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“Candidatus Megaira polyxenophila” is a recently described member of Rickettsiaceae
which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria
can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living
in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed
a high frequency of these bacteria especially in freshwater environments, most likely
associated to eukaryotic hosts. The relationship of “Ca. Megaira polyxenophila” with
their hosts and their impact on host fitness have not been studied so far. Even
less is known regarding the responses of these intracellular bacteria to potential
stressors. In this study, we used two phylogenetically close species of the freshwater
ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora,
Oligohymenophorea) naturally infected by “Ca. Megaira polyxenophila”. In order to
analyze the effect of the symbiont on the fitness of these two species, we compared
the growth performance of both infected and aposymbiotic paramecia at different
salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0,
2, and 4.5 ppt. For the elimination of “Ca. Megaira polyxenophila” we established
an antibiotic treatment to obtain symbiont-free lines and confirmed its success by
fluorescence in situ hybridization (FISH). The population and infection dynamics during
the growth experiment were observed by cell density counts and FISH. Paramecia
fitness was compared applying generalized additive mixed models. Surprisingly, both
infected Paramecium species showed higher densities under all salinity concentrations.
The tested salinity concentrations did not significantly affect the growth of any of the two
species directly, but we observed the loss of the endosymbiont after prolonged exposure
to higher salinity levels. This experimental data might explain the higher frequency of “Ca.
M. polyxenophila” in freshwater habitats as observed from amplicon data.
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INTRODUCTION

Paramecium (Ciliophora, Oligohymenophorea) is a unicellular
protist with a broad, nearly global distribution in fresh and
brackish water bodies. This ciliate is studied, among other
things (Karunanithi et al., 2019; Kelz and Mashour, 2019;
Mayne et al., 2019; Soares et al., 2019; Arnaiz et al., 2020)
for the abundance and diversity of its endosymbionts (Floriano
et al., 2018; Garushyants et al., 2018; Grosser et al., 2018;
Potekhin et al., 2018; Sabaneyeva et al., 2018; Schrallhammer
et al., 2018; Castelli et al., 2019a,b; Fokin et al., 2019; Koehler
et al., 2019; Lanzoni et al., 2019; Plotnikov et al., 2019). Host-
symbiont interactions and their outcome have been studied
for example using Holospora (Lohse et al., 2006; Hori et al.,
2008; Fokin and Görtz, 2009; Nidelet et al., 2009; Duncan
et al., 2013, 2018; Banerji et al., 2015; Castelli et al., 2015;
Dusi et al., 2015; Garushyants et al., 2018; Grosser et al., 2018)
Caedibacter (Kusch et al., 2002; Dusi et al., 2014; Grosser
et al., 2018; Schu and Schrallhammer, 2018; Koehler et al.,
2019) and Preeria (Bella et al., 2016; Potekhin et al., 2018).
Despite an increasing number of studies, our knowledge about
the impact of symbionts on Paramecium is limited, especially
when considering that this ciliate is among the best studied
protists in regard to host-symbiont interactions. Less is known
regarding the response of these symbiotic systems exposed to
additional environmental stressors. Even in a balanced system,
the introduction of a stressor can have severe consequences. The
impact of a symbiont could either shift towards virulent behavior
(Dusi et al., 2014; Bella et al., 2016; Schu and Schrallhammer,
2018) and hence, represents an additional biotic stressor, or
alternatively has a positive effect on the host’s stress response
and thus on survival, e.g., for salinity stress (Smurov and
Fokin, 1998; Duncan et al., 2010) or heat shock (Hori and
Fujishima, 2003; Fujishima et al., 2005; Hori et al., 2008;
Duncan et al., 2010). Some authors (Fokin and Sabaneyeva,
1990; Smurov and Fokin, 1998) reported a higher bacterial
infection frequency in protists, i.e., Paramecium, living in
brackish environments compared to those living in freshwater
environments. This might imply an evolutionary advantage
for symbiont-bearing microorganisms in habitats exposed to
salinity stress. Members of the genus Paramecium are well
known to be highly sensitive not only to temperature stress
but also to increased salinity concentrations (Duncan et al.,
2010). Contrary, it could indicate that stressed protists are more
susceptible to infection.

In 2013, a bacterial species of the order Rickettsiales
has been described as endosymbiont of different ciliates
(Schrallhammer et al., 2013). All members of this order are
obligate intracellular bacteria hosted by eukaryotic organisms and
strictly depend on their hosts for multiplication (Dumler et al.,
2001) with the notable exception of the epibiont “Candidatus
Deianiraea vastatrix” (Castelli et al., 2019a). “Candidatus Megaira
polyxenophila” is remarkable as it has been found associated to
potential hosts spanning a huge diversity, e.g., various ciliates
(Sun et al., 2009; Vannini et al., 2005; Schrallhammer et al.,
2013; Zaila et al., 2017), amoebae (Hess, 2017) chlorophytes
and streptophytes (Hollants et al., 2013; Kawafune et al., 2015;

Yang et al., 2016) and even cnidarians (Fraune and Bosch,
2007; Sunagawa et al., 2009). Interestingly, the Megaira-
infected organisms cover a surprising ecological range from
freshwater lakes and ponds to brackish waters and even marine
systems. Recently, this bacterium has been found associated
with multiple Paramecium species, including several members
of the Paramecium aurelia complex representing a group of
phylogenetically very closely related species (Lanzoni et al., 2019).
In this work, we found “Ca. Megaira polyxenophila” (from here
referred as Ca. M. polyxenophila) naturally occurring in two
species of the P. aurelia complex, i.e., Paramecium pentaurelia
and Paramecium primaurelia.

The aim of this study is to analyze the role of Ca.
M. polyxenophila, determining the symbiont’s effect on the
growth of two phylogenetically close species of Paramecium
after establishment of the corresponding symbiont-free cell
lines via antibiotic treatment. The obtained infected and
aposymbiotic lines were then used to compare their performance
under standard laboratory conditions as well as at different
salinity levels corresponding to oligohaline brackish water.
Difference in growth performance depending on presence
or absence of Ca. M. polyxenophila will shed light on
the function of this endosymbiont and the role of this
symbiosis under different environmental conditions such as
increasing osmolality.

MATERIALS AND METHODS

Experimental Organisms and Their
Cultivation
Two different Paramecium species naturally harboring Ca.
M. polyxenophila were used as endosymbiont-infected lines
and to establish symbiont-free cells. The host species, as
indicated in Table 1, were P. pentaurelia US_YE9 (from
here on referred to as YE9) derived from Bloomington, IN,
United States, whereas P. primaurelia Rio Lg_Jac 2III (from
here on referred to as LgJac), was sampled in Rio de Janeiro,
Brazil. Both species are freshwater protists. After antibiotic
(AB) treatment (see below), we established aposymbiotic cell
lines viz. YE9AB and LgJacAB. All cultures were maintained
at 19◦C in Cerophyll medium (CM) inoculated with Raoultella
planticola DSM3069 (Enterobacteriales, Enterobacteriaceae)
(Chiellini et al., 2019).

Prior to the experiment, a single cell was isolated from
each cell line and was washed several times in spring water
from a freshly opened bottle (San Benedetto S. p. A. Italy) in
order to minimize the presence of potentially contaminating
microorganisms. The cells were then fed daily for 5 days with
CM inoculated with R. planticola to induce their exponential
growth. These monoclonal cultures (both naturally infected
and treated) are maintained since more than four years under
laboratory conditions.

Identification of Paramecium Species
Paramecium species were identified using morphological
characteristics (Fokin, 2010) and the cytochrome c oxidase 1
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TABLE 1 | Paramecium species used in this study, their endosymbionts and geographic origin.

Paramecium species Symbiont Symbionts’ localization Origin Sampled by

P. pentaurelia YE9 Ca. M. polyxenophila Cytoplasm Bloomington, IN, United States Yana Eglit

P. pentaurelia YE9AB None Established in this study

P. primaurelia LgJac Ca. M. polyxenophila Cytoplasm Rio de Janeiro, Brazil Sascha Krenek

P. primaurelia LgJacAB None Established in this study

gene (COX1, Barth et al., 2006). Total DNA was extracted using
a modified Chelex-based protocol as follows: approximately
100 paramecia cells of each culture were washed three times in
sterile spring water and transferred in 100 µl spring water into
0.5 ml Eppendorf tubes. The tubes were stored for at least 20 min
at −20◦C to freeze completely. Later, 100 µl Chelex solution
(Bio-Rad Laboratories, Inc., Hercules, CA, United States) was
added and the samples were incubated for 20 min at 99◦C.
Immediately after incubation the tubes were put on ice. PCR
products were obtained by using the forward primer M13 (5′-
GTA AAA CGA CGG CCA G-3′, Strüder-Kypke and Lynn, 2010)
for LgJac and degenerated forward primer F199dT-B (5′-TGT
AAA ACG ACG GCC AGT TCA GGW GCT GCM TTA GCH
ACY ATG-3′, Strüder-Kypke and Lynn, 2010) for YE9 as well as
the degenerated reverse primer R1143dT (5′-CAG GAA ACA
GCT ATG ACT ART ATA GGA TGM CCW CCA TAA GC-3′,
Strüder-Kypke and Lynn, 2010) for both strains. Purification
was performed with the NucleoSpin Gel and PCR Clean-up Kit
(Macherey-Nagel GmbH & Co., KG, Düren NRW, Germany),
and products were sequenced directly in both directions with
the same primers used for amplification at Eurofins Genomics
GmbH (Ebersberg, Germany).

In order to confirm their affiliation to the respective
Paramecium species, the obtained sequences were compared to
available Paramecium COX1 sequences. A Maximum likelihood
(ML) tree was calculated with IQ−TREE (Nguyen et al., 2015)
based on 34 sequences from 10 different Paramecium species
comprising 620 characters. The alignment was trimmed to
the length of the shortest sequence. The best-fit evolutionary
model (Kalyaanamoorthy et al., 2017) according to Bayesian
information criterion (BIC) is TPM2u+F+I+G4. Ultrafast
Bootstrap support (BS) with 1000 pseudoreplicates (Hoang et al.,
2018) was calculated by IQ-TREE.

Identification of “Ca. Megaira
polyxenophila”
Prokaryotic SSU rRNA gene sequences were amplified by a
touchdown PCR (Don et al., 1991) applying the following
annealing temperatures: 58◦C (30 s, 5 cycles), 54◦C (30 s, 10
cycles), and 50◦C (30 s, 25 cycles). For YE9, the bacterial primer
combination Bac16SFor (5′-AAG AGT TTG ATC CTG GCT
C-3′; modified from Neilan et al., 1997) and Bac16SRev (5′-
TAC GGC TAC CTT GTT ACG AC-3′; Neilan et al., 1997)
were used for both, PCR and direct sequencing from both
sides. PCR on LgJac was performed with the Alphaproteobacteria
specific forward primer 16S_F19b 5′-CCT GGC TCA GAA CGA
ACG-3′ (Serra et al., 2016) and the Bacteria specific reverse
primer 16S_R1522a 5′-GGA GGT GAT CCA GCC GCA-3′

(Serra et al., 2016) and sequenced using the internal primers 16S
F343 ND 5′-TAC GGG AGG CAG CAG-3′, 16S R515 ND 5′-ACC
GCG GCT GCT GGC AC-3′ and 16S F785 ND 5′-GGA TTA
GAT ACC CTG GTA-3′ (Serra et al., 2016) at GATC Biotech AG
(Konstanz, Germany).

A comparison with other 16S rRNA gene sequences of Ca.
M. polyxenophila and Ca. Megaira venefica was performed.
Therefore, we run a ML analysis with IQ−TREE based on an
alignment (ARB program; Ludwig et al., 2004) of 43 sequences
comprising 1343 characters, trimmed at both sides to the length
of the shortest sequence. The applied best-fit evolutionary model
is TIM3+F+G4 (according to BIC) and 1000 pseudoreplicates
were performed for Ultrafast BS.

Fluorescence in situ Hybridization
The presence or absence of the endosymbionts was verified
by performing fluorescence in situ hybridization (FISH)
experiments with the universal probe EUB338 (5′-ACT
CCT ACG GGA GGC AGC AG-3′) (Amann et al., 1990) in
combination with the genus-specific probe Megenus_487 (5′-
GCCGGGGCTTTTTCTGTTGGT-3′) detecting “Ca. Megaira”
(Lanzoni et al., 2019). About 20 ciliate cells were collected,
washed three times in water and fixed with 2% paraformaldehyde
(PFA, final concentration) on slides as described by Szokoli
et al. (2016). Hybridization and washing were carried out as
described by Lanzoni et al. (2019). Images were obtained with
a Leica DMR microscope, equipped with an HBO 50W/AC-L2
fluorescent lamp, a Leica DFC490 video camera, and Leica
IM1000 Software (v.1.0).

Elimination of Endosymbionts via
Antibiotic Treatment
The antibiotic treatment was performed in order to obtain
genetically identical symbiont-free lines from the infected ones.
Symbiont-free cells were obtained from both, P. pentaurelia YE9
and P. primaurelia LgJac, through antibiotic treatment (YE9AB
and LgJacAB, respectively). Therefore, approximately 30 cells
of the stock cultures were transferred to 500 µl of tetracycline
(Carl Roth, Karlsruhe, Germany) solution (130 µg ml−1)
and incubated for 24 h at 20◦C. Later, the cells were
washed four times. Individual cells were incubated again in
tetracycline solution at 20◦C for 24–48 h and then transferred
to CM inoculated with R. planticola as food organism. After
some rounds of cell division, single cells were treated again
with tetracycline for 24 h and subsequently transferred into
bacterized CM. The success of the antibiotic treatment was
confirmed by FISH.
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Fitness Experiment to Determine the
Impact of the Endosymbiont on Host
Growth at Different Salinity Conditions
In order to prime the cultures for the fitness experiment at
different salinity conditions, Paramecium cells were adapted
to the different salinity concentrations and fed daily for
three days with bacterized CM to induce exponential growth
(Supplementary Figure S1).

The cell number for each line was adjusted to approximately
the same density (ca. 100 cells ml−1) with sterile CM. To set-
up this experiment, a mix containing 8 ml of CM (in case
of 0 ppt) or 8 ml of salinity stock solution (8 ppt for a final
concentration of 2 ppt; 18 ppt for 4.5 ppt), 12 ml bacterized CM
and 20 ml Paramecium culture (approximately 100 cells ml−1)
were added, the total volume was set to 40 ml per line. The
salinities were chosen to represent two different oligohaline
brackish water conditions after a preliminary experiment to test
the salinity tolerance of the two freshwater paramecia species
(data not shown). This mix was then split into three experimental
units for each line per salinity combination with 10 ml each
(approximately 50 cells ml−1) (Supplementary Figure S1).

Each experimental unit was fed once a week with 3 ml of
a 1:4 dilution of the respective salinity stock solution (sterile
water, 8 or 18 ppt) and bacterized CM, to sustain the paramecia
and to maintain a constant salinity concentration throughout the
experiment (either 0, 2, or 4.5 ppt) for a period of 28 days.

Cell density was determined by counting under a
stereomicroscope. The counting days were established as
reported in Figure 1 in which T0 is the starting day of the salinity
experiment. For each sample, three technical replicates each with
a volume of 50–100 µl, depending on the cell number, were
counted and the mean of cells per ml was calculated. Samples for
cell density estimation were counted and then fixed to perform
FISH as described above. These samples were collected twice
per week for the duration of the experiment (28 days). Salt
stock solutions were prepared by dissolving the corresponding
amount of Tropic Marine Salts (Red Sea Salt Meersalz, Red Sea,
Düsseldorf, Germany) in deionized water and pasteurizing for
5 min at 95◦C.

Statistical Analysis
The influence of host species with different infectious status
and in different salinity settings on Paramecium cell density was
assessed by using a generalized additive mixed model (GAMM)
with gaussian error (R, package: mgcv, version 1.7-28 (Wood,
2017). GAMMs allow assessing the influence of covariates on
a response variable without specifying a priori fixed-function
while accounting for non-independence of data due to successive
measures in time. For this reason, time has been included both,
in the fixed part, as smoothed term, and in the random part
to model dependence. In particular, time has been smoothed
independently for different combinations of host species, initial
infection status and salinity. Fixed effect terms (infection status,
salinity and host species) were modeled using a basis dimension
of k = 4. The significance of the fixed terms and interactions
has been obtained by using the anova.gam function of the mgcv

package. The script and dataset are available as Supplementary
Table S1 and Supplementary Data Sheet S1. Model accuracy was
estimated by the root-mean-square error (RMSE) performing a
10-fold cross-validation on the fixed part of the model using the
CVgam function of the gamclass R package. The analysis was
performed using R, version 3.6.0.

RESULTS

Elimination of Ca. M. polyxenophila
Aposymbiotic cells were obtained from both, YE9 and LgJac,
through antibiotic treatment producing respectively YE9AB and
LgJacAB. A cell was considered successfully treated when no
signal with the genus-specific probe Megenus_487 (Lanzoni et al.,
2019) was observed from food vacuoles, cytoplasm, or nuclei.
Successful elimination of Ca. M. polyxenophila was verified
repeatedly by FISH (Figure 2). In none of the examined cells, Ca.
M. polyxenophila was detected after the described tetracycline
treatment. Other effects of the antibiotic treatment than symbiont
elimination, e.g. delayed or abnormal cell division or population
growth, were not observed.

Confirmation of Host and Endosymbiont
Identities
Morphological analyses of the Paramecium strains from
Bloomington and Rio de Janeiro revealed the strains belonging
to the Paramecium aurelia-complex. This observation was
confirmed by COX1 sequence analysis (Supplementary
Figure S2). More precisely, LgJac affiliated with other
P. primaurelia sequences whereas YE9 belonged to P. pentaurelia.
Both affiliations received high BS support (98 and 99%,
Supplementary Figure S2).

The endosymbiont’s 16S rRNA gene sequences affiliated with
other sequences of Ca. M. polyxenophila with high BS support
(97%, Supplementary Figure S3). The sequence similarity (data
not shown) between the type strain of this species (AJ630204)
and the here studied intracellular bacteria was 99.93% (LgJac)
and 99.55% (YE9).

The obtained sequences are available from NCBI GenBank
with following accession numbers: COX1 sequences MT362542
(LgJac) and MT362543 (YE9), 16S rRNA gene sequences
MT351038 (LgJac) and MT351039 (YE9).

Fitness Impact of Ca. M. polyxenophila
and Salinity on Paramecia
Time included in the model as the smoothed effect revealed
a strongly significant effect on estimated degrees of freedom
as expected for a nonlinear density growth (Supplementary
Data Sheet S1). Among the three fixed factors, host species
and infection status showed a highly significant effect (Table 2).
Two interaction terms also showed a significant effect, the
interaction between infection status and Paramecium species and
the interaction between salinity and species (Table 2).

According to the GAMM results which revealed a significant
effect for host species, a substantial difference in cell densities
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FIGURE 1 | Growth of Paramecium lines either infected with Ca. Megaira polyxenophila or aposymbiotic at different salinity concentrations over a period of 28 days.
Paramecium pentaurelia YE9 infected (green line) with Ca. Megaira polyxenophila in comparison with the respectively symbiont-free line YE9AB (purple line) at 0 ppt
salinity (A), 2 ppt salinity (C), and 4.5 ppt salinity (E). Paramecium primaurelia LgJac infected (green line) with Ca. M. polyxenophila in comparison with the
respectively symbiont-free (purple line) LgJacAB at 0 ppt salinity (B), 2 ppt salinity (D), and 4.5 ppt salinity (F). Data points represent three experimental units and the
growth curve is represented by the mean of these three units.

between the two Paramecium species were observed as YE9 grew
better in comparison with LgJac, reaching 800 and 400 cell ml−1,
respectively (Figure 1). At the beginning of the experiment, the
starting amount of cells was the same for each line (approximately
50 cells ml−1).

The inspection of growth curves and GAMM results indicated
that both infected strains showed a generally higher cell
density compared to their aposymbiotic counterparts. A strong
significant interaction between Paramecium species and infection
status was caused by the very strong difference in cell density
of YE9 (between 600 and 700 cell ml−1 at the end of the

experiment) compared to YE9AB (200–300 cell ml−1) which
was not observed in LgJac (Figure 1). The weak significant
interaction between salinity and species was due to the density
decrease of LgJac and LgJacAB at the higher salinity levels,
revealing its stronger salinity stress susceptibility compared to
YE9 (Figure 1).

Both Paramecium species experienced growth advantages in
presence of Ca. M. polyxenophila at every salinity condition
(Figure 1). There was no obvious general effect of cultivation
at oligohaline brackish conditions, neither on infected nor
aposymbiotic lines.
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FIGURE 2 | Fluorescent in situ hybridization for the visualization of Ca. M.
polyxenophila in Paramecium pentaurelia YE9 (A,B) and Paramecium
primaurelia LgJac (E,F). Fluorescent in situ hybridization for the two
symbiont-free cell YE9AB (C,D) and LgJacAB (G,H) after antibiotic treatment
using the universal bacterial probe EUB338 (A,C,E,G) and Megenus_487
specific for Ca. Megaira (B,D,F,H). Arrows indicate Ca. M. polyxenophila in
the host’s cytoplasm. Scale bar = 10 µm.

Impact of Salinity on Ca. M.
polyxenophila Prevalence
Infected and aposymbiotic paramecia cells of both species
were observed by FISH at all sampling time points for all
salinity concentrations. The aposymbiotic cells maintained their
symbiont-free condition for the complete experiment duration
at all tested salinities. FISH results showed that Ca. M.
polyxenophila was present in YE9 and LgJac at 0 ppt with
a prevalence of 100% and in a constant amount at all time
points (Figure 3). For the initially Megaira-positive cells at 2 and
4.5 ppt, the 100% infection status was maintained until day 17
for both species and declined subsequently. Both species reached
the lowest bacterial prevalence at the end of the experiment at
4.5 ppt (Figure 3).

While the percentage of P. pentaurelia YE9 cells with detected
bacterial symbionts continuously declined after day 17 at 4.5 ppt

TABLE 2 | ANOVA style-results of the generalized additive mixed models (GAMM)
analysis on the salinity, infection, and species on cell density (cell ml−1).

df F p-Value

Salinity 2 1.076 0.343

Infection status 1 27.792 <0.001

Host species 1 49.660 <0.001

Salinity × infection status 2 0.787 0.456

Salinity × host species 2 3.838 0.023

Infection status × host species 1 22.297 <0.001

Salinity × infection status × host species 2 0.333 0.717

Model accuracy was measured by root-mean-square error (RMSE). R2

adj. = 0.80; RMES = 79.13.

FIGURE 3 | Bacterial prevalence (%) of infected species P. pentaurelia and
P. primaurelia at three different salinity concentrations (0, 2, and 4.5 ppt) over
28 days. Error bars represent the standard error (n = 3).

(Figures 3, 4), at 2 ppt the strongest drop in prevalence was
observed at day 21. The number of infected cells suddenly
recovered and then decreased again. As our approach was to
examine approximately 20 cells out of a 1 ml sample at each time
point, this strong fluctuation might by chance represent an outlier
with such a high number of cells which had spontaneously lost
their symbionts.

In case of P. primaurelia LgJac, the decrease of Megaira-
positive cells was very similar at 2 and 4.5 ppt. At the end of the
experiment, the infection prevalence dropped to approximately
40% (Figure 3).

DISCUSSION

Our data suggest that the major effect of Ca. M. polyxenophila
on Paramecium hosts is not harmful. While Rickettsiaceae usually
are considered as obligate intracellular parasites (DeLong et al.,
2014) at least in the case of Wolbachia a wide continuum of
symbiotic interactions, ranging from mutualistic and essential
for host development, fertility, and survival in filarial nematodes
to facultative and parasitic in many arthropod species, has
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FIGURE 4 | Fluorescent in situ hybridization of Paramecium pentaurelia YE9
(A–D) and Paramecium primaurelia LgJac (E–H). Examples for an infected
cell (A,B,E,F) and one that had spontaneously lost Ca. Megaira polyxenophila
(C,D,G,H) at 4.5 ppt 17 days after the beginning of the growth experiment,
using the universal bacterial probe EUB338 specific for 90% of known bacteria
(A,C,E,G) and Megenus_487 specific for Ca. Megaira (B,D,F,H). Arrows
indicate Ca. M. polyxenophila in the host’s cytoplasm. Scale bar = 10 µm.

been observed (Landmann, 2019). Likely, the fitness effects of
Ca. M. polyxenophila vary similarly between different hosts
and different environmental conditions. Nevertheless, these
intracellular bacteria are at least conditionally mutualistic in the
two examined Paramecium species without providing essential
nutritional benefits.

Both P. pentaurelia and P. primaurelia exhibit improved
growth under all tested conditions in presence of the symbiont.
Contrary to our expectations, the tested species showed no
obvious fitness reduction by increasing salinity levels. This
trend indicates that at least the here applied rather mild salt
concentrations corresponding to the lower border of oligohaline
brackish conditions might be below the physiological stress
level of these paramecia. Like many unicellular organisms,
Paramecium constantly encounter changing environmental
conditions e.g., differences in water temperature between seasons,
day and night, or even during a day according to the
varying solar irradiation. Some fluctuations of environmental
conditions remain within the physiological tolerance breadth
(Krenek and Berendonk, 2009) whereas others reach stress levels.
When paramecia are gradually adapted to stress conditions
instead of being suddenly exposed, they can increase their

resistance to this particular stressor (Smurov and Fokin, 1998;
Tsukuda, 1989). As the cells examined in the fitness assay
underwent an acclimatization phase prior to the experiment
the applied salinity conditions remained within the organisms’
tolerance range.

Fokin and Sabaneyeva (1990) observed that ciliates living
in brackish water apparently harbor more frequently bacterial
infections than those in freshwater. We observed a decreasing
prevalence of Ca. M. polyxenophila starting 2 weeks after the
cells were exposed to increased salinity concentrations (2 and
4.5 ppt) while those at freshwater-like conditions remained
to 100% infected until the end of the experiment. This is
neither a confirmation nor a rejection of the hypothesis
that brackish environments favor bacterial infections, but it
demonstrates that elevated salt concentrations disrupt the
symbiont maintenance in the Ca. M. polyxenophila-Paramecium
aurelia system. Thus, we speculate that long-term exposure
to mild environmental stress causes an accumulation of stress
signals, for example, an accumulation of misfolded proteins
or compatible solutes. While the cellular response of the
host will have not necessarily immediate effects on growth,
it might either impair bacterial cell division or accidentally
cause their expulsion. Alternatively, the increased energy
demand in order to adapt to prolonged stress exposure might
result in a more directed elimination of the symbionts by
lysosomal attack.

As P. pentaurelia YE9 and P. primaurelia LgJac both benefit
from the presence of their symbionts, long-term exposure to
brackish salinity conditions will have indirect negative effects on
these paramecia.

The loss of Ca. M. polyxenophila in brackish conditions
might indicate, despite the above mentioned description of
this symbiont from marine and brackish host organisms,
that they have an adaptation towards freshwater habitats
and/or freshwater hosts. This speculation is supported
by amplicon sequencing of environmental samples.
More than 25% of the amplicon datasets associated with
freshwater habitats screened by Lanzoni et al. (2019)
revealed positive hits for Ca. M. polyxenophila, while
the number of marine datasets with signatures of this
symbiont was below 5%.

This study provides the first functional analysis of the
frequent and promiscuous endosymbiont Ca. M. polyxenophila.
So far, speculations about a possible opportunistic or parasitic
lifestyle of these bacteria (Schrallhammer et al., 2013) are
based only on the fact that strains of Ca. M. polyxenophila
from phylogenetically and geographically distant hosts
exhibit very high (99–100%) 16S rRNA gene sequence
similarities. This has been considered as strong indication
for horizontal transmission capabilities. So far, infection
experiments with these bacteria have not been successful under
laboratory conditions (Lanzoni et al., 2019). Functional
studies regarding the interaction of this symbiont with
its host are impaired by (i) its obligate intracellular life
style, a trait Ca. M. polyxenophila has in common with
other members of Rickettsiales (Castelli et al., 2016) (ii)
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the lack of successful protocols for experimental infection
experiments, and so far (iii) for symbiont elimination to
obtain genetically identical but aposymbiotic (host) organisms.
A successful treatment has been established in this study.
Similar approaches for generation of the aposymbiotic lines
have been used in case of other endosymbionts of Paramecium
(Kusch et al., 2002; Dusi et al., 2014; Bella et al., 2016;
Grosser et al., 2018). The fact that members of Rickettsiaceae
are naturally resistant to a variety of antibiotics (Rolain
et al., 1998) did complicate the establishment of the present
protocol. The aposymbiotic lines LgJacAB and YE9AB have
been maintained under routine laboratory conditions since
at least 5 years. While we cannot completely exclude the
small chance that the antibiotic treatment affects Paramecium
fitness or eliminated free-living bacteria contributing to the
observed fitness effects and we would have preferred additional
experiments such as infection of naïve cells, those are presently
not feasible. Thus, we provide the very first insights into
possible effects of Ca. M. polyxenophila on its host. As we
observed differences in the impact of the endosymbiont in two
very closely related host species, it is possible that in more
divergent hosts an even broader spectrum of host-symbiont
interactions will be observed. As Ca. M. polyxenophila infected
hosts have been isolated from rather different environments
(Lanzoni et al., 2019) the diversity of relevant abiotic factors
might further entangle the analysis of the ecological role of
this endosymbiont.
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