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ABSTRACT

This paper deals with modelling the relationship between human Puumala hantavirus (PUUV)
infection, the abundance and prevalence of infection of the host (the bank vole), mast, and
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temperature. These data were used to build and parametrise generalised regression models,

and parametrise them using datasets on these factors pertaining to the Netherlands. The
performance of the models was assessed by considering their predictive power. Models
including mast and monthly temperature performed well, and showed that mast intensity
influences vole abundance and hence human exposure for the following year. Thus, the
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model can aid in forecasting of human illness cases, since (1) mast intensity influences the
vole abundance and hence human exposure for the following year and (2) monitoring of
mast is much more feasible than determining bank vole abundance.

Introduction

European hantaviruses are a concern for public
health, since they can cause influenza-like infection
in humans, and may also lead to the more serious
haemorrhagic fever with renal syndrome. In north
and west Europe, the prevailing disease is nephro-
pathia epidemica (NE), which is relatively mild. Each
hantavirus species is typically thought to be asso-
ciated with one main specific mammalian host. In
this paper we consider Puumala hantavirus
(PUUYV), which is known to cause human infections,
and is associated with the bank vole (Myodes glareo-
lus). PUUV is excreted by voles in faeces and urine,
which may be aerosolised from the environment,
become airborne, and subsequently infect humans.
Human infection is therefore, amongst other things,
dependent on the abundance and prevalence of infec-
tion of bank voles. Furthermore, climate (tempera-
ture, moisture) will be important for survival of the
virus in the environment, and will influence rodent
survival. In [1] it is shown that PUUV hantavirus
may survive up to 11 days at room temperature,
and up to 18 days at 4°C, indicating that human
infection from the environment is a feasible scenario.
Finally, human behaviour plays a role in human
exposure. For example, there may be more recreation
in forests, the preferred habitat of bank voles, in the
summer months, when temperatures are inviting.[2]
Furthermore, human activities like cleaning a dusty

stable are potentially risky, since this may disturb
settled contaminated aerosols, releasing them into
the air, making them available for inhalation.

The population dynamics of bank voles differs
greatly between the northern boreal and western
temperate regions of Europe. In northern regions,
bank vole populations are driven by predator-prey
dynamics,[3] yielding seasonal and multi-annual pat-
terns in human NE infections.[4] In contrast, in
western European regions bank vole population
dynamics are to a large extent determined by the
availability of staple food: nuts and acorns, collec-
tively known as mast.[5-7] It is an intriguing hypoth-
esis that the cyclic nature of human outbreaks may be
connected to peak mast years, which also occur in
multi-annual cycles.[8] In [9] univariate analyses
were performed, relating human PUUYV infection to
mast and climatic factors. It was found that mast in
the previous year is an important predictor for
human outbreaks, as well as warmer autumns the
year before, warmer summers two years before, but
also colder and moister summers three years before
outbreaks. In [10] this result is further strengthened
using generalised linear models. In particular, high
summer and autumn temperatures respectively one
and two years before an outbreak were found to be
significant predictors of human PUUYV infection.

For public health interventions aiming at prevent-
ing human PUUYV infection, it is desirable to have a
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system in place that can predict risk of PUUV infec-
tion. To this end, it is possible to monitor the bank
vole population, but this is not feasible on a large
(country-wide) scale, especially in countries like the
Netherlands where voles have a very patchy distribu-
tion due to fragmented land attributes. A model that
can predict risk of exposure to PUUV based on
parameters that are more easily monitored is desired.

A diverse body of literature exists on modelling
infections of humans and voles, bank vole popula-
tions, mast, and their inter-relationships. A spatial
analysis of determinants of human hantavirus infec-
tions was performed.[11] Several drivers of
enhanced risk were identified, e.g. connectivity of
forests, vegetation activity, low soil water content,
mild summers, cold winters, proportion of built-up
areas in forest ecotones, and a lower minimum
temperature in winter. Published models typically
are limited to certain aspects (voles, mast, climate,
human infection) of the causal chain leading to
human infection. We aimed to make a synthesis,
and connect the aspects of (1) vole abundance; (2)
vole infection prevalence; (3) mast; and (4) human
cases, by constructing predictive models. The model
was parametrised based on several datasets pertain-
ing to the Netherlands, including seroprevalence
and abundance data of a localised bank vole popu-
lation that was monitored for seven years.[12] It
was able to predict the rate of new human cases
from infected vole prevalence and vole abundance,
or from mast data. Thus, masting, which is simpler
to measure in the field, was predictive for human
cases. Even more, it was the mast score of the
previous year which is of relevance for the bank
vole population densities at the current year, mak-
ing the masting volume also a timely indicator. The
vole infection status was a significant factor, which
however did not contribute greatly to the model
predictions. Thus, though it has added value to
know the infection prevalence in the vole popula-
tion, this knowledge is not required in the model
for risk predictions.

Material and methods
Mast

Information on masting was obtained from several
sources (Table 1). Each reference has its own measure

Table 1. Sources of mast data.

of mast intensity, depending on the method used. We
considered oak (Quercus robur) and beech (Fagus
sylvatica), the main food sources of the bank vole,
in the Netherlands, between 2006 and 2014. To have
a uniform dataset, all data were transformed to a
common five-point scale: (0) no mast, (1) very low
mast production, (2) low mast production, (3) nor-
mal mast production, (4) abundant mast production,
(5) very abundant mast production. The references in
the table point to the conversion methods used.

Bank voles

Bank voles were captured in the Dutch region
Twente, where the majority of human PUUV infec-
tions occur in the Netherlands, as described in [12].
Briefly, twice a year, in July and October, rodents
were captured. Seven trapping sites, consisting of
100 traps in total, were set in the area, and rodents
were collected at four occasions: day one in the
evening, day two in the morning and in the evening
and day three in the morning. The number of bank
voles captured followed a complicated pattern over
the four capture occasions. A study of this
dynamics is outside of the scope of this study, and
we simply averaged the four values. This number is
considered as a measure proportional to the abun-
dance, but will simply be denoted by ‘the abun-
dance’ from here on. Though other rodent and
insectivore species were also captured, for this
study only the bank vole was considered since it is
the main host for PUUV.

For October 2007, the original data on bank vole
captures were missing, but data pertaining to the
serological testing of the voles were still available.
These data on the numbers of voles tested were
used as a surrogate, although this may give an
under-estimation since not all voles captured were
tested because some, e.g. pregnant voles, were
released.

Vole infection status

The captured voles were tested for the presence of
PUUYV antibodies by a rapid immunochromatogra-
phy test. Details of the procedure are supplied in [12].
By dividing the number of positive voles by the total
number of voles tested, we obtained the prevalence of

Source Years Method Reference
Vereniging Wildbeheer Veluwe 2006-2013 Weight of mast Unpublished

Alterra 2006-2013 Weight of mast [13]

IPC 2003-2014 Score [14]

G.J. Spek 1987-2014 Weight of mast Personal communication
Vilmar Dijkstra 2007-2008, 2013-2014 Count of mast Personal communication
NAK tuinbouw 2002-2014 Score Personal communication




PUUYV infection. This prevalence estimate was subse-
quently applied to the total number of captured voles,
to obtain the abundance of infected voles.

Human cases

PUUV infections have been notifiable in the
Netherlands since December 2008 and voluntary
laboratory surveillance has been in place since 1989.
Detailed epidemiological reports of hantavirus, pre-
sumably PUUV, cases were provided by the
Municipal Public Health Services (GGD) to the
National Institute for Public Health and the
Environment (RIVM).[15] For our purposes, only
cases that acquired their infection within the
Netherlands were included. If multiple cases were
likely infected by the same source within a two-
week time period, only one case was included. Cases
were assigned to a year and month based on their day
of illness onset and if unknown, date of diagnosis.

Temperature

Monthly temperatures were downloaded from the
Royal Dutch Meteorological Institute (KNMI) at
http://www.knmi.nl/nederland-nu/klimatologie/
maandgegevens. Temperatures were averaged over all
measuring stations, and further averaged over each
month per year.

Model

The modelling components comprise of several steps.
First, the bank vole abundance was inferred from mast-
ing data. Second, human cases were inferred from the
abundance of voles, including and excluding vole infec-
tion status. Finally, human cases were predicted directly
from the mast data. For the models that aim to predict
human cases, temperature was optionally included.

Modelling vole abundance

A Poisson regression model for the abundance was
built, with abundance; the ith data point for the
abundance,

abundance;~Poisson(0;). (1)

A Poisson model is chosen since the data are in the
form of count data. The rate is modelled as:

6; = exp(B, + f,mast.score; + [B,mast score.prev,
+pB;month; + ;mast.score; X month; + ...), (2)

where the ellipsis indicate all possible interactions,
which are not written fully. The variable month is
either October or July, all other covariates are
numeric. The variables mast.score; and
mast.score.prev; indicate the mast score for the
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current and previous year. A backward and forward
selection based on AIC is used for model selection.
The fit of the final model is determined by reading off
the chi-squared distribution at the residual deviance
of the model fit, with the appropriate degrees of
freedom. It was found that the model fit was poor,
often indicative of over-dispersion, and subsequently
a negative binomial model was fitted to accommodate
the excess variance [16]:

abundance;,~Negative—binomial(6;, w).  (3)

Here, w is the over-dispersion parameter, and 6; the
mean, modelled as before.

Modelling human cases from vole abundance
Modelling the number of human cases as a function
of positive voles is more complicated. The explana-
tory data are irregularly spaced estimates of positive
voles (Figure 1, panel 3), with monthly human case
data (panel 2) as dependent variable. The months
since January 2008 are indexed by i, and it is assumed
that a case in month i can be partly explained by the
infected vole abundance in the first preceding vole
observation. As a second explanatory variable the
maximum daily temperature is considered (panel 6),
averaged over months. The cases y; are assumed to be
Poisson distributed:

cases;~Poisson(};). (4)

A model with fixed 8 coefficients would have equal
weight for each month, irrespective of the time passed
since the last observation. This is not realistic, and is
remedied by weighing the coefficient with the time
passed to the last observation. Let tlo(i) (time of last
observation) be the last time, before month i, that we
have an observation. Thus #lo(i) =i at a month at
which there was a vole observation. Denote the vole
abundance in month i by vole; and the abundance of
positive voles by pos;. Then, the last observation may
be looked up by considering vole;, ;). The older the
available information, the less it should contribute,
which is modelled by weighing the data exponentially:

B(i) = Bexp(tlo(i) — i) (5)

Finally, temp, is the temperature in month i. The rate
is modelled as:

Ai = exp (/50 + By (i)voleyo(s) + B (i)posy,;) + ﬁ3tempi)
(6)

Varying coefficients were implemented by actually
having fixed coefficients, but setting interactions of
the form exp(tlo(i) — i) x voley,(;), which is equiva-
lent to the above. Backward and forward model selec-
tion was performed, and a test for goodness of fit as
described above. The years for which the model is fit
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were limited to before 2014, since vole abundance
data was not available for 2014 onward.

Modelling human cases from mast data

There is an important advantage in directly model-
ling human cases from mast data, as it allows for
prediction of the next year. We built a model as in
the previous section:

\i = exp (ﬁo + B, (i)mast.prev,,, + thempi>. (7)

Here, mast.prev; indicates the mast of last year in
month i. Since the exact month of mast data collec-
tion is often not known, the month has been set to
September. Therefore, mast.prev,,; refers to the
mast of September the year before.

Results
Mast

Figure 2(a) gives the result of the mast determination.
Since the exact time of mast determination is unknown
or varies, we place the data at September of each year;
the assumed month of expected maximum mast
volume. Furthermore, the mast score is included in
Figure 1, a figure combining all relevant data for
the model in one figure, with a common x-axis for
time.

Bank voles

The number of bank voles that were captured, averaged
over the trapping events, is given in Figure 2(b). The data
for June 2010 were removed, since that year an unusually
low number of bank voles were trapped, which could be
attributed to a recent mowing of the grass at the road
side, near the traps. In general, in Twente, numbers
varied between one and 90 with a mean of 30.
Abundance in October (mean 40) was somewhat lower
than in June (mean 48), and the years 2007, 2010, 2011
and 2012 seemed to have elevated abundance.

Prevalences

The third panel of Figure 1 gives the abundance of
PUUV positive bank voles. A correlation between
abundance and prevalence may be postulated, but
the p-value of the intercept of a linear model relating
prevalence to abundance is 0.14, and thus there is no
evidence for such a correlation.

Human cases

From December 2008 to November 2015, 107 PUUV
hantavirus cases were reported in the Netherlands, of
which 69% (n = 74) were male. Cases were excluded
when they did not contract PUUV in the Netherlands or
the country of infection was unknown (n = 11) or they
contracted the infection at the same location within a
short time period as another case (n = 1). This resulted
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Figure 1. The panels show (1) vole abundance, (2) monthly averaged human PUUV cases, (3) the abundance of PUUV positive
voles, (4) the mast score, (5) the mast score of the previous year, and (6) monthly maximum temperature, the Netherlands
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Figure 2. (a) Mast score by year for the Netherlands, 2007-2015. The green line gives the mast score for oak, the red line the
score for beech. The blue line is the sum, which we use in the model. (b) Vole abundance in Twente, the Netherlands, for June
and October 2008-2014. (c) The total number of human PUUV cases per year, the Netherlands 2009-2015.

in 95 cases for these analyses. Date of illness onset was
available for 93 cases and two cases were assigned to a
year and month based on date of diagnosis. During
2009-2014, the annual number of human PUUV cases
has fluctuated between 4 and 37 (see Figure 2(c)).

Temperature

Maximum monthly temperature data are shown in
the bottom panel of Figure 1. It shows that the timing
of the cases is mainly determined by the temperature.
However, Figure 2(c) also shows a varying pattern of
human infection over the years that cannot be
explained by the temperature, but which does seem
to mimic the mast pattern (offset by one year).

Model

Predicting voles from mast

After model selection, the negative binomial model
was found to fit the data satisfactorily
(p =0.26 > 0.05). Only the intercept (p < 1078%)
and mast of the previous year (p ~ 10~*) are signifi-
cant. The final model is

0; = exp (2.3 +0.28 x mast.score.previousi). (8)

The over-dispersion coefficient is = 3.62.
Predictions generated by this model are displayed in
Figure 3. Note how the model does not distinguish

100 -
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0- i I
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2012 2013 2014
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Year

2008 2009

Figure 3. Prediction of vole abundance from mast score. The
measured mast score is indicated by the bars, the prediction
and 95% confidence interval by the blue line and grey band.

between months. The interpretation of the model is
that there is a baseline of exp(2.3) ~ 10 voles cap-
tured. Each point of mast score of the previous year
increases the number of expected captured voles by a
factor exp(0.5) &~ 1.33, or 33%.

Predicting human cases from vole abundance

For human cases, again the negative binomial model
fitted best. After model selection, there is no evidence
for lack of fit (p = 0.26). The model contains the last
measured abundance of positive voles pos,,; at
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p = 0.005. The decaying coefficient exp(tlo(i) — i) is
slightly over the significance level at p = 0.06, but the
interaction between voles and time to last observation
is significant at p = 0.04. Finally, the temperature
temp; is just significant p <0.05. The final model is:

\; = exp (—1.47exp (tlo(i) — i) — 0.11

[1 - 1.56exp (tlo(i) — i)|posg,

+ 0.06temp,) 9)

Since the temperature was borderline significant, we
predicted cases with and without temperature. As
Figure 4(c) shows, when temperature is included,
the predicted rate of generation of cases per month
is in good agreement with the observed number of
cases.

Interestingly, model predictions without the influ-
ence of temperature, as in Figure 4(d), reproduce the
overall pattern over the years, but the timing within
the year does not match the cases. It seems that
temperature is important for the spread of the cases
over the year, not the actual number of cases. This
suggests that temperature is mainly an exposure cov-
ariate, while masting is a hazard covariate.

Predicting human cases from mast data

After model selection, there is no evidence for lack of
fit (p = 0.16). The mast score of the previous year
was significant, at p < 107%. The interaction with

cases

cases

2010 2011 2012 2013 2014 2015 2016 2017

Year

cases

0. B |
2010

2012 2013 2014

Year

2011

cases

time to last observation was significant at p = 0.007,
as was the time to last observation itself (p = 0.02).
For temperature (p = 0.02), the model was again
built with temperature both included and excluded.
The final model becomes:

\i = exp (0.70 — 3.0exp (to(i) — i) — 0.32

[1 —2.15exp (to(i) — i)]mast.prevtlo(i)

+ 0.06temp,). (10)

Figures 4(a) and 4(b) show the result for the model
prediction including and excluding temperature.

Comparison of models

The models discussed in the previous sections are
compared in Figure 5. This is done by aggregating
both the predicted rate of new cases and the actual
number of cases over years. The residual is plotted,
which is the difference between the two. Very little
difference between the models is found, the mast
works as well as abundance of positive voles, and
temperature only defines the within-year distribution
of cases more sharply.

Predictive power

The predictions as performed thus far are unfair in
the sense that all data are used for the prediction of
each month. Thus, data from the future are used for a
current time. In this section a fairer analysis is

2010 2011 2012 2013 2014 2015 2016 2017

Year

2012 2013 2014

Year

2011

Figure 4. Human cases (bars) and model prediction of the monthly rate of infection with 95% prediction intervals. Panels (a)and
(b) are based on mast data, including and excluding monthly temperature, respectively. Panels (c) and (d) are based on based
on infected vole abundance, including and excluding monthly temperature, respectively.
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Figure 5. Residuals between model prediction and actual human cases, aggregated by year. Coloured bars indicate the different
models. Models depending on vole abundance can only predict up to year 2013 due to data unavailability.

performed, which reflects the intended usage in prac-
tice better, where data up to month i — 1 is used for
predicting month i. In performing this analysis, the
model is given one initial year of data, after which
repeatedly one month is added, and the next month
predicted. The result is shown in Figure 6. The model
starts with large confidence intervals, and inaccurate
predictions. However, from 2013 onward the predic-
tion looks acceptable.

Discussion

Data were collected on several aspects that are
thought to be important in PUUV epidemiology:

8 -

cases

2010 2011 2012 2013 2014 2015 2016 2017
Year

Figure 6. Human cases (bars) and model prediction of the
monthly rate of infection with 95% prediction intervals,
based on mast data. Only data from before the point of
prediction is included in the model. The model takes monthly
temperature into account.

mast, bank vole abundance, bank vole infection, and
the resulting human case data.

In the mast data, a two-year peaked pattern was
observed over the years, which is similar to what was
observed by others.[10] Initially, also the mast pro-
duced by the American Oak was included.
Interestingly, it also exhibited a two-year cycle, but
with lower amplitude and in anti-phase with the oak
and beach mast. For this reason, and because inclu-
sion lessened the predictive power, the American oak
was excluded from the study.

For purposes of early warning, it is advisable to
monitor masting intensity. Indeed, the model pre-
dicts that the mast of a previous year is the determin-
ing factor for bank vole abundance. This beneficial
effect of mast was observed before, and explained by
increased winter survival and extended breeding of
bank voles in the summer, e.g. [10]. Note that the
dynamics of voles is such that the vole abundance of
the previous year has no significant effect on the vole
population of the current year, since numbers typi-
cally decline to very low numbers in the winter, and
thus the population abundance is almost ‘reset’, to a
level influenced by the mast.

In [5] vole abundance as a function of mast is also
studied. In line with our results, strong correlation
with mast was found, and no proof of year-month
interactions. It is worth noticing that [17] found no
relation of vole abundance with vole infection status,
which was also not present in our study. However, it
was also put forward that a lagged relation may exist.
For future analysis, this is worthwhile to examine in
our dataset.
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In human cases a peaked pattern is visible: 2010,
2012 and 2014 were clearly years with a high number
of human cases in the Netherlands. In [18] such a
pattern is discussed for Belgium, where since 1990
cycles of two or three years existed, and since 2005 no
cycles have been observed. Those authors doubt the
relation between masting and vole populations for
recent years. The same article states that in France
human cases followed a three-year cycle from 1990 to
2000. Most of the cases were reported in the summer,
which mimics the Dutch situation. Interestingly,
human cases in Belgium and Germany did not always
peak in the summer months. In considering the
human case data, it should be noted that a large
proportion of PUUV infections are asymptomatic
and therefore not recognised, and under-diagnosis
of symptomatic PUUV infections in the Netherlands
has been reported.[15]

Another modelling approach used more
advanced dynamic regression models.[19] In agree-
ment with our findings, they also found tempera-
ture and bank vole trapping indices predictive for
human cases. The model also differs in the use of a
lag in the effect of the covariates, which may be
more difficult in our case, given the sparse data on
trappings.

In [20] a model relating human disease to beech
fructification and vole abundance is presented for
several German federal states. The similarities in the
collected data are striking. Concerning vole abun-
dance, the same pattern was observed for all years
except 2010 where a high abundance is recorded,
while our data show both low (June) and high bank
vole abundance (September). Also beech masting is
comparable, with high mast production in 2009 and
2011, and low mast production in 2008 and 2010.
Only for 2007 our data shows a different masting
intensity. In concordance with our model, these
authors also find good correspondence between
mast, rodent abundance and human illness. The reso-
lution however is on a yearly scale, as compared to a
monthly scale in our model. Also the model is not
used for predictions, and is not tested retrospectively
for predictive performance.

It is known that weather conditions influence seed
production of trees.[21] Thus, it would in principle
be possible to build a model relating mast volume to
climatic conditions. This would open the way to
forecasting PUUV outbreaks using primarily climatic
data, which is monitored and forecasted routinely.
Thus, for future research, it would be interesting to
study the relation between climatic variables and
mast production, as attempted before.[9] A direct
link between climate and human incidence was also
studied,[10] and it was found that high temperatures
in summer and autumn, one and two years before an
outbreak were significant predictors.

It should be noted that the driving mechanisms
behind bank vole population dynamics differ between
temperate Europe and Fennoscandia. While in tem-
perate Europe mast production is of most impor-
tance, it is predator-prey cycles which determine
the dynamics in northern European climates.[11]
Hence, the current study can only be considered to
be representative for temperate European climates.
Nonetheless, several features of the boreal setting
seem also to occur in the temperate European
regions. For example, in [4] it was found that
human nephropathia epidemica disease case
dynamics were synchronised with bank vole abun-
dance. Furthermore, the precise dynamics of infec-
tion in the vole population was not required for
accurate prediction of human cases, which is what
we also observe.

In determining bank vole seropositivity, juveniles
may be falsely scored positive due to influence of
maternal antibodies.[22] In our data, about 10%
could be identified as juveniles (and for one third
the age class was not recorded). Potentially, mater-
nal antibodies could therefore have influenced the
results. Unfortunately, our data do not allow us to
correct for this effect. This does not invalidate the
model results, since infection prevalence was found
to be only weakly contributing to the human infec-
tion rate.

We found no correlation between rodent infection
prevalence and abundance, which is likely due to the
sparsity of the data collected. Previous studies in
Northern Europe did underscore the strong link
between rodent population dynamics and prevalence.
High prevalence was linked to high abundances of
voles, with maternal antibodies having a dampening
effect at high prevalence phases. In Belgium it was
also observed that vole infection prevalences are
coupled to abundance, i.e. density dependent trans-
mission.[23] This could be a possible explanation for
the phenomenon that vole infection prevalences often
do not seem to be crucial in modelling human cases
from vole abundances, since prevalence correlates
strongly to abundance and is indistinguishable for a
model based on limited data.

In summary, models for relating vole abundance
to masting in the previous year were successfully
established. Furthermore, the model is able to fore-
cast human cases, using temperature data, and abun-
dance of positive voles, or temperature and mast
scores of the previous year. The model thereby con-
tains a hazard component (abundance of positive
voles, or mast), and a component that may be inter-
preted as a human exposure component (tempera-
ture). But, this cannot be established with certainty,
because temperature may also influence e.g. virus
survival in the environment.[1] The mast and vole
abundances determine to a large extent the year-to-



year variation, while the temperature determines
mostly the within-year variation.
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