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ABSTRACT: Over the past decade, two-dimensional (2D) layered semi-
conducting materials, with their distinctive structures and unique physicochemical
properties, have attracted attention for potential applications in photonics and
optoelectronics. In this study, we utilized time-domain broadband Brillouin
scattering on a single germanium monosulfide (GeS) crystal to determine the out-
of-plane longitudinal sound speed, evaluated at vL = (4035 ± 200) m/s. The
reported results demonstrate the effectiveness of this nondestructive, all-optical
technique for measuring the elastic properties in fragile 2D layered materials and
provide the value of the out-of-plane compressive elastic constant, C = (69 ± 7)
GPa.

I. INTRODUCTION
The constant progress in the generation of intense and
ultrashort laser pulses,1−4 as well as rapid enhancements in
various pump−probe spectroscopy techniques, has led to
numerous innovative schemes for the simultaneous generation
and detection of coherent acoustic phonons across a range of
materials that have been used in many applications.5−20 The
generation of coherent acoustic waves by the absorption of
ultrashort laser pulses, and their subsequent detection by time-
delayed ultrashort probe pulses, dates back to the 1980s and
gave birth to the field of picosecond ultrasonics.5,6 Coherent
acoustic phonons, produced using ultrashort pump laser
pulses, have been observed to propagate through both opaque
and transparent materials.9−15 A variation of picosecond
ultrasonics, which detects coherent acoustic pulses propagating
in transparent media, has been termed time-domain Brillouin
scattering (TDBS) because the photoelastic interaction fulfills
the conditions for Brillouin scattering (BS).21

The impulsive thermal disruption, triggered by the
absorption of an intense excitation laser pulse on a material’s
surface, leads to the generation of a coherent acoustic
pulse.22−26 This pulse retreats from the crystal’s surface and
travels into the bulk at the speed of sound, altering the
material’s dielectric properties and acting as a moving
“internal” reflective boundary for a transmitted ray.27−30

Thus, TDBS relies on heterodyne detection, where the
refracted and weakly scattered probe beam, caused by this
coherent acoustic wave, interferes with the probe beam that is
reflected at the air-material interface.30

In this work, we performed TDBS measurements on a single
GeS crystal to determine the out-of-plane longitudinal sound
speed, that is, the speed of a compressive wave moving
perpendicular to the plane of the two-dimensional (2D) layers
constituting the crystal. GeS has recently attracted considerable
attention due to its 2D layered structure and remarkable
semiconducting properties.31 Furthermore, its low bandgap
and high absorption coefficient have made it an ideal candidate
for a variety of applications and industries, such as solar cells,32

fast photodetectors,33,34 gas sensors,35,36 batteries,37,38 and
light-emitting diodes.39 Despite numerous studies probing the
structure and physicochemical properties of GeS,40−43

information on its acoustic or elastic properties remains scarce.
In fact, to the best of our knowledge, this study is the first to
experimentally determine the speed of sound in GeS.

II. EXPERIMENTAL METHODS
The sample, a single bulk crystal of GeS with a purity greater
than 99.995%, was procured from HQ Graphene and utilized
in TDBS experiments following surface cleaning through
mechanical exfoliation. GeS is recognized as a stable 2D
layered semiconductor featuring an indirect bandgap of 1.65
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eV at room temperature. The used GeS crystal is of high
quality with the well-known crystalline structure, which is
characterized by distorted orthorhombic symmetry (space
group Pcmn - D2h)44 with unit cell parameters: a = 0.4299 nm,
b = 1.0481 nm, c = 0.3646 nm, and α = β = γ = 90°.45
Figure 1 shows a schematic diagram of the main

components of the employed experimental pump−probe

setup. The setup is based on a femtosecond laser from Light
Conversion (Pharos-SP, YB/KGW), which outputs 170 fs
pulses at a central wavelength of 1030 nm and a repetition rate
of 6 kHz. The pump laser pulses, with a wavelength of λpump=
450 nm (2.76 eV), were generated via optical parametric

amplification, followed by second harmonic generation. The
pump beam was modulated with a mechanical chopper
operating at half the acquisition frequency to obtain differential
transient reflectivity spectra. With the aid of a long focal length
lens, the pump beam was focused onto the crystal’s surface to a
spot size of 300 μm at fwhm (full-width half-maximum).
Pumping the crystal with energy greater than its bandgap
proved effective, as there was no need to add an ultrathin
transducing metallic layer. The broadband probe pulses were
generated by directing a small portion of the fundamental laser
output to pass through a 3 mm thick YAG (yttrium aluminum
garnet) crystal, after which the residual 1030 nm beam was
filtered out. Consequently, white light supercontinuum probe
pulses with an effective spectrum covering the wavelength
range of λprobe = 500−950 nm were produced and employed to
monitor variations in the transient reflectivity signal. A short
focal length lens focused the probe beam onto the crystal
surface to a spot size of about 50 μm (fwhm). An optical delay
stage situated along the probe beam path was used to control
the relative timing between the pump and probe pulses. The
pump pulses excited the crystal by directing a focused beam to
impinge perpendicularly on the crystal’s flat surface while the
probe beam was angled to meet the surface at an incidence
angle of θ ≈ 10°. The transient reflectivity spectra were
detected with a dispersive spectrometer and recorded at a rate
of 1 kHz.

III. RESULTS AND DISCUSSION
The Brillouin frequency (νB), arising from alternating
constructive and destructive interference events observed in
the time domain, is given by eq 114,24,46

Figure 1. An experimental schematic diagram of the main
components of the employed pump−probe setup. BS: beam splitter,
SH: second harmonic generation, DS: optical delay stage, YAG:
yttrium aluminum garnet crystal, G: grating, GeS: germanium sulfide
crystal.

Figure 2. (a) Broadband time-resolved transient reflectivity spectrum acquired at room temperature with a time step of 300 fs, which also shows
the node region extending observed over the wavelength range of 735−755 nm. Parts (b) and (c) of the figure show two expanded slices of the
time-resolved broadband transient reflectivity spectrum obtained at probe wavelengths of 700 and 850 nm, respectively, with the thick gray
oscillatory structures representing experimental data points. The theoretically obtained fittings were shown in parts (b) and (c) as oscillatory thin
traces. The expanded slices (b) and (c) were also exhibited as the two vertical lines in the transient reflectivity spectrum of part (a).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00266
ACS Omega 2024, 9, 15463−15467

15464

https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00266?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=v n
2

sin
B L

2 2

0 (1)

where λ0 is the wavelength of the probe beam in air, vLis the
out-of-plane longitudinal sound velocity, and n is the real part
of the crystal’s refractive index. The importance of eq 1 lies in
the fact that it allows for the direct extraction of νB from
experimentally obtained time-dependent transient reflectivity
profiles over the probe laser wavelength range. This valuable
parameter can then be used to glean important information
about the material’s elastic properties. Figure 2a shows a
broadband time-resolved transient reflectivity spectrum
acquired at room temperature with a time step of 300 fs. A
distinctive feature associated with TDBS phenomena is the
long-lived oscillation, which is superimposed on a slowly
varying background, resulting from the dynamics of photo-
excited carriers in the GeS crystal. In addition, a nonoscillating
region in the spectrum, termed as the “node region”, extends
from λ0= 735 to 755 nm. The term “node” denotes a
wavelength region over which a π-phase flip occurs, resulting in
the absence of detectable oscillatory behavior.
The two vertical lines at λ0= 700 and 850 nm mark specific

slices of the time-resolved broadband transient reflectivity
spectrum that are expanded to reveal the time traces shown in
Figure 2b,2c, respectively. The thick gray traces correspond to
experimentally obtained data points, while the thin solid traces
represent fittings of the data that were obtained using the
following phenomenological model
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The implementation of eq 2 enables the extraction νB at
each probe wavelength, λ0, by incorporating various fitting
parameters, where τi=1,2,3 are time constants, Ai=1,2,3 are
amplitudes, ti=1,2,3 are time origins, φ is a phase shift with
respect to time zero, and C is constant. The first two
exponential terms were incorporated to account for the time-
dependent background signal arising from carrier dynamics,
which accompanied the oscillatory component of interest. The
latter is represented by the sine function in the third term,
which includes a damping factor to account for decoherence
effects and the weak absorption experienced at probing
wavelengths approaching the bandgap of GeS.
It is experimentally feasible to measure the real part of the

index of refraction over the probe pulse wavelengths that are
accessible. Thus, given that νB, n(λ0), and θ are known, eq 1
can establish a linear correlation when νB is plotted as a

function =n n sin

0

2 2

0
, where the slope that equals 2vL. We

measured the refractive index of our sample by using
ellipsometry, as shown in Figure 3a. The real part of the
refractive index, n (dashed light blue trace), was fitted (solid
orange trace) within the 620−900 nm probe wavelength
interval using the Sellmeier equation form

= +n
B
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i

i

i

2
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2
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Where Bi and Ci are the determined Sellmeier coefficients. The
best fit yielded the following values of Bi=1,2,3: 4.94119359,
4.99160735, and 1.26978087, respectively, whereas the Ci=1,2,3
fitting values were determined as 82 849.3204, 82 841.1046,

and 291 186.190, respectively. We preferred the Sellmeier
equation for fitting the data of the real part of the refractive
index because it provided a better fit than the Cauchy
equation. Using the imaginary part value of the refractive index
k = 1.9 at λpump= 450 nm, we evaluated the optical absorption

depth as = = 19 nm
k4

pump from the crystal’s interface. Such a
shallow optical penetration depth ensures a more precisely
defined coherent acoustic pulse.
Figure 3b exhibits the linear correlation obtained when

plotting νB as a function of n

0
. It is important to note that eq 1

was derived using the standard beam propagation model,47

which posits that n determines the direction of the refracted
probe ray, while k is accounted for as an attenuation affecting
its amplitude. Chang et al.47 defined the limiting condition for
the accurate use of this model as a k/n ratio of less than 0.07.
This supports our choice of the 620−900 nm probe pulse
wavelength region, where the k/n ratio was below 0.05. As
previously mentioned, the slope of the linear fit, corresponding
to 2vL= 8070 m/s, yields a longitudinal sound speed in the GeS
crystal along the out-of-plane direction of vL= (4035 ± 200)
m/s. The error bar predominantly arises from the anisotropic

Figure 3. (a) Real (n) and imaginary (k) parts of the refractive index
of GeS as a function of wavelength. Also, the fitting of the real part
using Sellmeier eq 3 is shown as the trace over the wavelength region
of 620−900 nm. Panel (b) shows the linear correlation revealed in eq
1 between Brillouin frequency νB and the ratio n*(λ0)/λ0 over the
broadband laser wavelength range 620−900 nm. The dark, thick
region represents the progression of experimental data points, whereas
the linear fitting is shown as the thin black trace, which has a slope of
2vL= 8.07 nm/ps (8070 m/s). The node region is shown between the
two vertical dashed lines.
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nature of the crystal and the imprecise determination of its
crystalline orientation in our TDBS and ellipsometry measure-
ments, potentially leading to an uncertainty of approximately
5% in the relative values of n. Furthermore, the determined
speed of sound is related to the compressive elastic constant C
= ρvL2, where ρ = 4.24 g/cm3 is the mass density of GeS.44 By
substitution of these values, the elastic constant C was
calculated to be (69 ± 7) GPa. Koc et al.44,48 calculated a
value of C = 169.08 GPa using first-principles, where C = C22
according to their selection of unit cell axes. This value of C
implies a sound speed of approximately 6300 m/s, leading to a
relative error in the determination of the sound speed,

represented by v
v

L

L
of 0.44 (44%). Our experimental value

suggests the need for a reparameterization of the function used
in first-principles calculations.

IV. CONCLUSIONS
In summary, we have successfully performed broadband TDBS
measurements on a single GeS crystal and determined the out-
of-plane longitudinal sound speed, vL = (4035 ± 200) m/s,
corresponding to a compressive elastic constant, C = (69 ± 7)
GPa. This latter value is comparable to that recently
determined for the 2D layered semiconducting material SnS2,
(39 + 3) GPa,49 which is in reasonable agreement with the
value of 32 GPa calculated by Zhen and Wang.50 Therefore,
our findings are anticipated to guide the reparameterization of
the functional used in first-principles calculations for GeS or
perhaps to prompt modification of the methods employed.
These results underscore the effectiveness of this non-
destructive, all-optical technique for studying the elastic
properties of fragile two-dimensional layered materials that
cannot be investigated using typical compression-based tests.
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