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Introduction

During the past 2 decades, mucormycosis has become the third most common invasive fungal

infection in patients with hematological malignancies and organ transplantations [1]. This

life-threatening disease is caused by ubiquitous fungi in the order Mucorales, predominantly

by Rhizopus species including R. delemar and R. oryzae. Other common causative organisms

include species of Mucor, Lichtheimia (previously Absidia), Apophysomyces, Rhizomucor, and

Cunninghamella [1, 2]. The main risk factors for developing mucormycosis are neutropenia

due to cancer treatment, hematopoietic and solid organ transplantation, diabetes mellitus, in

particular when presenting with ketoacidosis (DKA), and other forms of acidosis. However,

immunocompetent subjects can be affected when afflicted with trauma (e.g., soldiers in com-

bat operations and patients with injuries due to natural disasters) [3, 4]. It is likely that mucor-

mycosis will continue to increase in incidence because the number of organ transplantations,

cancer patients, and diabetic patients is on the rise. Just in the United States in 2015, the num-

ber of transplant patients exceeded 30,000, with an increase of nearly 5% over 2014 (Organ

Procurement and Transplantation Network [OPTN]). According to WHO, the number of

people affected by diabetes quadrupled in the past 4 decades, reaching >420 million in 2014.

Additionally, due to global warming, natural disasters with outbreaks of mucormycosis are

likely to occur with higher frequency, similar to what happened with the 2004 Southeast Asia

tsunami [5] and the 2011 Joplin tornado [4].

Despite current treatment options, which often include widespread disfiguring surgical

intervention and antifungal therapy, mortality rates due to mucormycosis range between

50%–100% [6]. Consequently, novel strategies to prevent and/or treat mucormycosis are

needed and can be facilitated by understanding the pathogenesis of the disease.

Clinical features predict distinctive pathogenicity traits

Mucorales can gain entry to a susceptible host through inhalation, ingestion of contaminated

food, and through an abraded skin. These routes result in rhinoorbital/cerebral, pulmonary,

gastrointestinal, or cutaneous infections [1]. Regardless of the manifestation of the disease, a

hallmark of mucormycosis is the ability of the causative organism to aggressively and rapidly

invade blood vessels, which results in hematogenous dissemination, vessel thrombosis, and

subsequent tissue necrosis [1]. Therefore, interactions between invading fungi and endothelial

cells lining blood vessels represent a major step in the pathogenesis of mucormycosis. Simi-

larly, the unique predisposition of DKA patients and deferoxamine-treated patients to mucor-

mycosis points to the importance of hyperglycemia, iron, and acidifying ketone bodies in the
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virulence of Mucorales. In this Pearl, we summarize recent advances in our knowledge of the

effect of these factors on the virulence of Mucorales and modulation of the fungus interactions

with endothelial cells.

Mucorales invade the endothelium through unique receptors

Basement membranes are constituted of extracellular protein matrices that are mainly com-

posed of laminin and collagen IV. These membranes separate epithelial or endothelial cells

from underlying stroma [7]. Due to epithelial cell damage (e.g., due to diabetes or chemother-

apy), the extracellular matrix proteins can be exposed for direct interaction with inhaled or

ingested spores. It has been shown that Rhizopus spores adhere to laminin and type IV collagen

[8]. The attachment of the fungal spores to extracellular protein matrices is specific, because

antilaminin and anticollagen antibodies as well as receptor competition experiments block

adhesion to extracellular proteins [8].

Although not much is known about how Mucorales interact with epithelial cells, Rhizopus
adheres to and invades endothelial cells by specific recognition of the host receptor glucose-

regulator protein 78 (GRP78) [9, 10]. This recognition causes host cellular death by induction

of the endothelial cell–mediated fungus endocytosis. GRP78, which was first discovered as a

heat shock protein involved in stress-related responses [11], binds to R. delemar as well as

other Mucorales germlings but not spores [9]. Binding to germlings is consistent with the

hypothesis that hyphae are the invading form of Mucorales. Similarly, induced endocytosis

and active penetration of epithelial cells by Candida albicans is linked to the formation of

hyphal structures, and mutants impaired in hyphal formation are defective in host cell inva-

sion [12, 13]. Aspergillus fumigatus, instead, invades lung epithelial or endothelial cells by

expressing the thaumatin-like protein CalA on both germlings and conidia [14]. Although an

earlier study showed that CalA is required for adherence of A. fumigatus to laminin [15],

hyphal adhesion to host cells and macromolecules was shown to be predominantly mediated

by the polysaccharide galactosaminogalactan [16]. Suppression of GRP78 expression by short

hairpin RNA (shRNA) or blocking its function by antibodies suppresses fungal invasion of

host cells and drastically decreases endothelial cell injury caused by R. delemar but not that of

other fungal pathogens like C. albicans or A. fumigatus. Importantly, anti-GRP78 antibodies

protect DKA mice from mucormycosis [9].

The fact that GRP78 does not bind to C. albicans or A. fumigatus and anti-GRP78 antibod-

ies do not affect endothelial cell invasion of these 2 fungi clearly shows that a unique mecha-

nism of Mucorales-mediated endothelial cell invasion and injury exists [9]. Also, the lack of

complete abrogation of Rhizopus-mediated endothelial cell invasion and injury when GRP78

is blocked or suppressed indicates that other factors are involved in Rhizopus interacting with

endothelial cells. In this respect, in preliminary results of the transcriptome of endothelial cells

interacting with R. delemar, R. oryzae, or M. circinelloides, it was shown that the platelet derived

growth factor (PDGF) pathway is activated [17], similarly to C. albicans [18]. Indeed, the use

of 2 small molecules that inhibit the phosphorylation of PDGF receptor partially reduces Rhi-
zopus-mediated endothelial cell injury in vitro [17]. Future investigations are required to delin-

eate whether GRP78 and PDGF receptor act as coreceptors or independently in facilitating

Mucorales invasion of endothelial cells.

The fungal ligand that binds to GRP78 during invasion of the endothelium belongs to the

spore coating (CotH) protein family. Similar to the previous discoveries for GRP78, blocking

the function of CotH proteins either biochemically by using anti-CotH antibodies or genetically

by attenuating CotH expression reduces the ability of R. delemar to invade and injure endothe-

lial cells in vitro and reduces disease severity in mice [19]. CotH proteins are universally present
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in Mucorales and absent from any other forms of life for which the genome has been sequenced

[19]. In other pathogenic fungi, invasion of host cells is mediated by other cell surface proteins.

For example, agglutinin-like sequence (Als) proteins and thaumatin-like protein (CalA) have

been reported to act as invasins for C. albicans and A. fumigatus, respectively [13, 14, 20]. All 3

classes of protein families are characterized by the presence of secretion-signal and glycopho-

sphatidylinositol (GPI)-anchored sequences. However, they all bind to different host receptors

(e.g., Als proteins bind to cadherins [20] while CalA binds to integrins [14]).

The most commonly isolated Mucorales from patients (Rhizopus, Mucor, and Lichtheimia)

contain 3–7 copies of CotH, while those that are only occasionally the cause of the disease

(Apophysomyces, Cunninghamella, Saksenaea, and Syncephalastrum) only contain 1–2 copies

[17]. Interestingly, isolates of Entomopthorales, which were previously taxonomically consid-

ered close to Mucorales but do not cause invasive disease, lack the presence of CotH [17]. Col-

lectively, these data point to the unique interaction between Mucorales CotH and endothelial

cell GRP78 receptor and to the ability of CotH to mediate invasive disease. Moreover, it

appears that Mucorales fungi harboring more copies of CotH can cause more frequent disease.

Alternatively, it is possible that GRP78 among individuals harbors SNPs that make the attach-

ment to certain sequences of CotH more avid compared to others. This assumption is sup-

ported by the fact that CotH2 and CotH3, which have 77% sequence identity, can avidly bind

GRP78 while CotH1, which has about 20%–24% amino acid identity to CotH2 and CotH3,

does not [19]. Future studies are necessary to verify these hypotheses and their effect on the

interaction between GRP78/CotH and the frequency and severity of the disease [19].

Glucose, iron, and acidosis by β-hydroxy butyrate modulate

GRP78/CotH interactions

DKA and deferoxamine-treated patients are uniquely predisposed to mucormycosis. Clearly,

diabetic patients suffer from an elevated concentration of glucose [1]. Hyperglycemia can induce

excessive glycosylation of proteins such as transferrin and ferritin, diminishing their iron affinity

[21]. Moreover, in the presence of an acidotic condition due to accumulation of ketone bodies

(e.g., β-hydroxy butyrate [BHB]), the low pH in the blood vessels strongly impairs the ability of

transferrin to chelate iron [22]. Glucose, iron, and BHB enhance the growth of the fungus (Fig

1) [23, 24]. They also induce the expression of GRP78 and CotH, and this enhanced expression

results in augmented fungal invasion and subsequent injury of the endothelium in vitro (Fig 1)

[9, 24]. It appears that the BHB-related acidosis exerts a direct effect on both GRP78 and CotH

expression (an effect not seen with lactic acid) and an indirect effect by compromising the ability

of transferrin to chelate iron, because iron chelation combined with reversal of pH by sodium

bicarbonate completely protects endothelial cells from Rhizopus-mediated invasion and injury

(Fig 1) [24]. Importantly, DKA mice, or those treated with BHB, suffer from lower blood pH,

have elevated available serum iron, express more GRP78 in their target organs (e.g., lungs and

sinuses), and are extremely susceptible to mucormycosis [9, 24]. Consistent with the clinical

observation, ketoacidosis does not predispose mice to aspergillosis [24]. It is also worth noting

that physiological concentrations of glucose, iron, and BHB augment the fungal growth and

have detrimental effect on the host immune response via suppression of T-lymphocyte induc-

tion, interferon-Ɣ production, and phagocyte-mediated killing (Fig 1) [24–28]. Thus, the unique

interactions of GRP78 and CotH proteins and their enhanced expression under hyperglycemia

and ketoacidosis explain the specific susceptibility of DKA patients to mucormycosis.

To emphasize the importance of GRP78/CotH protein interactions in the pathogenesis of

mucormycosis, therapeutic treatment with either anti-GRP78 or anti-CotH antibodies protect

DKA and neutropenic mice from mucormycosis [9, 19, 29]. Also and potentially of clinical
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relevance is the finding that reversal of ketoacidosis in Rhizopus-infected mice by administra-

tion of sodium bicarbonate (in lieu of insulin) improves survival [24]. This protection is

believed to be caused by reversal of the enhanced fungal growth, restoration of the immune

function, and halting of host tissues fungal invasion. It is currently unknown what role the

GRP78/CotH interactions play in the neutropenic host, the other major patient population

susceptible to mucormycosis. However, the fact that anti-CotH antibodies protect cyclophos-

phamide/cortisone acetate–treated mice from Mucorales infections [29] argues that at least

CotH proteins play a major role in the virulence of Mucorales in this host. Also, it has been

known that GRP78 expression induces resistance of cancer cells to chemotherapy [30]. There-

fore, it is possible that cyclophosphamide treatment results in induction of GRP78 expression

in mice.

Fig 1. Diagram depicting the interactions of Mucorales with endothelial cells during hematogenous dissemination/

organ seeding and the effect of host factors on these interactions and on the immune response. (A) Hyperglycemia and

ketoacidosis result in liberation of iron from serum-sequestering proteins (e.g., transferrin) via glycosylation and protonation,

respectively. (B) Ketone bodies (e.g., β-hydroxy butyrate [BHB]) and free iron negatively affect the immune response to the

infection, while sodium bicarbonate (NaHCO3) reverses this negative effect by preventing iron release from transferrin and

neutralizing acidity. (C) Surface expression of glucose-regulator protein 78 (GRP78) on endothelial cells is enhanced to cope

with the stress elicited by hyperglycemia, free iron, and ketone bodies. (D) Glucose, free iron (transported by the high affinity

iron permease [Ftr1p]), and BHB also enhance the expression of fungal cell surface CotH, which results in invasion of the

endothelium and augmentation of fungal growth. (E) In deferoxamine-treated hosts, the iron-rich ferrioxamine binds to its fungal

receptor (ferrioxamine binding proteins [Fob1/Fob2]) then releases iron via a reductive step prior to feeding invading Mucorales

via Ftr1p transportation.

https://doi.org/10.1371/journal.ppat.1006408.g001
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Other factors contributing to endothelium injury

The recognition of CotH by GRP78 does not appear to be the only mechanism through which

Mucorales damage endothelial cells. It was observed that nonviable Rhizopus, killed by heat or

chemicals such as glutaraldehyde or ethanol, was able to cause a comparable amount of dam-

age to endothelial cells as viable cells [10]. These results suggest the contribution of toxin-like

substances in mucormycosis pathogenesis. However, rhizotoxin, which is produced by the

Rhizopus symbiont bacterium Burkholderia, does not contribute to the virulence of Rhizopus
[31–33]. Therefore, it is reasonable to speculate the presence of toxin-like secondary metabo-

lites produced directly from Mucorales, which mediate the interaction between the pathogen

and the host, especially with the recent report showing M. circinelloides to be the cause of food

poisoning illness [34]. Genomic evidence also supports the notion that Mucorales possess

pathways for secondary metabolites including polyketide synthases (PKSs), nonribosomal pep-

tide synthetases (NRPs), and L-tryptophan dimethylallyl transferases (DMATs) [35].

Host iron acquisition is essential for establishing infection

As mentioned above, hemodialysis patients receiving the bacterial siderophore deferoxamine

for treating iron overload are uniquely predisposed to highly lethal and frequently dissemi-

nated mucormycosis [36, 37]. Also, administration of deferoxamine to animals increases their

susceptibility to mucormycosis [38, 39]. Although deferoxamine prevents iron-overload toxic-

ity via efficiently chelating iron from the host, it is known that Rhizopus possesses cell-surface

receptors to ferrioxamine (the ferric-rich form of deferoxamine) [36, 40]. These clinical and

experimental observations highlight the importance of host iron acquisition in mucormycosis

pathogenesis by supporting fungal growth during host cell invasion. It is currently unknown if

deferoxamine-treated hosts suffer from elevated expression of GRP78. However, given the

main function of GRP78 as a stress-related protein and the clinical observation that deferoxa-

mine-treated patients usually suffer from disseminated disease, it is highly likely that GRP78 is

overexpressed on endothelial cells to alleviate cell toxicity due to excess iron availability.

Emphasizing the importance of iron in mucormycosis pathogenesis is the improved sur-

vival and reduced tissue fungal burden of DKA mice treated with the FDA-approved iron che-

lator deferasirox, especially when used with the antifungal agent liposomal amphotericin B

[41]. Similarly, case reports, particularly in diabetic hosts, showed beneficial outcome when

deferasirox is used as adjunctive therapy [42]. However, a phase II clinical trial, mainly con-

ducted in neutropenic patients with active malignancies, demonstrated that adjunctive defera-

sirox therapy is associated with increased mortality rate [43]. It is worth noting that this trial

enrolled a small number of patients (a total of 20 patients in both arms) and suffered from

major imbalances, with patients in the deferasirox arm more likely than placebo patients to

have active malignancies, neutropenia, or corticosteroid therapy.

The ferrioxamine inducible receptors (ferrioxamine binding proteins [Fob1/Fob2]) [44]

were recently identified to belong to the cystathionine beta synthase (CBS)-domain protein

family, which is found in all kingdoms of life [45]. Although a study demonstrated that ferriox-

amine is taken up entirely by R. oryzae via a siderophore shuttle mechanism [46], it is more

likely that a major mechanism of iron uptake involves the release of iron from the siderophore

prior to its transport intracellularly (Fig 1). This assumption is supported by 2 studies showing

that iron uptake from ferrioxamine by Rhizopus is an energy-dependent process that requires

reductase activity to convert the insoluble ferric into more soluble ferrous iron [40, 44]. Addi-

tionally, the use of the extracellular membrane–impermeable ferrous chelator bathophenan-

throline disulfonate inhibits growth of Rhizopus when ferrioxamine is used as a sole source of

iron, and this inhibition was due to attenuation of iron uptake from ferrioxamine [44]. Finally,
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R. delemar mutants with attenuated expression of the high-affinity iron permease (Ftr1, a cell

membrane protein required to transport iron intracellularly [23]) have impaired ability to take

up iron from ferrioxamine, experience retarded growth on media supplemented with ferrioxa-

mine as a sole source of iron, and demonstrate reduced virulence in mice given deferoxamine

[44, 47]. These mutants, however, do not have full abrogation of iron uptake from ferroxia-

mine, and their attenuated virulence in deferoxamine-treated mice is not complete. Thus, it is

probable that the reductase/permease pathway represents a major uptake pathway for iron

acquisition from ferrioxamine without internalization of the generated deferoxamine, while

the uptake of the siderophore by shuttle mechanism [46] represents a secondary mechanism.

In a DKA host, the released iron from transferrin due to hyperglycemia and acidification of

the milieu is also transported by the Ftr1p (Fig 1) because R. delemar mutants with reduced

expression of Ftr1p have defective virulence in DKA mice [47]. Other potential mechanisms to

sequester iron from the host rely on siderophores (rhizoferrins are siderophores synthesized

by Mucorales [40, 48]) and heme oxygenase [49], but their role in the pathogenesis remains

unknown.

Conclusions and perspective

Mucormycosis angioinvasion is reliant on unique interaction between Mucorales CotH and

endothelium GRP78, which triggers host cell injury and subsequent hematogenous dissemina-

tion of the fungus. DKA and deferoxamine-treated patients are predisposed to mucormycosis

because elevated levels of serum glucose, iron, and BHB augment fungal growth and enhance

the expression of GRP78 and CotH, which results in increased ability of Mucorales to invade

host tissues. Strategies targeting CotH/GRP78 interactions are likely to prove beneficial in car-

ing for patients with mucormycosis as adjunctive therapies. Other factors (e.g., mycotoxins)

are also likely to be operative during infection and could be affected by conditions found in

susceptible hosts.
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