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Introduction. Malate is a standard component in fluid therapy within a wide range of medical applications. To date, there are
insufficient data regarding its plasma distribution, renal excretion, and metabolism after infusion. This study aimed to investigate
these three aspects in a rat model of moderate and severe hemorrhagic shock (HS). Methods. Male Wistar rats were subjected
to HS by dropping the mean arterial blood pressure to 25–30mmHg (severe) and 40–45mmHg (moderate), respectively, for 60
minutes. Subsequently, reperfusion with Ringer-saline or a malate containing crystalloid solution (7mM, 13.6mM, and 21mM,
resp.) was performed within 30 minutes, followed by an observation period of 150 minutes. Results. In the present experiments,
malate rapidly disappeared from the blood, while only 5% of the infused malate was renally excreted. In the resuscitation interval
the urinary citrate and succinate amounts significantly increased compared to control. Conclusion. Malate’s half-life is between 30
and 60 minutes in both, moderate and severe HS. Thus, even under traumatic conditions malate seems to be subjected to rapid
metabolism with participation of the kidneys.

1. Introduction

Malate, a citric acid cycle (TCA) intermediate, is a standard
component in fluid therapy in a wide spectrum of medical
applications. In human medicine it is used as an integrant
in a concentrate to treat hypokalemia (e.g., Kalium-L-Malat
17.21%, B. Braun Melsungen), in amino acid solutions for
parenteral nutrition (e.g., Aminosteril� plus, Fresenius Kabi),
in solutions, which are used to cover water, electrolyte, and
energy requirements (e.g., Jonosteril� Na100 with glucose,
Fresenius Kabi), and even in pediatrics (e.g., Paediatrische
Elektrolytloesung 1, Fresenius Kabi). Furthermore, malate is
the central component in Jonosteril Malat (Fresenius Kabi)
that is appropriate to serve as primary volume therapy
in emergency medicine and fluid replacement in cases of
moderate acidosis and for themaintenance of pre-, intra-, and
postoperative fluid balance. In the guidelines of the German
Society of Trauma, the application of crystalloid solutions like
Ringer-lactate, Ringer-acetate, and Ringer-malate is recom-
mended [1], with respect to the field of emergency medicine,

to treat hemorrhage, caused by accidental trauma, and the
consecutively following life-threatening consequences which
represent one of the main reasons of preventable death [2–
4]. In addition, in the guidelines of the German Society of
Anaesthesiology and Intensive CareMedicine balanced solu-
tions containing malate or acetate are recommended for the
treatment of critically ill patients, whereas lactate is not [5].
Malate’s positive effects in certain clinical approaches, includ-
ing investigations as regards its effect on energy metabolism,
cardioprotection, fibromyalgia, physical stamina, and cancer,
have been shown [6–13]. Even though research regarding the
treatment of hemorrhagic shock (HS) and its consequences
is very scarce, the protection by administering malate is
described as well [14–16]. In contrast, treatment of severe HS
with Ringer-lactate is debatable, since earlier studies showed
detrimental effects in a rat model of severe HS [17, 18],
whereas acetate-based balanced salt solution appeared to
be predominant [19]. Certainly, acetate is reported to have
vasodilatory effects resulting in cardiovascular depression in
vitro as well as in vivo [20–22]. On the other hand, it is
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postulated that malate’s metabolism is decelerated compared
to that of acetate [23, 24], but not confirmed in hemorrhagic
shock.

Though the previous examinations cited above yielded
encouraging results to date andmalate being a standard com-
ponent of intravenous fluid therapy in awide range ofmedical
applications, information about malate’s plasma distribution
and excretion profile and its metabolism after incorporation
into the tissues is very scarce. Therefore, the objective of the
present study was to investigate malate’s plasma distribution
as well as renal excretion and its metabolic fate in the
experimental models of severe and moderate HS. HS was
chosen because of malate’s potential to protect against shock-
induced damage [15], thereby becoming relevant in the
preclinical and early hospital therapy of traumatic bleed-
ing.

2. Materials and Methods

2.1. Animals. Altogether, 48 male Wistar rats (420 g–500 g,
age 12–14 weeks) were obtained from the central animal
unit of the Essen University Hospital. Animals were kept
under standardized conditions of temperature (22∘C ± 1∘C),
humidity (55% ± 5%), and 12/12-hour light/dark cycles.They
were fed ad libitum (ssniff-Spezialdiaeten, Soest, Germany)
with free access to water and not fasted before the experi-
ments.

Experimentswere conducted in accordancewith the stan-
dards of Annex III of the directive 2010/63/EU of the Euro-
pean Parliament and of the Council of 22 September 2010 on
the protection of animals used for scientific purposes [25].
The experimental protocol was reviewed and approved by the
local Animal Care and Use Committee (Animal Care Center,
University of Duisburg-Essen, Essen, Germany, and the dis-
trict government of Duesseldorf (“North Rhine-Westphalia
State Environment Agency”, Recklinghausen, Germany))
with a Permit Number 84-02.04.2012.A341, G1318/12.

2.2. Chemicals/Materials. Saline solution (NaCl, 0.9%) was
provided by B. Braun (Melsungen, Germany), Ringer-malate
(MR, Jonosteril Malat, 13.6mM L-Malic acid) and Ringer-
saline (RS) were from Fresenius (Bad Homburg, Germany),
and acid-citrate-dextrose A solution (ACD-A) was from
Fenwal (Lake Zurich, IL, USA). NaCl and KCl were pro-
vided by Carl Roth (Karlsruhe, Germany), CaCl

2
-dihydrate,

MgCl
2
-hexahydrate, and NaOH were provided from Merck

(Darmstadt, Germany), and L(−)-malic acid monosodium
salt (Na-Mal) was from ApplyChem (Darmstadt, Germany).
Isoflurane (Forene) was obtained from Abbott (Wiesbaden,
Germany), ketamine 10% from Ceva (Duesseldorf, Ger-
many), and lidocaine (Xylocain 1%) from AstraZeneca
(Wedel, Germany). Medical oxygen was from Air Liquide
(Duesseldorf, Germany). Portex catheters (inner diameter:
0.58mm, outer diameter: 0.96mm) were provided from
Smiths Medical International (Hythe, UK), Minisart was
from sartorius stedim biotech (Goettingen, Germany), and
Vasofix Safety (22G, 0.9 × 25mm) and peripheral venous
catheters were from B. Braun.

Since the higher (21mM) and lower (7mM) MR solu-
tions were not commercially available, they had to be self-
produced (7mM: 119.78mM NaCl, 5.4mM KCl, 0.91mM
CaCl
2
-dihydrate, 1mM MgCl

2
-hexahydrate, 7mM NaOH

and 21mM: 97.54mM NaCl, 5.4mM KCl, 0.91mM CaCl
2
-

dihydrate, 1mM MgCl
2
-hexahydrate, and 21mM NaOH,

resp.). After solving, the produced solutions were filtrated
through sterile filters (Minisart, hydrophilic syringe filter,
pore size: 0.2𝜇m) into sterilized glass bottles (Schott, Mainz,
Germany) and stored at 4∘C for later use (storage maximum:
7 days).

2.3. Anesthesia, Analgesia, and Surgical Procedures. Anesthe-
sia, analgesia, catheter insertion, and blood sampling were
performed as described previously [19].The rats were initially
anesthetized with isoflurane (2.0% in 100% medical O

2
at

4.0 L/min) in an induction chamber. Throughout the exper-
iment animals were kept anesthetized through a face mask
(1.0–2.0% isoflurane in 100% medical O

2
at 1.0 L/min) con-

nected to a vaporizer (Isoflurane Vet. Med. Vapor, Draeger,
Luebeck, Germany) and received ketamine (50mg/kg body
weight subcutaneously) into the right chest wall for analgesia.
After local lidocaine administration (5mg/kg body weight
subcutaneously), a skin-deep inguinal incision of about 2-
3 cm was made, femoral vessels were freed from tissue
(sparing the femoral nerve), and a Portex catheter was placed
within the right femoral artery and the right femoral vein.
Again after local lidocaine administration (5mg/kg body
weight subcutaneously) a median laparotomy of about 2 cm
was performed to catheterize the bladder to obtain urinary
samples. For the period of resuscitation, the prolonged infu-
sion of 0.9% NaCl solution (5mL/kg body weight × h, 37∘C),
to compensate intraoperative fluid depletion over surgical
areas and the respiratory epithelium, was interrupted. At the
end of the experiment, animals were sacrificed by resection of
the heart under deep isoflurane anesthesia (4.0% isoflurane in
100% medical O

2
at 1.0 L/min).

2.4. Induction of Hemorrhagic Shock and Resuscitation Pro-
cess. The induction of hemorrhagic shock and resuscita-
tion regimens were performed as previously described [18].
Briefly, hemorrhagic shock was induced at 𝑇 = 30min by
removing either 2mL (severe shock) or 1mL (moderate
shock) blood every three minutes through the femoral artery
catheter using a 2 mL syringe (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA). Blood from the first
withdrawal was used for assessment of blood and plasma
parameters via blood gas analysis. The second syringe was
prefilled with either 0.2mL (severe shock) or 0.1mL (mod-
erate shock) of ACD-A solution. The syringe with citrated
blood was stored at 37∘C and used to regulate shock severity,
if needed. Blood withdrawal was continued until the mean
arterial blood pressure (MAP) dropped to (1) 25–30mmHg
(severe shock) or (2) 40–45mmHg (moderate shock); shock
induction typically took about 20min. The animals in the
comparative groups all possessed a similar weight (420 to
500 g), resulting in a nearly identical volume of the shed
blood. The blood volume withdrawn was about (1) 13.9mL
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(severe shock) or (2) 11.5mL (moderate shock). For the next
60min, the MAP was retained, usually without further inter-
vention. In some cases, small amounts (0.1–0.5mL aliquots)
of the citrated blood had to be administered, or additional
small blood samples (0.5–1.0mL aliquots) had to be with-
drawn, to keep the MAP within the desired range. After the
shock phase, study group-specific resuscitation fluids were
infused into the femoral vein within 30min using a syringe
pump (Perfusor Secura FT, B. Braun) in a randomized and
blinded manner. Experiments were continued for another
150min or until the rat died.

2.5. Experimental Groups. The following experimental
groups were compared:

(i) Severe shock/RS (shock, resuscitation with RS, six
animals).

(ii) Severe shock/MR7 (shock, resuscitation with 7mM
MR, six animals).

(iii) Severe shock/MR13.6 (shock, resuscitation with
13.6mMMR, six animals).

(iv) Severe shock/MR21 (shock, resuscitation with 21mM
MR, six animals).

(v) Moderate shock/RS (shock, resuscitation with RS, six
animals).

(vi) Moderate shock/MR7 (shock, resuscitation with
7mMMR, six animals).

(vii) Moderate shock/MR13.6 (shock, resuscitation with
13.6mMMR, six animals).

(viii) Moderate shock/MR21 (shock, resuscitation with
21mMMR, six animals).

The composition of the two Ringer-based solutions with the
higher and lower malate concentrations (MR7, MR21) are
listed inChemicals/Materials.Thevolumeof the resuscitation
fluids is based on the 3 : 1 rule (3 times the volume of the shed
blood volume) [26].

2.6. Biomonitoring. Systolic blood pressure, diastolic blood
pressure, and MAP were displayed on a monitor and docu-
mented continuously, by using the femoral artery catheter,
which was connected to a pressure transducer. To keep the
catheter functional RS was infused at a rate of 3mL/h. Heart
rate was determined from systolic blood pressure spikes.
Recording of MAP and heart rate was intended to monitor
an adequate anesthesia and to supervise the particular blood
pressure (see above).These parameters were shown elsewhere
[18]. The core body temperature of all rats was monitored
using a rectal sensor and was maintained around 37.3∘C
to 37.6∘C during the whole experiment via an underlying
thermostat-controlled operating table and by covering the
animal with aluminum foil. Peripheral oxygen saturation
was recorded continuously using a pulse oximeter (OxiCliq
A, Nellcor, Boulder, CO, USA) placed at the left hind
limb. All parameters were recorded periodically every 10min
(exception at 𝑇 = 125, 5 minutes in resuscitation).

2.7. Assessment of Blood and Plasma Parameters. Using a 2
mL syringe containing 80 IU electrolyte-balanced heparin,
blood samples (0.5mL, except of shock induction: 2mL)were
taken from the femoral artery at

(i) 𝑇 = 0min (immediately after insertion of the arterial
catheter),

(ii) 𝑇 = 30min (start of shock induction),
(iii) 𝑇 = 60min (end of shock induction),
(iv) 𝑇 = 120min (start of resuscitation),
(v) 𝑇 = 150min (end of resuscitation),
(vi) 𝑇 = 180, 240, and 300min (observation phase).

For each blood sampling the animals were substituted with
a 0.5mL bolus of 0.9% NaCl solution via the femoral artery
compensating the lost volume and keeping the catheter func-
tional. In order to obtain plasma for the assessment ofmarker
enzyme activities, blood was centrifuged at 4000×g for
15min at room temperature.The gained plasmawas aliquoted
(50 𝜇L) and stored at −80∘C until further examination. The
plasma activity of lactate dehydrogenase (LDH) as a general
marker for cell injury, creatine kinase (CK) activity as a
marker for muscle cell injury, aspartate transaminase (ASAT)
and alanine transaminase (ALAT) activities as marker for
liver injury, and creatinine and urea as markers for renal
injury were determined with a fully automated clinical
chemistry analyzer (respons920, DiaSysDiagnostic Systems
GmbH, Holzheim, Germany).

2.8. Assessment of Urine Parameters. Urinary samples were
collected during five fixed time intervals, starting with the
interval 𝑇 = 0–30min (immediately after catheter insertion
and before shock induction). The subsequent intervals were
the shock induction phase (𝑇 = 30–60min), resuscitation
phase (𝑇 = 120–150min), and two intervals during the
observation phase (𝑇 = 180–240min, 𝑇 = 240–300min).

2.9. Quantification of Citrate, Succinate, and Malate. For
quantification of the anions citrate, succinate, and malate in
urine and plasma, capillary electrophoresis (P/ACE� MDQ,
Beckman Coulter) was used. For this purpose, a fused silica
capillary was employed with an effective length of 50 cm,
an ID of 75𝜇m, and an OD of 375 𝜇m. Samples of urine
and plasma were diluted with 0.1M NaOH 1 : 30 and 1 : 2,
respectively. Analysis was performed using an anion analysis
kit (ABSciex, Fullerton, USA). Per analysis, a volume of
300 nL was applied using pressure injection. The subsequent
separation was carried out with a voltage of 30 kV and
reverse polarity of the capillary.The detection was performed
indirectly by employing a photo diode array at a wavelength
of 230 nm.

2.10. Statistics. Experimentswere performedwith six animals
per experimental group. Data are expressed as mean values ±
SEM. Outliers were removed after box-plot analysis. Com-
parisons of the urinary concentration of measured anions
and their particular excreted urinary amountwere performed
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Figure 1: Effects of RS, MR7, MR13.6, and MR21 on the plasma malate concentration in severe and moderate hemorrhagic shock. Rats
underwent moderate (a) or severe (b) hemorrhagic shock (dark gray: shock induction; light gray: shock phase; dark gray: resuscitation),
were resuscitated with RS, MR7, MR13.6, or MR21, respectively, and were observed until the end of experiment or until the first animal of
the RS-control group died. The values plotted are mean ± SEM of 6 individual experiments. Initial and final values were very close to the
detection limit (except of initial value in MR21-treated group in severely shocked animals); hence SEM values in these cases are not shown.

using regular two-way analysis of variance (ANOVA). 𝑝
values of <0.05 (∗), <0.01 (∗∗), <0.0001 (∗ ∗ ∗), and <0.0001
(∗ ∗ ∗∗), respectively, were considered significant.

3. Results

3.1. Survival andEnzymeActivities. All animals of themoder-
ate shock groups survived the whole experimental time (𝑇 =
300min), independently of the administered resuscitation
fluid (not shown). Resuscitation with malate-based crystal-
loid prolonged the median survival time of severely shocked
animals compared to RS (MR7 = 225min, MR13.6 = 245min,
MR21 = 245min, and RS = 195min, not shown).

Regarding parameters of organ injury, severe and mod-
erate hemorrhagic shock partly induced distinct increases in
enzyme activities (LDH, CK, ASAT, and ALAT, not shown).
In some part, animals resuscitated with MR7, MR13.6, or
MR21 showed significantly reduced enzyme activities during
the observation period compared to the RS-control group,
independent of the administered malate concentration.

3.2. Effects of RS, MR7, MR13.6, and MR21 on the Plasma
Concentrations of Malate, Citrate, and Succinate in Moderate
and Severe HS. Basal plasma malate concentrations were
below 0.15mM (Figures 1(a) and 1(b)). In the moderate
hemorrhagic shock group, during the shock induction and
shock phase, the plasma malate concentrations only slightly
increased but did not exceed initial values (Figure 1(a)). The
plasma malate concentrations rose noticeably to 0.19mM
(MR7), 0.57mM (MR13.6), and 0.98mM (MR21), respec-
tively, during the resuscitation period depending on the

administered malate amount. At the end of the experiment
(𝑇= 300min) plasmamalate concentrationswere returned to
initial values of <0.15mM. In the severe shock group, values
rose heterogeneously during the shock induction and shock
phase (Figure 1(b)). At the end of the resuscitation phase,
malate concentrations increased, depending on the infused
malate amount, to 0.75mM (MR7), 1.57mM (MR13.6), and
2.30mM (MR21), respectively. At the end of the experiment
(𝑇 = 180min, determined by the first animal’s death in
the RS-control group) malate levels decreased to 0.43mM
(MR7), 0.73mM (MR13.6), and 1.78mM (MR21). Values in
the RS-control group stayed nearly constant over the whole
experimental time.

In the moderate hemorrhagic shock groups basal plasma
citrate concentrations were below 0.25mM (Figure 2(a)). At
the end of the shock phase, the concentration rose around the
factor 1.5 in all experimental groups. After resuscitation the
concentration decreased independently of the administered
crystalloid solution and varied between 0.22mM (RS) and
0.27mM (MR7). Finally, citrate levels amounted to 0.23mM
(RS), 0.14mM (MR7), 0.25mM (MR13.6), and 0.15mM
(MR21). In the severe hemorrhagic shock groups, basal
plasma citrate concentrations averaged out below 0.2mM
and slightly increased to about 0.53mM (MR7, MR13.6) and
0.62mM (MR21, RS) during the shock induction and shock
phase (Figure 2(b)). After resuscitation the concentration
decreased independently of the administered crystalloid
solution and varied between 0.31mM (MR13.6) and 0.47mM
(MR21). At the end of the experiment, plasma citrate concen-
trations averaged out at 0.69mM (MR7), 0.37mM (MR13.6),
0.52mM (MR21), and 0.45mM (RS).
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Figure 2: Effects of RS, MR7, MR13.6, and MR21 on the plasma citrate concentration in severe and moderate hemorrhagic shock. Rats
underwent moderate (a) or severe (b) hemorrhagic shock (dark gray: shock induction; light gray: shock phase; dark gray: resuscitation), were
resuscitated with RS, MR7, MR13.6, or MR21, respectively, and were observed until the end of experiment or until the first animal of the
RS-control group died. The values plotted are mean ± SEM of 6 individual experiments. SEM values that are not visible are located behind
the symbols.

Succinate plasma concentrations were below 0.1mMover
the whole experimental time, independently of the adminis-
tered resuscitation fluid (not shown).

3.3. Effects of RS, MR7, MR13.6, and MR 21 on the Uroflow in
Moderate and Severe HS and the Renal Excretion of Malate,
Citrate, and Succinate in Moderate HS. The initial urine
volume averaged out between 170 𝜇L and 432 𝜇L (Figures
3(a) and 3(b)). During the shock induction phase it clearly
decreased, independent of the particular shock depth, to
about 110𝜇L. In the moderate hemorrhagic shock groups,
urine excretion clearly increased to 621 𝜇L (MR7), 710 𝜇L
(MR13.6), 633 𝜇L (MR21), and 689𝜇L (RS) during the resus-
citation interval (𝑇 = 120–150min; Figure 3(a)). In the two
subsequent observation intervals (𝑇 = 180–240min and 𝑇
= 240–300min) uroflow slightly decreased, reaching almost
initial levels. In contrast, in the severe hemorrhagic shock
groups urine excretion stayed nearly constant at shock induc-
tion levels during the remaining period of the experimental
time (Figure 3(b)).

Renal excretion of malate, citrate, and succinate was only
measured under conditions of moderate hemorrhagic shock,
due to the small urinary sample volumes in the severe shock
groups.

Urinary malate concentration clearly increased during
the resuscitation interval in a dose-dependent manner, being
statistically significant in the MR21-group compared to RS-
control (Figure 4(a)). Renal malate excretion never exceeded
5 𝜇mol in the initial interval (𝑇 = 0–30min) and the shock
induction interval (𝑇 = 30–60min) (Figure 4(b)). In the
resuscitation interval (𝑇 = 120–150min) the urinary malate

amount clearly rose up to 8 𝜇mol (MR7), 33 𝜇mol (MR13.6),
and 35 𝜇mol (MR21), being statistically significant (MR13.6,
MR21) compared to RS-control. In the last third of the
observation period (𝑇 = 240–300min) the excreted malate
amount again did not rise above 5 𝜇mol.

Citrate concentration in the urine significantly increased
while animals were resuscitated with MR7 or MR21, respec-
tively, compared to RS-control (Figure 5(a)). Renal citrate
excretion never exceeded 7𝜇mol in the initial interval (𝑇 =
0–30min), while in the shock induction interval (𝑇 = 30–
60min) (Figure 5(b)) excretion decreased in all experi-
mental groups not rising above 3 𝜇mol. In the resuscita-
tion interval (𝑇 = 120–150min) the urinary citrate amount
clearly increased to 9.9𝜇mol (MR7), 16.4 𝜇mol (MR13.6),
and 20.3 𝜇mol (MR21), being statistically significant (MR13.6,
MR21) compared to RS-control. In the last third of the
observation period (𝑇 = 240–300min) the excreted citrate
amount did not rise above 4 𝜇mol.

Urinary succinate concentration rose significantly in the
experimental groups receivingMR21 during the resuscitation
interval (Figure 6(a)). Only in the resuscitation time interval
(𝑇 = 120–150min) did the renal succinate excretion increase
slightly to 1.4 𝜇mol (MR7) and 3𝜇mol (MR13.6) and increase
significantly to 6𝜇mol (MR21), while in the last interval (𝑇 =
240–300min) again initial excretion levels of <1 𝜇mol were
reached (Figure 6(b)).

4. Discussion

Although malate is a standard component in fluid ther-
apy, information is lacking about its plasma distribution,
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Figure 3: Effects of RS, MR7, MR13.6, and MR21 on the excreted urine volume. Rats underwent moderate (a) or severe (b) hemorrhagic
shock, were resuscitated with RS, MR7, MR13.6, or MR21, respectively, and were observed until the end of experiment. Urinary samples were
collected immediately after catheter insertion and before shock induction (𝑇 = 0–30min) and during shock induction (𝑇 = 30–60min),
resuscitation (𝑇 = 120–150min), and the observation period (𝑇 = 180–240min and 𝑇 = 240–300min). The values plotted are mean ± SEM
of 6 individual experiments. SEM values are not shown in the time interval 𝑇 = 180–240min of severely shocked animals, because animals
became anuric or died early, respectively.
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Figure 4: Effects of RS, MR7, MR13.6, and MR21 on the urinary concentrations (a) and absolute amounts (b) of malate. Rats underwent
moderate hemorrhagic shock, were resuscitated with RS,MR7,MR13.6, orMR21, respectively, and were observed until the end of experiment.
Urinary samples were collected immediately after catheter insertion and before shock induction (𝑇 = 0–30min) and during shock induction
(𝑇 = 30–60min), resuscitation (𝑇 = 120–150min), and the last third of the observation period (𝑇 = 240–300min). The values plotted are
mean ± SEM of 6 individual experiments. ∗∗∗∗𝑝 < 0.0001 compared with the RS-control group.

renal excretion, and metabolism after administration. In the
present experiments, malate rapidly disappeared from the
blood. Since only a minor amount of the infused malate was
eliminated via the kidneys, the vast majority was obviously
metabolized.

In moderate HS, plasma malate concentrations sharply
increased in a dose-dependent manner at the end of the

resuscitation interval but decreased to baseline values within
2.5 hours (Figure 1(a)). Assuming that malate’s plasma clear-
ance is nearly linear, a half-life of about 1 hour can be
derived. On the other hand,most drugs that are administered
intravenously are proportionally eliminated to their plasma
concentration (first-order kinetics) [27, 28]. In turn, that
means a half-life of 1 hour is overestimated. This is also
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Figure 5: Effects of RS, MR7, MR13.6, and MR21 on the urinary concentrations (a) and absolute amounts (b) of citrate. Rats underwent
moderate hemorrhagic shock, were resuscitated with RS,MR7,MR13.6, orMR21, respectively, and were observed until the end of experiment.
Urinary samples were collected immediately after catheter insertion and before shock induction (𝑇 = 0–30min) and during shock induction
(𝑇 = 30–60min), resuscitation (𝑇 = 120–150min), and the last third of the observation period (𝑇 = 240–300min). The values plotted are
mean ± SEM of 6 individual experiments. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001, or ∗∗∗∗𝑝 < 0.0001 compared with the RS-control group.
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Figure 6: Effects of RS, MR7, MR13.6, and MR21 on the urinary concentrations (a) and absolute amounts (b) of succinate. Rats underwent
moderate hemorrhagic shock, were resuscitated with RS,MR7,MR13.6, orMR21, respectively, and were observed until the end of experiment.
Urinary samples were collected immediately after catheter insertion and before shock induction (𝑇 = 0–30min) and during shock induction
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mean ± SEM of 6 individual experiments. ∗∗𝑝 < 0.01 compared with the RS-control group.

supported by the results of malate’s plasma clearance in
severe HS. Even under these conditions (expecting a more
decelerated metabolism compared to moderate HS), plasma
malate concentrations showed a steep decline, partly up
to 54%, already 30min after resuscitation had ended (Fig-
ure 1(b)). These findings suggest that the plasma clearance
of malate should be less than 1 hour. Moreover, in moderate

HS only 5% of the infused malate was renally excreted,
whereupon the vast majority had already been excreted
within the reperfusion interval (Figure 4). In severe HS, an
increased renal excretion is virtually excluded, since uroflow
is excessively impaired (Figure 3(b)). Therefore, based on the
present results, it can be concluded that malate’s half-life is
between 30min and 60min under hemorrhagic conditions.
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These results are in line with the observations by Rietbrock
et al. who determined a half-life for malate of 22–24min in
healthy dogs [29]. Furthermore, malate’s rapid removal from
the blood as well as its excretion profile indicates uptake into
the cells with subsequent metabolism (see below).

Apart from the liver [30], skeletal muscle seems to be an
important malate consumer, since studies showed malate’s
positive impact in treating fibromyalgia [31] and its influence
on the exercising muscle [6], both probably related to an
improved energy metabolism. An ubiquitous metabolism
is further supported by the present results. Malate rapidly
disappeared from the blood (see above) and the increases in
the absolute urinary amounts of the two TCA intermediates
citrate and succinate suggest an additional participation of
the kidneys in malate’s metabolism after infusion. In line,
increased renal excretion of citrate following malate has also
been reported in healthy test subjects [32–34].

Of the metabolizable anions usually used in fluid therapy,
acetate’s plasma clearance after infusion follows first-order
kinetics, being absorbed within minutes [29, 35]. Acetate has
been reported to be renally excreted from less than 10% (in
healthy volunteers) [36] up to 40% [37] under the special con-
dition of acetate’s application right into the left renal artery
in an experimental dog model. Acetate can be metabolized
along with the liver by the heart, adipose tissue, kidneys,
and muscle [38]. Along with malate and acetate, lactate is a
common component in infusion solutions but is metabolized
mainly in the liver [39].This fact presupposes a sufficient liver
function, which is typically impaired in terms of hemorrhage
and hypovolemic conditions, respectively, leading to adverse
effects of the accumulated endogenous lactate and the given
lactate during resuscitation (e.g., exacerbated lactic acidosis,
inhibition of glycolysis) [17, 18, 40–42]. The adverse effects
are additionally fostered by nonexistent renal elimination of
lactate [43].

Previous experiments resulted in malate’s predominance
compared to Ringer’s lactate and Ringer’s acetate in resus-
citation of hemorrhagic shock independent of the shock
depth, regarding, for example, survival [15]. In line with these
results, regarding malate’s protective properties, we could
show thatMR increased themedian survival time after severe
hemorrhagic shock, compared to pure RS, independently
of the administered malate concentration. The prolonged
survival of shocked animals that were resuscitated with MR
may be due to a less severe organ injury, which is indicated
by the reduced release of intracellular enzymes. In turn,
the lower tissue damage could be closely associated with
the nearly ubiquitous metabolism of malate, thereby being
rapidly available, for example, as precursor for adenosine
triphosphate production, for various organs.

5. Conclusion

In conclusion, in the present experiments malate showed
delayed plasma half-life compared to acetate’s literature refer-
ences.Nevertheless, the still rapid disappearance from the cir-
culation and the marginal renal excretion during the exper-
imental time is of high interest, because the administered

malate dosage is virtually completely available to exert its
therapeutic actions.Malate’s protective effect in the treatment
of HS is probably related to its rapid incorporation into the
tissues and thereby, for example, being rapidly available as a
precursor for adenosine triphosphate production.The nearly
ubiquitous metabolism of malate may prevent a potential
overload of specific tissues thus giving it a clear advantage
over lactate-containing infusion solutions.
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