose optima are also shown in Figure 4A. Figure 4B–E shows

the composite effects changing over the complete course of the

divergence. In the environments to which the parents are adapted

(Fig. 4B), the additive-by-environment interaction, {α1ε} is high

in the initial stages of divergence, before declining over time.

The same pattern appears, in all environments, with the epistatic

effect, {α2} (Fig. 4B–E). This reflects their common dependence

on r2
12 under local adaptation (Table 1). Initially, r2

12 is high, due

to the adaptive phenotypic divergence of the parental lines; then

it declines steadily, as stabilizing selection at the new optima is

accompanied by genomic evolution via system drift.
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(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

(K) (L) (M) (N) (O)

Figure 4. The outcomes of hybridization over time and space. (A) A cartoon of the divergence process that was simulated, with two

populations adapting in allopatry to abruptly shifting optima, and then continuing to accumulate divergence via system drift. (B)–(E)

change in the composite effects with increasing divergence (Table 1), as measured with respect to (B) both parental environments, or (C)–

(E) other single environments. (F)–(O) results for simulated hybrids, plotting r2HO on a reversed axis, such that fitter genotypes are higher.

Pointswith error bars show themean and 95%quantiles for 10,000 recombinant hybrids, generated for the reciprocal backcrosses, and the

F2. The dark central point (labeled Fn) shows themean of 10,000 homozygous hybrids, derived from automictic selfing among F1 gametes.

Red and blue lines show analytical predictions. These use equation (17), with the measured values of r21O and r22O, and the assumption that

ρ = −1 (for the “intermediate” environment) or ρ = 0 (all other cases). Hybrids were scored in the (F)–(J) early stages of divergence (d =
100; red lines), and (K)–(O) at later stages (d = 2000; blue lines). Simulation procedure is described in Supporting Information Appendix 2,

and used the following parameters: N = 1000, Ns̄ = −10, 2NU = 1, n = 2, k = 2, free recombination, and “bottom-up” mutations.

The changes in composite effects are reflected in the re-

sults for simulated hybrids (Fig. 4F–O). Crosses were formed in

the initial stages of divergence (Fig. 4F–J), and at a later stage

(Fig. 4K–O). In addition to the standard crosses (also shown in

Fig. 3E–G), results are reported for the F2, and an “Fn” cross,

derived from automictic selfing among F1 gametes. As such, the

three central points in each panel all show balanced hybrids (with

h̄ = 1/2), but with maximally different levels of heterozygosity

(F1: p̄12 = 1; F2: p̄12 = 1
2 ; and Fn: p̄12 = 0).

Results after 100 substitutions show the clear signature of

ecological isolation in the parental habitats (Fig. 4F–G). In the

environment to which P1 is adapted, hybrids tended to be fit-

ter when they carry more P1 alleles, and vice versa (Rundle and

Whitlock 2001). For the same reason, in an ecologically inter-

mediate habitat, there was a clear signal of bounded hybrid ad-

vantage (Fig. 4H), as hybrids tended to have the favored interme-

diate phenotype (Moore 1977; Yamaguchi and Otto 2020). Hy-

brid advantage, at a lower level, also occurred in the ancestral

habitat (Fig. 4I); but this had nothing to do with the habitat be-

ing ancestral, and the same patterns are observed in an entirely

novel habitat, as long as it leads to similar values of r2
1O and r2

2O

(Fig. 4J).

As the genomic divergence increased, and r2
12 decreased, the

outcomes became more and more similar across the environments

(Fig. 4K–O). After 2000 substitutions, hybrid fitnesses were al-

ready converging toward the characteristic pattern of intrinsic iso-

lation (Fig. 4K–O), with the fixed cost of admixture and the fixed

benefit of heterozygosity (eq. 18).

TWO EXTENSIONS
In this third and final part of the article, we highlight two ways

in which the model gives misleading predictions, each resulting
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from a key simplifying assumption. We then show how these lim-

itations might be overcome.

LATER CROSSES, AND THE BULMER EFFECT

The project of predicting hybrid fitness solely from the hybrid

index and heterozygosity depends on heterospecific alleles ap-

pearing in random combinations. This assumption appears to be

fairly robust to low recombination (see Supporting Information

Appendix 2, Figure A2.9), but nonrandomness can arise for other

reasons. Most importantly, selection on the earlier generation hy-

brids can induce nonrandom associations between alleles in their

gametes. This can increase the fitness of later generation hybrids,

but without changing allele frequencies in the population as a

whole (Bulmer 1971; Walsh and Lynch 2018, chs. 16 & 24). For

example, with random union of gametes, the distributions of h

and p12 will often remain unchanged between the F2 and F3 gen-

erations, and so equations (17) and (19) make the same predic-

tions for both. However, selection on the F2 parents can lead to

very different levels of fitness.

To see this, let us consider the case of free recombination

(c̄ = 1/2), and optimal parental lines (r2
.O = 0). With these as-

sumptions, the variance in trait values (the zi) among F3 offspring

is

Var
(
zi,F3

) = 1

2

[
Var

(
zi,F2

) + Var
(
zi,F2(sel)

)]
c̄ = 1/2, r2

.O = 0 (23)

where zi,F2 and zi,F2(sel ) are the trait values for the total F2 pop-

ulation, and for the subset of selected parents (see Walsh and

Lynch 2018, ch. 16, assuming complete heritability). In the ex-

treme case, if only optimal F2 reproduce, then Var(zi,F2(sel ) ) = 0

and Var(zi,F3) = 1
2 Var(zi,F2). In general, the expected distance to

the optimum of later generated hybrids can be written as

E
(
r2

HO(sel)

) = E
(
r2

HO

)
(1 − β) c̄ = 1/2, r2

.O = 0 (24)

where E (r2
HO) is the prediction of equation (18), which neglects

the effects of selection on earlier-generation hybrids. The param-

eter 0 ≤ β ≤ 1/2 captures the effects of this selection, reaching

its upper bound when only optimal individuals reproduce. This is

illustrated in Figure 5A and B. We chose two simulation runs

where populations diverged despite a fixed optimum, via sys-

tem drift. If we generated an F3 cross using a random selection

of F2 parents, then equation (18) applies well (see blue lines in

Fig. 5). If we selected parents with a probability proportional to

their fitness (eq. 3), the same results continued to apply for later

crosses, but only when the fitness function was quadratic, that is,

when we set k = 2 in equation (3). In this case, there was very

little inter-individual variation in fitness. The results, shown in

Figure 5A, imply that β ≈ 0 with quadratic selection. Results

with k = 6 are shown in Figure 5B. Setting k = 6 in equation

(3) generates a “table-like” fitness function (Fraïsse et al. 2016),

equivalent to strong truncation selection, and this generates high

variation in parental fitness. In this case, results were close to the

lower bound of equation (24), such that β ≈ 1/2 (see red lines in

Fig. 5B). The same patterns continued unchanged for other late

generation crosses, including the F4 and F5, and also applied to

repeated backcrosses to the P1 line (Fig. 5A–B).

PHENOTYPIC DOMINANCE

The most implausible prediction of Fisher’s model is embodied

in equation (18). This equation predicts that, at very high levels

of divergence, fully heterozygous hybrids will always be as fit

as their parents (this is because, when p12 = 1 and h = 1/2, the

benefits of heterozygosity exactly cancel the costs of admixture;

Barton 2001; Fraïsse et al. 2016; Schiffman and Ralph 2017).

This prediction is implausible because—with strictly bi-

parental inheritance and expression—the initial F1 cross will be

globally heterozygous (i.e., will carry one allele from each par-

ent at all d divergent loci). Although many intrinsically isolated

species do produce fit F1 (Wallace 1991; Price and Bouvier 2002;

Fraïsse et al. 2016), F1 fitness tends to decline as the parents

become very genetically divergent, even in environments where

both parents are well adapted (Endler 1977; Bateson 1978; Waser

1993; Price and Bouvier 2002; Edmands 2002; Fraïsse et al.

2016). The model also struggles to explain a second widespread

pattern in the F1: when some loci have uniparental inheritance or

expression, the reciprocal F1 often have very different fitnesses,

even if the parents are both well adapted (Bolnick and Near 2005;

Turelli and Moyle 2007; Escobar et al. 2008; Brandvain et al.

2014; Sato et al. 2014; Fraïsse et al. 2016; Bouchemousse et al.

2016). Fisher’s model can only account for these asymmetries

if the globally heterozygous genotype is suboptimal (see Fraïsse

et al. 2016 for details).

In this section, we show that these features of Fisher’s model

result from phenotypic additivity, and are improved by adding

phenotypic dominance (Manna et al. 2011). To see this, let us

replace equation (5) with

zi = zP1,i +
∑

j∈Jhom

mij +
∑
j∈Jhet

(
1

2
mij + δij

)
(25)

where δi j is the deviation from semi-dominance on trait i, caused

by introducing substitution j in heterozygous form. We now as-

sume that the δi j can be treated as the increments of a new, and

independent Brownian bridge, linking the midparental value of

trait i, to the trait value of the global heterozygote (see the phe-

notypes labeled P and G in Fig. 2C). (We note that this strong as-

sumption does not allow for differences in the typical dominance

relations of large- and small-effect changes; Wright 1929; Manna

et al. 2011; Fraïsse et al. 2016). In Appendix 1 section A1.4 in the
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(C) (D)

(A) (B)

Figure 5. Two extensions to the model, incorporating selection on early-generation hybrids, and variable phenotypic dominance. Plots

show the distance from the optimum, r2HO, on a reverse axis, so that higher points are fitter. After the initial F1 cross, we simulated either

random union of gametes among the hybrids (F2–F5), or repeated backcrossing to parental line P1 (BC1–BC4). For the later crosses, we

chose parents either wholly at random (black points and lines), or with a probability proportional to their fitness (asterisks and red points

and lines). In each case, results for 10,000 simulated hybrids (mean and 95% quantiles), are compared to analytical predictions. Blue lines

show predictions that ignore the effects of selection on earlier hybrids (eq. 24 with β = 0); red lines show predictions assuming that only

optimally-fit parents reproduce (eq. 24 with β = 1/2). (A) results with quadratic selection (eq. 3 with k = 2) such that there is limited

variation in parental fitness. (B) results with truncation-like selection (eq. 3 with k = 6), and high variance in parental fitness. (C) and

(D) equivalent results, when populations were simulated with variable phenotypic dominance (such that heterozygous effect of each

new mutation was the homozygous effect, multiplied by a uniformly distributed random variable). The clearest consequence is that the

F1 are suboptimal, even when the parental lines are optimal. Here, predictions use equations (27) and (28) with the observed r2GO, and

v = 1/12, from the variance of a uniform distribution. All predictions assumed optimally-fit parents (r2
.O = 0). Simulations are described

in Supporting Information Appendix 2, and used the following parameters: N = 1000, Ns̄ = −0.1, 2NU = 1, n = 2, c̄ = 0.5, “bottom-up”

mutations, stationary optima matching the ancestral state; hybrids were formed as soon as one of the diverging populations had fixed

1000 substitutions.

Supporting Information, we show that these assumptions lead to

E
((

r2
HO

∣∣ h, p12
) ≈ V + M + Vδ + Mδ (26)

where V and M are the additive results from equations (11)–(14),

and Vδ and Mδ are the new contributions from variable domi-

nance. These new contributions are

Vδ = 4vp12(1 − p12) (27)

Mδ = p12
(
r2

GO − r2
PO

)
− p12 (1 − p12) r2

PG

− p12

(
h − 1

2

) (
r2

2G − r2
1G

)
(28)

(Supporting Information Appendix 1 section A1.4). In equation

(27), a new parameter, v, describes the scaled variance of the δi j .

Equation (28) depends on several new distances, and these are

illustrated in Figure 2C. The corresponding changes in the com-

posite effects are listed in Table 1 (column “phenotypic domi-

nance”). Table 1 shows that phenotypic dominance adds two new

composite effects: {δ2} and {α1δ1}, and alters the value of a third,

{δ1}, so that it is no longer a constant.

Equations (27) and (28) are both proportional to p12 and so

they alter predictions only for heterozygous hybrids. The predic-

tions are altered in two major ways. First, a nonzero value of

{α1δ1} (which corresponds to the third term in eq. 28), now al-

lows for “directional dominance.” For example, in Figure 2C,

the global heterozygote, G, is much closer to the P2 phenotype

than to the P1 phenotype (r2
2G < r2

1G), which implies that P2 al-

leles are dominant on average. This sort of asymmetry allows
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Fisher’s model to account for “dominance drive” in hybrid zones,

where alleles can spread due to their dominance relations alone

(Mallet and Barton 1989; Barton 1992). Second, when the pheno-

type of the global heterozygote, G, differs from the midparental

phenotype, P, the effects of heterozygosity are qualitatively al-

tered. Under the additive model, these effects are intrinsic and al-

ways beneficial (see eq. 17). By contrast, with phenotypic domi-

nance, the effects of heterozygosity become extrinsic, and so they

can vary over time and space. Furthermore, at large divergences,

heterozygosity will tend to become deleterious. This is because

the global heterozygote—unlike the parental genotypes—may

never be exposed to natural selection, and cannot, in any case,

breed true. As such, its phenotype can continue to wander away

from the optimum as divergence increases, even if effective sta-

bilizing selection acts on the parental phenotypes. The result is

that the distance r2
GO, unlike r2

PO, has no tendency to vanish as

divergence increases.

In Appendix 2 in the Supporting Information, we report a

full set of individual-based simulations, incorporating variable

dominance, which support the analytical results above. The most

important consequence of variable dominance is illustrated in

Figure 5C and D. Here, most results closely match those of the

additive model, as shown in Figure 5A and B. The exception

is the F1, which with dominance, is noticeably less fit than the

parental lines (Fig. 5C and D).

Discussion
FISHER’S MODEL AS A FITNESS LANDSCAPE

Using fitness landscapes based on Fisher’s geometric model, we

have developed analytical predictions for the fitness of hybrids

between divergent lines. These predictions allowed us explore

several factors that can affect hybrid fitness. These factors are

(i) the genotypic composition of the hybrids—parameterized by

the hybrid index, h, and heterozygosity p12; (ii) the environmen-

tal conditions—parameterized by r2
1O and r2

2O: the distance to the

current optimum of the parental lines; and (iii) the divergence

history of the populations—parameterized by r2
12: the distance

between the parental phenotypes (Fig. 2A). We have also shown

how these distances tend to change over the course of evolution-

ary divergence. Because our results apply to wide range of evo-

lutionary and ecological scenarios, we can classify scenarios ac-

cording to the values of a small number of geometric distances.

Of course, the simplicity of the results stems from the sim-

plicity of the fitness landscape, and so we have to ask whether the

model is overly simple. This question is not settled by pointing

to the toy nature of the phenotypic model (optimizing selection

on n quantitative traits). This model is best viewed as approx-

imating more complex and realistic phenotypic models (Martin

2014; Schiffman and Ralph 2017; Fraïsse and Welch 2019); and

these approximations can involve many-to-one mappings, so that,

in principle, any n-dimensional phenotype under Fisher’s model,

could correspond to multiple real-world phenotypes. As such, the

model has to be judged by its successes and failures in accounting

for observed patterns in hybrid fitness (Fraïsse et al. 2016; Simon

et al. 2018).

In cases where Fisher’s model is inadequate, we have also

shown how it can be extended. In particular, adding variable phe-

notypic dominance allows for a low fitness F1 between highly di-

vergent, but equally fit parental lines (Fraïsse et al. 2016; Fig. 5C

and D). This extension further supports previous claims that

Fisher’s model can incorporate other modeling approaches as

special cases (Simon et al. 2018). For example, when the parental

lines have high fitness, equation (26) gives identical predictions

to a model of Dobzhansky-Muller incompatibilities, with vari-

able dominance relations (Turelli and Orr (2000); see eq. A37 of

Simon et al. 2018).

ESTIMATING THE KEY QUANTITIES

By connecting Fisher’s model to the quantitative genetics of line

crosses (Hill 1982; Lynch 1991; Rundle and Whitlock 2001; De-

muth and Wade 2005; Yamaguchi and Otto 2020), we have shown

that the geometric distances are closely related to the composite

effects. This implies that the distances can be estimated using

measurements of fitness, or some component of fitness, taken

from controlled crosses (Lynch and Walsh 1998; Lynch 1991;

Rundle and Whitlock 2001; Simon et al. 2018). This claim comes

with an important caveat. The results in Table 1 apply not to raw

fitness values, but to values that have been suitably transformed

and scaled. In our notation, they apply to r2
HO and not to w (see

eqs. 3–6). Data transforms are an inherent part of quantitative

genetics (Lynch and Walsh 1998, ch. 11), but there is also the

need to estimate the scaling factor in equation (6). This extra pa-

rameter is relatively easy to estimate from a diverse collection of

hybrids (see Simon et al. 2018), but not from a limited number of

controlled crosses (Yamaguchi and Otto 2020). We ducked this

issue in Figure 4, by estimating equation (7) directly from the

simulated fixed effects (see Supporting Information Appendix 1

section A1.1). This is a real limitation, but there are many special

cases where the distances can be estimated from fitness values

that are transformed but unscaled (i.e., from the numerator of eq.

6). For example, with two locally adapted populations (Table 1),

the distance r2
12 can be estimated from a ratio of composite ef-

fects:

r̂2
12 = 4 {α1ε}

{α1ε} − 2 {α2} (29)

so that the scaling factor cancels. Simon et al. (2018) give other,

similar examples.
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These methods of estimation all assume that hybrid fitness

can be meaningfully predicted from the hybrid index and het-

erozygosity alone. However, we have also shown that this as-

sumption breaks down when there are strong disequilibria be-

tween heterospecific alleles, as generated by selection on early

generation hybrids (as opposed to selection during the diver-

gence). These effects are weak in some parameter regimes

(Fig. 5A), but observations of strong incompatibilities, involv-

ing small genomic regions, suggests that they might be impor-

tant in nature (Barton 2001; Coyne and Orr 2004, ch. 8; Fraïsse

et al. 2016). We have provided a simple solution, which applies

with strong, truncation-like selection (eq. 24; Fig. 5B). However,

this approach might be difficult to apply to entire hybrid swarms,

when some, but not all hybrids have strong selectively induced

disequilibria (Jiggins and Mallet 2000; Allendorf et al. 2001; Ver-

nesi et al. 2003; Simon et al. 2018). Even greater challenges will

arise when selection changes allele frequencies (Walsh and Lynch

2018, chs. 16 & 24). In both cases, the distributions of h and p12

will not be sufficient to predict hybrid fitnesses.

THE PROCESS OF DIVERGENCE AND THE OUTCOME

OF HYBRIDIZATION

Because it is a well-studied model of evolutionary divergence,

Fisher’s model is especially useful for investigating the connec-

tions between the mode of divergence between the parental lines,

and the outcome of hybridization between them.

One set of connections has been explored extensively in pre-

vious work. Compared to drift, positive selection will lead to

divergence that is more rapid and more resistant to the swamp-

ing effects of gene flow, and tend to fix effects that are larger

and more variable in size (Orr 1998b; Griswold 2006; Yeaman

and Whitlock 2011; Rockman 2012; Matuszewski et al. 2014;

Débarre et al. 2015; Matuszewski et al. 2015; Dittmar et al.

2016; Thompson et al. 2019; Yamaguchi and Otto 2020). And

larger changes will often have a greater influence on hybrid fit-

ness (Chevin et al. 2014; Fraïsse et al. 2016; Yamaguchi and Otto

2020). Together, these facts will tend to implicate natural selec-

tion, rather than drift, in any hybrid problems that appear early in

the divergence process (Jiggins and Mallet 2000; Coyne and Orr

2004, ch. 11; Yamaguchi and Otto 2020). In the results presented

here, these effects of selection are all incorporated into the scal-

ing factor (eqs. 6 and 7), with positive selection tending to lead

to larger values of d and larger values of the λi.

We have focused on a different set of connections between

divergence and hybridization, and these are captured by the dis-

tance r2
12. This distance can be called “intrinsic,” because it is a

property of the parental lines, which does not depend on the cur-

rent position of the optimum. For this reason, r2
12 describes the

possible outcomes of hybridization in a variety of environmen-

tal conditions (Figs. 3E–G and 4). For example, when parental

lines are well adapted to different habitats, a high value of r2
12

implies that the isolation between the lines will be purely eco-

logical. In an intermediate habitat, or wherever the parents are

poorly adapted, lines with a high r2
12 are more likely to generate

hybrid advantage beyond the F1. In this way, the value of r2
12 is

closely related to the notion of “coadaptation” among the parental

alleles (Wallace 1991). This is also why r2
12 determines {α2}: the

additive-by-additive epistatic effect (Table 1; Lynch 1991).

As well as describing the outcomes of hybridization, r2
12 con-

tains some information about the mode of divergence. This infor-

mation is not about epistasis: the value of {α2} tells us nothing at

all about the role of epistatic genetic variance during divergence

(Lynch 1991; Welch 2004; Demuth and Wade 2005; Barton 2017;

see Supporting Information Appendix 2). Instead, we have shown

that r2
12 measures the exchangeability of divergent alleles, or—

equivalently—the consistency in their “directions” in trait space,

and compares this consistency to expectations under a random

walk. As such, high values of r2
12 imply that line-specific alleles

are more similar to each other than expected (Fig. 3A–D). This

definition shows that r2
12 is closely connected to standard tests for

natural selection on quantitative traits, such as the QTL sign test

(Orr 1998a), or the Qst-Fst comparison (Spitze 1993; Whitlock

and Guillaume 2009). Indeed, simulations confirm that adaptive

divergence, especially in parapatry, is most likely to lead to high

values of r2
12 (see Supporting Information Appendix 2, section

A2.2).

Together, these results clarify what hybrid fitness can and

cannot tell us about the mode of parental divergence. On one

hand, some patterns of hybrid fitness—those associated with high

r2
12—are reliable indicators of selectively driven divergence, and

especially of local adaptation maintained in the face of gene flow.

On the other hand, patterns associated with low r2
12 can arise in

a variety of ways, including via adaptive divergence, especially

in allopatry (e.g., Fig. 3D). (These limitations are closely related

to the low power of the QTL sign test: Rice and Townsend 2012;

Walsh and Lynch 2018, ch. 12). Furthermore, unless there is sub-

stantial gene flow, any signature of selection will be transient.

Over time, the model predicts convergence to an identical pattern

of intrinsic reproductive isolation, whatever the mode of diver-

gence (Figs. 3 and 4).
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