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Abstract

A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation
kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing
is required to create the observed deformation kinematics is central to the understanding of how animals control
movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming
to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle
contractions (‘‘active’’ swimming) or by forces imparted by the surrounding fluid (‘‘passive’’ swimming), is obtained. We
show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion.
We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to
movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is
important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative
understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of
swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature
on the optimal value of stiffness for maximum speed are explained.
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Introduction

The movement of animals like undulatory swimmers is an

emergent behavior that starts from muscle activation [1]. There

are two primary issues in undulatory swimming. The first issue is

to understand how muscle activation leads to the observed

deformation kinematics. The second issue is to understand how

deformation kinematics produce movement of the body as a

whole, e.g., forward translational motion.

Muscle activation, body mass, elastic properties, and interac-

tions with the environment cause the observed deformation of

undulatory swimmers. The deformation kinematics of undulatory

swimmers can be complex in general. The question of whether

precise and complicated activation of muscles is essential to

generate specific deformation kinematics is important to under-

stand how these swimmers control their movement. The

deformation of the body has been regarded to have two

components. The part that is caused by active muscle forcing is

the ‘‘active’’ component, whereas the part that results due to fluid

forcing is the ‘‘passive’’ component [2,3]. The active and passive

components are strongly coupled [2,3]. For example, Liao et al.

[4] carried out experiments on a dead trout in the wake of a

cylinder and observed its swimming motion. Such swimming

caused solely by surrounding fluid forces is referred to as ‘‘passive

swimming’’. They found that the ‘‘passive swimming’’ gait was

similar to the ‘‘active swimming’’ gait of the trout. Here,

swimming caused by muscle activation is referred to as ‘‘active

swimming.’’ It is challenging, in general, to separate the similar

looking active and passive components of the deformation.

According to the active-passive decomposition framework, passive

swimming has only passive component of deformation. However,

active swimming has both active and passive deformation

components because muscle activation as well as external fluid

forces are present. A detailed mathematical description of passive

motion induced by external vorticies can be found in Alben [5].

Work by Tanabe and Kaneko [6] on a falling paper shows that

fluttering and rotation of the falling paper can be periodic or

chaotic depending upon the external forcing from the fluid. Active

swimming can be due to muscle forcing in a swimming animal or

due to active motor torques in a robotic swimmer [7–12]. The

observed body deformations are a response to the combined

internal (muscle/motor) and external (fluid) forcing which dictates

the swimming behavior of a system.

The question of how deformation kinematics lead to forward

translational motion is crucial to understand optimal conditions for

movement. Some swimming gaits are optimal for fast swimming

(during prey capture or predator escape), some are optimal for

conserving energy (keeping a fixed station), whereas some optimal
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gaits combine both these objectives (traveling long distances).

Several studies on optimal swimming motion in the noninertial

regime have been done in the past [13–17]. For example,

Spagnollie and Lauga [18] showed that the helical shape for an

infinitely long flagellum leads to the fastest swimming motion.

Pironneau and Katz [19] studied the optimal flagellar undulations

that lead to minimal energy expenditure. Avron et al. [20] used

conformal mapping techniques to find optimal two-dimensional

microswimmers. Optimized artifical microswimmers have been

studied by Dreyfus et al [21]. Wilkening and Hosoi [22] analyzed

optimal shapes of a swimming sheet at low Reynolds number using

analytical and numerical techniques. A comprehensive review of

swimming at low Reynolds number and optimal conditions in the

noninertial regime can be found in Lauga and Powers [23]. In

comparison, an understanding of optimal conditions for swimming

in the inertial regime is much less developed.

There are some key differences in swimming in the noninertial

and inertial regimes. For example, in the noninertial regime, the

power required to generate body deformations at each instant is

fully dissipated into the surrounding fluid. However, in the inertial

regime some part of the power is required to accelerate the body.

Analysis of optimal swimming motion in the inertial regime is

further complicated by nonlinear effects. Kern and Koumoutsakos

[24] used fully resolved CFD techniques based upon unstructured

grids to obtain the optimized kinematics of a two- and three-

dimensional eel for fast and efficient swimming. Tytell et al. [1]

used an immersed body technique to understand the effect of body

stiffness and inertia on the motion of an undulatory swimmer.

McMillen et al. [25] used a calcium dynamics model for muscle

contractions to understand the swimming motion of an anguilli-

form swimmer in the inertial regime. In spite of this progress,

complicated interactions between muscle forcing, hydrodynamic

forces, inertia, and elastic properties of a swimmer make it difficult

to identify the key control parameters that lead to optimal

swimming.

In this work a chain-link model [25–28] of undulatory

swimming is used as a model system to interrogate the emergence

of deformation and movement in response to forcing. We consider

swimming to be a forced damped oscillation problem. Deforma-

tions due to muscles and due to interaction with the environment

(fluid) are not differentiated. The system is forced by muscles

(active swimming), the surrounding fluid (passive swimming), or

both, among various possibilities. It is shown that a body has

fundamental modes of deformation with corresponding natural

frequencies. Forcing triggers the first few deformation modes of

the body. An understanding emerges of how the deformation in

turn generates forward translational motion of the body. Relatively

simple forcing patterns can trigger complex deformation kinemat-

ics that lead to movement. For a given muscle activation, the

forcing frequency relative to the natural frequency of the damped

oscillator is important for the emergent deformation characteristics

of the body. We quantitatively show how the power generated

from muscle work is used in creating body deformations and then

it is dissipated into the surrounding fluid. A closed form expression

for swimming velocity is derived by a leading-order analysis of the

equations of motion. Optimal kinematics for fast swimming

motion are obtained from the closed form expression. This helps

identify the key parameters controlling the optimal conditions for

fast swimming. The kinematics obtained for fast swimming, even

faster than those identified in [24], are verified by performing fully

resolved CFD simulations in the nonlinear regime. This approach

also leads to an understanding of optimal body stiffness and forcing

frequencies of muscle activation.

In the following sections, the forced damped oscillation

formulation is presented first. It is then used to elucidate how

swimming motion is generated. Examples of active and passive

swimming that arise because of different types of forcing of the

system are presented including a discussion on why typical

swimming motions involves lower deformation modes. The

pathway of power transfer during the swimming cycle is discussed

thereafter. Optimal deformation kinematics for fast swimming are

discussed next, followed by optimal parameters for fast swimming.

Methods

We present the nonlinear equations of motion, based on drag

models, for a generic undulatory swimmer based upon chain-link

configuration. We refer to this as a reduced-order model. Leading-

order equations of motion are derived thereafter, which unifies the

dynamics of an undulatory swimmer in various scenarios (internal

muscle activation or external force). A comparison between the

leading-order and nonlinear equations of motion is presented for

completeness.

2.1 A reduced-order model for undulatory swimming
We model the body of an undulatory swimmer as a planar chain

of interconnected rigid links (Fig. 1) and use a resistive drag model

to account for the hydrodynamic forces acting on the body. The

rigid links forming the body follow constraint dynamics, i.e., the

endpoints of the two adjacent links are forced to lie on top of each

other at the common joint. To solve the equations of motion, the

forces at the link joints, needed to maintain this constraint, can be

eliminated from the equations, and the remaining equations can

be solved for the independent variables (velocities of each link).

This approach is followed by McMillen et al. in [25,28]. In our

present analysis, we implement this constraint by connecting the

links by stiff springs at the joints. We will refer to this approach as

the penalty method (PM). The stiff springs penalize the system if two

links at a common joint try to separate from each other. This

approach has been used in the fully resolved immersed body (IB)

method of simulations [1,29–32]. Implementing the constraint via

stiff springs will help us obtain the leading-order equations of

Author Summary

The damped harmonic oscillator framework has been
applied to interrogate numerous engineering systems like
the tuned mass damper used in power transmission,
automobiles, and buildings to reduce vibrations. We apply
the same framework to undulatory swimming to under-
stand the emergence of movement due to muscular and/
or environmental forcing. It helps elucidate why flexible
bodies can indeed be propelled forward by not only the
internal muscular forcing but also by external fluid forces
as reported earlier in which dead trout were found to swim
in the wake of cylinder. We show how forcing triggers the
first few deformation modes of the swimmer similar to
how the appropriate forcing triggers the fundamental
deformation modes on a guitar string. We show how the
lower deformation modes produce the best forward
propulsion of the body. This insight reveals that swimming
is viable for small enough frequencies of neuromuscular
activation relative to the natural frequencies of the body
and for sufficiently stiff elastic properties. Thus, these
results identify the key mechanistic parameters that would
have been crucial to the evolutionary emergence of
swimming animals. The proposed framework can help
understand neural control of movement in swimming as
well as control of underwater vehicles.

Undulatory Swimming

PLOS Computational Biology | www.ploscompbiol.org 2 June 2013 | Volume 9 | Issue 6 | e1003097



motion (section 2.4). When we are using the resistive drag model

(section 2.2) with nonlinear equations of motion, we refer to the

model as the nonlinear resistive chain-link PM model. When we

are using the resistive drag model with leading-order equations of

motion, we will refer to it as the leading-order resistive chain-link

PM model.

To derive the nonlinear equations of motion, we isolate a single

link which is assumed to be cylindrical in shape of length h and

radius a. By analyzing the forces and moments on the link, we can

write Newton’s law of motion for it. The end links are treated

differently from the internal links because they have free boundary

conditions. For the ith internal link, the equations of motion are

written as

Ii _vvi~Mi{Mi{1z Fi,yzFi{1,y

� �h

2
cos wi{ Fi,xzFi{1,xð Þh

2
sin wi,

ð1Þ

mi _vvi~Wi,yzFi,y{Fi{1,y, ð2Þ

mi _uui~Wi,xzFi,x{Fi{1,x, ð3Þ

in which x and y are the axial and transverse directions,

respectively. xi, yi denote the coordinates of the center of mass

(COM), wi is the angle with the horizontal axis, mi is the mass, and

Ii is the rotational inertia of the ith link. vi~ _wwi is the angular

velocity, ui~ _xxi is the axial velocity, and vi~ _yyi is the transverse

velocity of the ith link. Taylor’s resistive model [33] is used for the

hydrodynamic forces Wi,x and Wi,y in the axial and transverse

directions, respectively. Fi,x and Fi,y are the forces at the joint in

the axial and the transverse directions, respectively, and are

written as

Fi,x~K xiz1{xi{
h

2
cos wiz1{

h

2
cos wi

� �
, ð4Þ

Fi,y~K yiz1{yi{
h

2
sin wiz1{

h

2
sin wi

� �
: ð5Þ

The spring stiffness coefficient K is assumed to be the same in both

axial and transverse directions. Mi in Eq. (1) is the moment

produced by the muscles. Following the model for muscle moment

in [28], the moment Mi is written as

Mi~EJi
wiz1{wi

h
{ki

� �
zdi

_wwiz1{
_wwi

h

 !
, ð6Þ

in which E denotes the Young’s modulus of the material of the

body, di is the viscoelastic damping coefficient, Ji is the cross

sectional moment of area of the link, and ki is the preferred

curvature at the ith joint. The first term on the right-hand side of

Eq. (6) is a model for the activation by the muscles. It is

proportional to the difference between the actual curvature with

respect to the preferred curvature ki. The preferred curvature can

be modeled in terms of neuronal models for muscle activation

[25]. Those details are not considered in this work. Instead, the

preferred curvature is computed based on some given preferred

shape of the body. Thus, according to the model, muscle torques

are activated when the swimming body tries to match its preferred

shape.

2.2 Resistive drag models
The drag force depends upon the local velocity of the body

relative to the fluid. Depending upon the Reynolds number (Re),

Figure 1. A chain-link model for an undulatory swimmer. Each rigid link is connected to its neighboring link(s) at the common joint by stiff
springs in x and y directions. The center of mass of each link and its inclination with the x axis is denoted by xi , yi , and wi , respectively.
doi:10.1371/journal.pcbi.1003097.g001

Undulatory Swimming
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there are different drag models. Taylor [33] used experimental

data to propose a drag model for smooth cylinders kept in a

perpendicular flow for a range of Reynolds number (20v

Rev105). McMillen et al. [28] decomposed the drag force into

normal and tangential components for smooth oblique cylinders

based upon Taylor’s fitting of drag coefficients [33]. According to

[28], drag force (per unit length) acting at the COM of smooth

oblique cylinder of radius a is decomposed into normal and

tangential components in terms of the normal and tangential

velocities, v\ and vE, respectively, and is written as

DN~arf CNDv\Dv\z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8rf amDv\D

p
v\, DT~2:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8rf amDv\D

p
vE, ð7Þ

in which mf is the viscosity of the fluid, rf is the fluid density, DN

and DT are the drag forces (per unit length) in the normal and

tangential directions, respectively. The value of CN, used in Eq. (7)

varies between 0.9 to 1.1 for the Reynolds number range

20vRev105. The normal and tangential drag forces can be

written as

W~{DNn{DTt, ð8Þ

in which n and t denote the normal and tangential vectors,

respectively, to the link.

For low Re flows, using slender body theory, Lighthill [34] was

able to decompose the drag forces into tangential and normal

components. He derived expressions for drag coefficients in the

normal (b\) and tangential (bE) directions as

b\~L
4pm

ln 2q=rð Þz0:5

� �
,

bE~L
2pm

ln 2q=rð Þ

� �
,

ð9Þ

in which L is the body length, r is the body radius and q~0:09l
(with l being the wavelength of the undulation). Using this drag

model the drag forces on a link at low Re can be written as

W~{b\v\n{bEvEt: ð10Þ

We use resistive drag models as given by Eq. (8) for intermediate

to high Reynolds number (100vRev105) and Eq. (10) for low

Reynolds number (10vRev100). Tytell et al. [1] showed that the

lateral forces calculated by the resistive drag model lag behind the

lateral forces when calculated by fully resolved CFD simulations.

McMillen [25,28] showed that the resistive drag model is a good

approximation to qualitatively capture the forward swimming

velocity profile. For the purposes of this work, we use the resistive

drag model. This is because while the resistive lateral forces might

lag behind the actual lateral forces as shown by Tytell et al. [1], it

is the force balance in the axial direction that determines the axial

swimming velocity. Even if the reactive force model is used for the

thrust component of the axial motion, it should be equated to the

resistive drag force in the axial direction according to the theory by

Lighthill [35]. In addition, in the average sense, both the reactive

and the resistive force models have similar nonlinear character-

istics. Finally, as will be shown in this paper, the results obtained

from the resistive model are qualitatively consistent with our fully

resolved CFD calculations.

2.3 Validation of the reduced-order model
Validation of the nonlinear resistive chain-link PM model is

done using the parameters reported in [28]. The swimming

motion is actuated by a traveling wave of preferred curvature. The

preferred shape of the body is assumed to be a backward traveling

wave of the form

y0~B cos
2px

L
{2pft

� �
, ð11Þ

in which L is the bodylength of the fish, B is the amplitude of the

traveling wave, and f is the frequency of the traveling wave, which

is taken to be 2 Hz. The preferred curvature is computed from this

preferred shape. The body is assumed to have a uniform circular

cross section of radius 1 cm and length 20 cm. This gives a

wavespeed Uw~Lf of 40 cm/s. The Young’s modulus of the

body is taken to be E~0:7 MPa from [28]. The spring stiffness

coefficient is taken to be 5000 (N/m). This value proved sufficient

to keep the two links together at the common joint. The water

viscosity and density are taken to be m~10{3 Pa:s and

rf ~1 g=cm3. The values of the various parameters are summa-

rized in table 1. For these values, the Reynolds number defined by

Re~2uarf=m~8000. For drag forces, we use Taylor’s drag model

from Eq. (8), with suitable drag coefficients as in Eq. (7). The body

is discretized into 40 links of equal length. To solve the equations

of motion (1)–(3) we use MATLAB’s built-in time adaptive ODE

solver ode45 with time steps bounded to 1 ms.

To confirm that PM approach gives accurate results, we

compared its solution with the approach in [28], in which they

used constraints at the joints between the links instead of using stiff

springs. Fig. 2 shows the comparison of the PM model with the

model in [28]. Two amplitudes of the backward traveling wave are

considered (Fig. 2(a) and 2(b)). As can be seen in the figure, the two

models are in good agreement with each other.

2.4 Leading-order model for undulatory swimming
To gain insight into how muscle activation or external forcing

leads to forward translation motion of an undulatory swimmer,

leading-order equations of motion are derived. The derivation is

based on the assumption of small body deformations. Thus, angles

wi made by the rigid links with the horizontal axis are assumed to

be small. We approximate terms like cos w&1{
w2

2
zO(w4) and

sin w&wzO(w3).

The leading-order axial momentum equation is derived from

Eqs. (3) and (4) as

Table 1. Parameter values.

Parameter Value

Length (L) 20 cm

Links (N) 40

Frequency (f) 2 Hz

Radius (r) 1 cm

Young’s modulus (E) 0.7 MPa

Viscosity of water (m) 10{3 Pa:s

Density of water (rf ) 1 g=cm3

doi:10.1371/journal.pcbi.1003097.t001
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mi _uui~Wi,xzK½xiz1{2xizxi{1{
h

2
(cos wiz1{cos wi{1)�

&Wi,xzK½xiz1{2xizxi{1

{
h

2
(1{

w2
iz1

2
{1z

w2
i{1

2
zO(w4

iz1,w4
i{1))�

&Wi,xzK½xiz1{2xizxi{1{
h

2
(
w2

i{1

2
{

w2
iz1

2
)�zO(w4):

ð12Þ

The leading-order transverse momentum equation is derived from

Eqs. (2) and (5) as

mi _vvi~Wi,yzK ½yiz1{2yizyi{1{
h

2
(sin wiz1{sin wi{1)�

&Wi,yzK½yiz1{2yizyi{1{
h

2
(wiz1{wi{1zO(w3

iz1,w3
i{1))�

&Wi,yzK½yiz1{2yizyi{1{
h

2
(wiz1{wi{1)�zO(w3):

ð13Þ

The leading-order rotational momentum equation is derived from

Eqs. (1), (4), and (5) as

Ii _vvi~Mi{Mi{1zK
h

2
cos(wi)

½yiz1{yi{1{
h

2
(sin wiz1z2 sin wizsin wi{1)�

zK
h

2
sin(wi)½xiz1{xi{1{

h

2
(cos wiz1z2 cos wizcos wi{1)�

&Mi{Mi{1zK
h

2
½yiz1{yi{1{

h

2
(wiz1z2wizwi{1)�

zK
h

2
wi½xiz1{xi{1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

&2h

{2h�zO(w3
i{1,w3

i ,w3
iz1)

&Mi{Mi{1zK
h

2
½yiz1{yi{1{

h

2
(wiz1z2wizwi{1)�zO(w3):

ð14Þ

The leading-order analysis of the drag terms, Wi,x and Wi,y, in

Eqs. (12) and (13) is performed to obtain the complete set of

leading-order equations. Substituiting v\ and vE in terms of ui and

vi, n and t in terms of wi in Eq. (10), we obtain the x component of

the drag force as

Wi,x~{bE ui cos wizvi sin wið Þcos wi

zb\ {ui sin wizvi cos wið Þsin wi

~{bEui cos2 (wi){
bE

2
vi sin(2wi)

{b\ui sin2 (wi)z
b\

2
vi sin(2wi):

ð15Þ

Defining bavg~(bEzb\)=2, Db~b\{bE and substituting bE and

b\ in terms of bavg and Db in Eq. (15) we get

Wi,x~{bavguiz
Db

2
ui cos(2wi)zvi sin(2wi)ð Þ

&{bavguiz
Db

2
uiz2viwið ÞzO(w4

i )

&{bEuizDbviwizO(w4
i ):

ð16Þ

Similarly we can write the leading-order equation for Wi,y as

Wi,y~{bavgviz
Db

2
ui sin(2wi){vi cos(2wi)ð Þ

&{b\vizO(w3
i ):

ð17Þ

Eqs. (12), (13) and (14) together with Eqs. (16) and (17) gives us the

complete set of leading-order equations of motion. These are

summarized below:

Ii _vvi~Mi{Mi{1zK
h

2
½yiz1{yi{1{

h

2
(wiz1z2wizwi{1)�zO(w3),

ð18Þ

mi _vvi~{b\vizK½yiz1{2yizyi{1{
h

2
wiz1{wi{1

� �
�zO(w3),

ð19Þ

Figure 2. Validation of the nonlinear resistive chain-link PM
model. Forward (upper curves) and lateral (lower curves) velocities of
the COM of a uniform circular rod following its preferred shape

y0~B cos
2px

L
{2pft

� �
, normalized by the wavespeed (Uw~Lf ~40

cm/s) are shown in this figure. fig_B25 shows the case when the
amplitude B = 2.5 cm and (b) is for the case of B = 3.5 cm. Solid lines
denote the PM model and dashed lines denote the model as described
in [28]. Taylor’s nonlinear resistive drag model is used in these
simulations.
doi:10.1371/journal.pcbi.1003097.g002
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mi _uui~{bEuiz Dbviwi|fflfflffl{zfflfflffl}
source term

z

K½xiz1{2xizxi{1{
h

2
(w2

i{1{w2
iz1)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

source term

�zO(w4):
ð20Þ

The muscle moment term Mi in Eq. (18) is linear in wi. We remark

that a nonlinear muscle model with dominant leading-order terms

with respect to w will also fit within this leading-order framework.

From Eqs. (18)–(20), it can be seen that to the leading order, the

rotational and transverse momentum equations, Eq. (18) and Eq.

(19), are coupled to each other, but are independent of the axial

velocity equation. However, the axial velocity equation is

dependent on the tranverse and rotational velocities due to the

‘‘source term’’ identified in Eq. (20). The leading-order equations

show that the axial velocity is lower order (O(w2)) compared to the

transverse and rotational velocities (O(w)). Eqs. (18)–(20) constitute

the leading-order forced damped oscillation equations for undu-

latory swimming.

To derive an expression for the steady swimming velocity of an

undulatory swimmer, we consider the leading-order axial

momentum equation for the ith link

mi€xxi~{bEuizDb viwið ÞzFi,x{Fi{1,x: ð21Þ

Averaging the above equation over N links, leads to the

cancellation of the internal spring forces, and gives the equation

for the axial velocity of the COM of the body,

PN
i~1 mi€xxi

N
~{bE

PN
i~1 ui

N

 !
zDb

PN
i~1 viwi

N

 !
: ð22Þ

Taking a time-average of the above equation over a single period

of the swimming cycle gives

PN
i~1 miS€xxiT

N
~{bE

PN
i~1 SuiT

N

 !
zDb

PN
i~1 SviwiT

N

 !
, ð23Þ

in which S � � �T indicates time-average of a quantity. The left-hand

side of Eq. (23) vanishes at steady state, and this gives the steady

state swimming velocity of an undulatory swimmer as

Uswim~Db

PN
i~1 SviwiT

bEN

 !
: ð24Þ

Eq. (24) indicates that there must be anistropy in drag for the

body to swim. This is in agreement with the previous studies on

swimming at low Reynolds number [36]. It also shows that the

swimming velocity depends upon the time-average of the product

of the lateral velocity and the angular position of the body. This

term primarily depends on the deformation kinematics. If a

nonzero time-averaged lateral velocity and angular position can be

provided to the body, then it is able to propel itself forward. The

body can swim even if there is no active muscle forcing. For

example, if the surrounding fluid can provide the body with

appropriate lateral and angular velocities, then it can lead to

swimming. This has been observed in the case of a ‘‘dead’’ trout

swimming in the wake of a cylinder [4,37]. Thus, the leading-

order equations indicate that the dynamics of swimming are a

response to the forcing that goes into the system irrespective of

whether the forcing is internal (muscle) or external (surrounding

fluid). As will be shown later, the swimming system has

fundamental modes of deformation, just like a forced damped

oscillator. This is referred to as a unified forced damped oscillation

framework for undulatory swimming in this work.

2.5 Comparison between the leading-order and
nonlinear equations of motion

To compare the leading-order system of equations with the

nonlinear equations of motion, we take a case of anguilliform

swimming at low Reynolds number. The physical parameters are

summarized in table 2 and they represent the case of a juvenile

zebrafish [38]. The initial configuration of the body is taken to be its

intrinsic rest state. Fig. 3 compares the three models. The nonlinear

resistive chain-link PM model (circles) agrees well with the model

described in [28] (solid line). The nonlinear resistive chain-link PM

model solved Eqs. (1)–(3) by using the leading-order drag forces.

The nonlinear model of [34] also solved Eqs. (1)–(3) with the

leading-order drag forces, but the constraint forces were eliminated

instead of modeling them as spring forces. Eqs. (18)–(20) were solved

Figure 3. A comparison of three models. The figure shows forward
and lateral swimming speeds, U and V , respectively, normalized by the
wavespeed Uw~Lf . The solid line represents the nonlinear model of
[28], circles represent the nonlinear resistive chain-link PM model, and
the dashed line represents the leading-order resistive chain-link PM
model. The length of the body is taken to be 1 cm and it has a constant
cross sectional radius of 0.05 cm. The frequency of the wave passing
through the body is taken to be 20 Hz which gives a wavespeed, Uw, of
20 cm/s. Leading-order drag forces were used in all the three models.
doi:10.1371/journal.pcbi.1003097.g003

Table 2. Parameter values.

Parameter Value

Length (L) 1 cm

Links (N) 40

Frequency (f) 20 Hz

Radius (r) 0.05 cm

Young’s modulus (E) 0.7 MPa

Viscosity of water (m) 10{3 Pa:s

Density of water (rf ) 1 g=cm3

doi:10.1371/journal.pcbi.1003097.t002
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for the leading-order resistive chain-link PM model with leading-

order drag forces. As shown by dashed lines in Fig. 3, it gives a

higher forward swimming velocity compared to the nonlinear

models. The steady state velocity for the leading-order resistive

chain-link PM model from the simulation and normalized by the

wavespeed is 0.092 (Fig. 3, dashed lines). This is also verified from

Eq. (24), in which the computed solution for vi and wi from the

simulation is used to compute the normalized steady state swimming

velocity. For the nonlinear models, the normalized steady state

forward swimming velocity is 0.064 (Fig. 3, dashed and circles). The

Reynolds number based upon the swimming speed of juvenile

zebrafish is around 20.

Results

3.1 Passive swimming
The term passive swimming is used here to imply swimming

generated by some external forcing, but with no active muscle

forcing. The forced damped oscillation formulation, discussed

above, shows that as long as there is forcing of the system that

leads to appropriate lateral and angular movement (i.e.,PN
i~1SviwiT is nonzero), there is swimming. Any type of

swimming would fall within this unified framework. To ensure

that this is the case we show, in this section, that passive swimming

is indeed resolved in this unified framework. Some fundamental

scenarios are discussed below.

3.1.1 How can a rigid body swim? Consider a rigid link

subjected to an external vertical force Fy~F0 cos(Vt) and an

external torque t~t0 cos(Vtzq), in which q represents the phase

difference between the applied force and the torque. Consequent-

ly, the link will move up and down and simultaneously undergo a

rotational rocking motion. The equations of motion for the link

can be written as

m€xx~{bE _xxzDb vwð Þ, ð25Þ

I€ww~{bw
_wwzt0 cos(Vtzq), ð26Þ

m€yy~{b\vzF0 cos(Vt), ð27Þ

in which bw is the rotational damping that acts on the link in Eq.

(26). The steady state response of rotational momentum equation

(26) is found analytically as

w(t)steady~{
t0IV2 cos(Vtzq)

I2V4zb2
qV2

z
t0bqV sin(Vtzq)

I2V4zb2
qV2

~{a cos(Vtzq)zb sin(Vtzq)

ð28Þ

~{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

p
½cos(Vtzqzh1)�, ð29Þ

in which a and b are positive quantities in Eq. (28) and

h1~ tan{1 b=a in Eq. (29). The steady state response of transverse

momentum equation (27) can be written as

v(t)steady~
F0b\ cos(Vt)

b2
\zm2V2

z
F0mV sin(Vt)

b2
\zm2V2

~c cos(Vt)zd sin(Vt)

ð30Þ

~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2zd2

p
(sin(Vtzh2)), ð31Þ

in which c and d are positive numbers in Eq. (30) and

h2~ tan{1 c=d in Eq. (31). At steady swimming the time-average

of left-hand side of Eq. (25) vanishes and we obtain the steady

swimming velocity of the link as

Uswim~
DbSvwT

bE
: ð32Þ

To evaluate the right-hand side of Eq. (32), we multiply Eqs. (28)

and (30) and take a time-average of the product to obtain

H(q)~
DbSvwT

bE
~

Db

bE

bd

2
{

ac

2

� �
cosqz

bc

2
z

ad

2

� �
sinq

� 	
: ð33Þ

The above equation can be evaluated for various phase differences

between the applied vertical force and torque. It can be verified

that for the phase difference q~h2{h1,H(q)~0. This gives a net

zero swimming velocity. To verify the equations derived for the

swimming of a single rigid link, we take a rigid link of length 20 cm

and radius 1 cm. We apply an external force in the transverse

direction, which has an amplitude of F0~10 mN, and an external

torque of an amplitude t0~10 mN=s on the link and observe its

swimming motion for different phase differences q. As can be seen

in the Fig. 4, depending upon the phase difference between the

external torque and transverse force, the link can reach different

steady swimming velocities.

The external force and torque on the link could also exist

because of the external flow. An external flow that has a sinusoidal

transverse velocity component is considered for simplicity. No

axial flow component is assumed in the surrounding fluid to

eliminate the possibility of the rigid link being carried by the axial

flow. The external flow provides an additional drag and moment

on the link that drives its motion in the axial direction. The

transverse component of the velocity of the external flow is taken

as

Figure 4. The swimming velocity of a single rigid link in the
presence of external force and torque at various phase
differences. —: analytical; .: numerical.
doi:10.1371/journal.pcbi.1003097.g004
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Vy(x,t)~Af sin
2px

lf

{2pft

� �
, ð34Þ

in which Af is the amplitude of the transverse velocity, lf is the

wavelength, and f is the frequency of the traveling wave. Including

the additional drag on the link due to the external flow link, the

drag force Eq. (10) changes to

W~{b\(v\{V
avg
\ )n{bE(vE{V

avg
E )t, ð35Þ

in which Vavg is the average of the external fluid velocity over the

length of the link (in the transverse direction). It is calculated as

Vavg~
1

h

ðxCOMzh
2
cosw

xCOM{h
2
cosw

Vy(x,t)dx

&
1

h

ðxCOMzh
2

xCOM{h
2

Vy(x,t)dx:

ð36Þ

V
avg
\ is the component of Vavg normal to the link and V

avg
E is the

component of Vavg parallel to the link. The moment due to the

external flow is calculated as

tf~
1

h

ðxCOMzh
2

cosw

xCOM{h
2

cosw

b\Vy(x,t)(x{xCOM)dx

&
1

h

ðxCOMzh
2

xCOM{h
2

b\Vy(x,t)(x{xCOM)dx:

ð37Þ

Adding the additional drag and moment due to the external flow,

the leading-order equations of motion for a single rigid link

become

m€xx~{bEuzDb(vw){Db(Vavgw), ð38Þ

I€ww~{bw
_wwztf , ð39Þ

m€yy~{b\vzb\Vavg: ð40Þ

Taking a time-average of Eq. (38) over a single period of

swimming cycle, makes the left-hand side equal to zero and we

obtain the average swimming velocity of the link at steady state as

Uswim~
DbSvwT

bE
{

DbSVavgwT
bE

: ð41Þ

To verify the equations derived for the swimming of a rigid link in

the presence of an external flow, we take a rigid cylindrical rod of

length 20 cm and radius 1 cm. We take the amplitude of the

external flow to be 0.1 m/s and the frequency to be 1=(2p) Hz.

The wavelength of the fluid lf is taken to be 10 times the body

length. Fig. 5 shows the trajectory of the rigid link swimming in an

external flow.

3.1.2 How can a fish exploit the surrounding flow field to

swim passively? The analysis done for a single rigid link in an

external flow is extended to that for a flexible body in an external

flow. A flexible body is kept in an external flow which does not

have any mean axial velocity. It has a transverse component of

velocity as given by Eq. (34). To derive the leading-order equations

of motion, we calculate the drag force and the torque due to the

external flow for each link and add it to Eqs. (19), (20), and (18).

From Eqs. (38) and (40), it can be seen that the axial component of

the drag due to the external flow for the ith link is

W f
i,x~{Db(V

avg
i wi) and the transverse component of drag is

W f
i,y~b\(V

avg
i ). The leading-order axial, transverse, and rota-

tional momentum equations for the ith link can then be written as

mi _uui~Wi,xzW f
i,xzK ½xiz1{2xizxi{1{

h

2
(
w2

i{1

2
{

w2
iz1

2
)�zO(w4),

ð42Þ

mi _vvi~Wi,yzW f
i,yzK ½yiz1{2yizyi{1{

h

2
wiz1{wi{1

� �
�zO(w3),

ð43Þ

Ii _vvi~tf
i zK

h

2
½yiz1{yi{1{

h

2
(wiz1z2wizwi{1)�zO(w3): ð44Þ

The average steady swimming velocity of the flexible body in the

presence of an external flow can be written as

Uswim~Db

PN
i~1 SviwiT

bEN

 !
{Db

PN
i~1 SV

avg
i wiT

bEN

 !
: ð45Þ

We take a uniform cross sectional body of length 20 cm and

radius 1 cm. The body is discretized into 40 links of equal length.

The amplitude of the velocity of the external fluid is taken to be

0.1 m/s and the frequency to be 1=(2p) Hz. The wavelength of

the fluid is taken to be half of the body length. Fig. 6(a) shows the

swimming of a flexible body in an external flow. Although the

external fluid flow used in this model does not mimic the vortex

wake shed from the cylinders in the experiments of Liao et al. [4],

it qualitatively captures the basic mechanism necessary to enable

the swimming of a dead flexible animal similar to the swimming of

a ‘‘dead’’ trout reported earlier [4,37]. Thus, using a favorable

external flow field to swim forward, a fish can decrease its muscle

activity.

Figure 5. The trajectory of the center of mass of a rigid link in
an external flow during passive swimming.
doi:10.1371/journal.pcbi.1003097.g005

Undulatory Swimming

PLOS Computational Biology | www.ploscompbiol.org 8 June 2013 | Volume 9 | Issue 6 | e1003097



3.2 Active swimming
The term active swimming is used here to imply swimming

generated by internal forcing such as muscle activation. The goal

in this section is to show that active swimming is resolved within

the unified framework of a forced damped oscillation formulation.

To that end, we consider various aspects of muscle activated

swimming. We first discuss how momentum and power is

transferred during undulatory swimming. The response of the

body to muscle activation in terms of its fundamental deformation

modes is discussed thereafter.

3.2.1 Momentum and power transfer during undulatory

swimming. It can be seen from equations (18)–(20) that the

lateral and rotational momentum equations provide a source term

to the translational momentum. The rotational and transverse

momentum equations, which can be viewed as equations that

define the deformations of the body (vi and wi), are coupled to each

other, and are driven by the muscle forcing term Mi. Thus, the

muscle forcing creates the body deformations, which then leads to

forward translation motion. This explains the momentum transfer

into the translational mode.

To analyze the power transfer during steady swimming, time-

averaged kinetic energy equations are derived from Eqs. (1)–(3).

The time-averaged rotational kinetic energy equation is derived by

multiplying Eq. (1) by vi, summing it over all links (N in total), and

taking a time-average of the resulting equation. This is written as

S
Xi~N

i~1

1

2
Ii _vv2

i T~ S
Xi~N

i~1

(Mi{Mi{1)viT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pm

z

S
Xi~N

i~1

Fi,yzFi{1,y

� � h

2
coswi{ Fi,xzFi{1,xð Þ h

2
sinwi

� �
viT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pe,v

:

ð46Þ

Over a steady swimming cycle, the left-hand side of Eq. (46)

vanishes. This implies that muscle power Pm is converted to elastic

power Pe,v in the springs. Time-averaged transverse and axial

kinetic energy equations are similarly derived:

S
Xi~N

i~1

1

2
mi _vv

2
i T~ S

Xi~N

i~1

Wi,yviT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Pd,y

z S
Xi~N

i~1

Fi,y{Fi{1,y

� �
viT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pe,y

, ð47Þ

S
Xi~N

i~1

1

2
mi _uu

2
i T~ S

Xi~N

i~1

Wi,xuiT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Pd,x

z S
Xi~N

i~1

Fi,x{Fi{1,xð ÞuiT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pe,x

: ð48Þ

The left-hand sides of Eqs. (47) and (48) vanish over a steady

swimming cycle. Therefore, the elastic power in the springs in the

transverse and the axial directions, Pe,y and Pe,x, respectively

(which comes from rotational kinetic energy equation through Pe,v

term) is dissipated by the viscous drag acting over the body in the

transverse and the axial directions, Pd,y and Pd,x, respectively. To

provide a quantitative verification of the analytic expression for

power transfer during free swimming, simulations were done using

the nonlinear resistive chain-link PM model as described in section

2.3 (B~2:5 cm) for various values of the Young’s modulus (E).

The time-averaged rotational, transverse, and axial kinetic energy

equations show that the power generated by the muscles is

transferred into the elastic power of the body, which is then

dissipated into the fluid through the viscous drag acting on the

body over a swimming cycle. Table 3 shows the mean power

carried by various terms during a steady swimming cycle. Note

that most of the power is input into the transverse mode.

Eventually, this power is dissipated by the drag forces (Pd,x,Pd,y).

A key conclusion from this result is that, most of the power

dissipation happens due to the movement in the transverse

direction (Pd,y) and not due to the movement in the axial

direction, as is generally assumed in the efficiency measures for

swimming. Thus, new efficiency metrics must take this into

account while estimating the power dissipated during a swimming

cycle.

3.2.2 Deformation modes of an undulatory swim-

mer. The transverse and the rotational equations of motion can

be seen as the equations that govern the body deformations. The

axial equation of motion can be seen as the equation that governs the

forward translation of the body for the given deformation kinematics.

Insights into how body deformations are generated can be obtained

by interrogating the leading-order transverse and rotational

equations of motion (Eqs. (18) and (19)). To work with the velocity

variables, we differentiate these equations once more and arrange

them in a matrix form as

Figure 6. Passive swimming of a flexible body. The wavelength of
the velocity change in the flow field is taken to be half the body length.
(a) The position of the flexible body at different instants of time. (b)
Velocity profile of the center of mass of the flexible body.
doi:10.1371/journal.pcbi.1003097.g006
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½M �€XX~½C � _XXz½K �XzF(t), ð49Þ

in which vector X

X~
V

w

� �
, ð50Þ

is a combination of transverse velocity vector V and rotational

velocity vector w, and

M½ �~

m1

P

mN

I1

P

IN

0
BBBBBBBB@

1
CCCCCCCCA

ð51Þ

is the diagonal mass matrix. In Eq. (49), ½C � is the damping matrix,

½K � is the stiffness matrix, and F (t) is the forcing vector. The forcing

vector is written as

F(t)~

0

T1

T2{T1

..

.

TN{1{TN{2

{TN{1

0
BBBBBBBBB@

1
CCCCCCCCCA

, ð52Þ

in which Ti~{EJi _kki in Eq. (52). The system of second-order

differential equations is converted into first-order differential

equations and written as

_XX
€XX

 !
~

0 I

M -1K M -1C

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½A�

X

_XX

� �
|fflffl{zfflffl}

Y

z
0

M -1

� �
F tð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

B tð Þ

, ð53Þ

which is of the form

_YY~½A�YzB(t): ð54Þ

Note that the first row of Eq. (53) is a trivial equation for which the

left-hand side is equal to the right-hand side.

A normal mode analysis of the spring-inertia-damper system is

done for unforced conditions in which the forcing term B(t) is set

to zero in Eq. (54). This gives the fundamental deformation modes

and the natural frequencies of this system. Shapes of the first few

deformation modes are shown in Fig. 7(a). A 40-link system is

considered. For the parameters considered here (section 2.5), the

first 47 modes are underdamped and have a natural frequency of

oscillation, i.e., the corresponding eigenvalues are complex (there

are 47 complex conjugate pairs). Lower deformation modes have

lower natural frequencies. Mode numbers 48 to 103 are the

overdamped deformation modes, i.e., there is no natural frequency

of oscillation. The elastic parameters and the stiffness coefficients

are taken from [28], which were obtained based on real fish

material properties. Thus, it is expected that the chosen material

properties will yield realistic eigenvalues for the system. Any

deformation of the body can be represented in terms of

decomposition into the fundamental deformation modes of the

system.

Next, a system that is forced by oscillatory muscle moments in

Eq. (54) is considered. After decomposing the deformation of the

body into the fundamental deformation modes, discussed above,

governing equations are obtained for each of these modes. Each of

the fundamental deformation modes is driven by a component of

the oscillatory muscle forcing term. This is the forced damped

oscillation formulation of muscle activated swimming.

The amplitude or ‘‘weight’’ of the emergent deformation is

shown in Fig. 7(b) for each of the fundamental deformation modes.

It is seen that the emergent deformation is dominantly composed

of only the lower fundamental deformation modes. This is because

the natural frequencies of the body corresponding to the

fundamental deformation modes are higher than the muscle

moment forcing frequencies. The first few deformation modes

have the lowest natural frequencies (e.g. 1435.01 Hz for the first

and 3889.01 Hz for the second deformation mode), whereas the

physiologically relevant traveling wave frequency of muscle forcing

is f ~20 Hz [38]. This is similar to a spring-mass-damper system

where the modes with natural frequencies closest to the forcing

frequencies are dominantly observed.

The conclusion above, that lower deformation modes will be

typically observed, is based on a lower-order model for swimming.

It helps to explain why the lower deformation modes are observed.

The applicability of this conclusion is not limited to a lower-order

model. In a general nonlinear problem of swimming at high

Reynolds number, the eigenvalues of the system are dynamic and

they change with time. This is because the coefficients of the

damping matrix of the system change with time. Despite this

difficulty, the conclusion above can be conceptually verified. A

practically useful way to analyze such a system is to decompose the

deformation of the body into the fundamental deformation modes

Table 3. Table showing pathway of power transfer over a cycle of steady swimming at different values of the Young’s modulus E.

E (N=m2) Pm (J) Pe,v (J) Pd,y (J) Pe,y (J) Pd,x (J) Pe,x (J)

0:5|104 4:5382|10{4 24:5452|10{4 24:3607|10{4 4:3764|10{4 21:3705|10{5 1:7078|10{5

0:7|104 0.0011 20.0011 20.0010 0.0010 27.2607|10{5 7.8884|10{5

0:2|105 0.0094 20.0094 20.0063 0.0063 20.0031 0.0031

0:4|105 0.0163 20.0163 20.0100 0.0100 20.0063 0.0063

0:9|105 0.0090 20.0088 20.0071 0.0071 20.0017 0.0017

0:2|106 0.0057 20.0055 20.0051 0.0051 23:9132|10{4 4:2721|10{4

doi:10.1371/journal.pcbi.1003097.t003

Undulatory Swimming

PLOS Computational Biology | www.ploscompbiol.org 10 June 2013 | Volume 9 | Issue 6 | e1003097



of the Euler-Bernoulli beam equation. By superposing these

modes, one can construct the shape of an undulatory swimmer at

any instant as a post-processing step. To demonstrate that the

conclusion above is valid even in nonlinear swimming, a case with

Reynolds number of about 8000 (based on the traveling wave

velocity) is simulated by using a nonlinear resistive chain-link

model (same parameters of section 2.3). Fig. 8 shows the amplitude

of the first few deformation modes for the undulatory swimmer at

high Re. It is confirmed that only the first few deformation modes

contribute most to the emergent deformation kinematics.

3.3 Optimal parameters for fast swimming
Parameters like muscle frequency, reference curvature, and

muscle stiffness affect swimming motion. In this section we use

results from the previous sections to interrogate questions related

to optimal conditions that lead to fast swimming.

3.3.1 What should be the frequency of the muscle

activation wave? In the above discussion it was argued that

the value of the forcing or the traveling wave frequency f relative

to the natural frequency of the damped oscillator is important for

the emergent deformation characteristics of the body. Thus, it

implies that as the forcing frequency is increased higher

deformation modes should also be observed. To verify this, Fig. 9

shows a plot of wave efficiency (swimming velocity normalized by

the wave velocity Uw~Lf ; in which L is the body length) as a

function of the forcing frequency. All cases were solved by using

the nonlinear resistive chain-link PM model. All physical

parameters were taken from section 2.3 except for the forcing

frequency which was varied. It is seen that at higher frequencies,

higher deformation modes are triggered which is consistent with

the discussion above (see insets of Fig. 9). Higher deformation

modes do not represent the best kinematics to push the fluid back

and thus propel the body forward. Hence, the normalized

swimming velocities are increasingly lower as the forcing

frequency is increased.

3.3.2 What are the optimal deformation kinematics for

fast swimming? According to Eq. (24) an undulatory swimmer

that maximizes a(vi,wi)~
PN

i~1SviwiT=N

 �

will swim the fastest.

Since vi and wi define the deformation kinematics of the body,

a(vi,wi) primarily depends on the deformation of the swimming

body. This expression, although derived in the leading-order

regime, captures the effect of the local lateral velocity vi and the

local inclination wi of the body segments on the axial swimming

Figure 7. (a) The first few fundamental deformation modes of
an undulatory swimmer. These modes represent the underdamped
oscillatory eigenvectors of the system (0: first deformation mode; %:
second deformation mode; 5: third deformation mode). (b) Amplitude
or ‘‘weights’’ of various fundamental deformation modes during muscle
activated swimming in the linear regime.
doi:10.1371/journal.pcbi.1003097.g007

Figure 8. Amplitude or ‘‘weights’’ of Euler-Bernoulli beam
deformation modes during muscle activated swimming in the
nonlinear regime at Reynolds number 8000.
doi:10.1371/journal.pcbi.1003097.g008

Figure 9. Wave efficiency (U=Uw) as function of the traveling
wave frequency. The insets show typical body deformations at
various forcing frequencies. At lower forcing frequency first few
deformation modes are present. Higher deformation modes are
observed at higher forcing frequencies.
doi:10.1371/journal.pcbi.1003097.g009
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velocity. The applicability of this expression in the nonlinear

regime is tested by performing fully resolved simulations on a

three-dimensional eel model. An adaptive immersed body

framework is used to perform these simulations [30–32,39].

We use an approach similar to that of Kern and Koumoutsakos

[24], who search for the best deformation kinematics within a

family of deformations. The deformation kinematics are defined

by five control parameters that give the curvature of the backbone

of the eel. The curvature is defined along the arclength s of the

backbone of length L as

k(s,t)~K(s):sin 2p ft{t(s)½ �ð Þ:tanh pftð Þ, ð55Þ

in which K(s) is a cubic polynomial with values of K0, K1, K2, K3

at s ~ (0, L=3, 2L=3, L) , t(s)~sttail=L, and f is the frequency

of the traveling wave. With the choice of five parameters K0, K1,

K2, K3, and ttail, a wide range of motion patterns can be generated

[24]. Using the curvature information a unit-speed curve is

obtained. The objective function a is maximized for the unit-speed

curves by varying the five control parameters by solving a

constrained optimization problem using the fmincon function in

MATLAB. Note that no solution of the swimming motion is

required unlike the original optimization by Kern and Koumout-

sakos [24]. The initial guess or the reference values for the control

parameters are taken to be the same as those from [24], which are

G0~ (1:29, 0:52, 5:43, 4:28, 1:52) . The value of Ki is bound

between (0{2p) and the value of ttail is bound between

(1:4{1:73), as was done in [24]. The optimized values of the

control parameters as reported in [24] are G1~ (1:51, 0:48,
5:74, 2:73, 1:44) . The values of Ki and ttail corresponding to the

maximum value of a are G2~ (0:0, 0:0, 2p, 0:0, 1:4) .

The value of a(G0) is 16:15, a(G1) is 19:71, and a(G2) is 40:61.

Thus, G2 should give the fastest swimming velocity; even faster

than the kinematics identified by [24] based on fully resolved

simulations. To confirm this, fully resolved simulations were

performed by taking the kinematics obtained from G0, G1, and G2.

The physical parameters used were identical to those in [24]. An

efficient constraint based immersed body method [39–41]

implemented in the IBAMR software framework [42] is used.

The combined momentum equation for the fluid and immersed

structure is solved on a block-structured Cartesian grid, where

higher grid resolution is deployed only near the immersed

structure and the vortex structures shed from such interfaces.

Four grid levels were used in the domain, with the coarsest level,

l0, having 32|16|8 grid cells. A refinement ratio of 4 was used

for levels l1 and l2, and a ratio of 2 for level l3. Regions of space

where the vorticity magnitude exceeded 2 f were additionally

tagged. The domain size was taken to be 8L|4L|L, in which L
is the body length. Adaptive time stepping dictated by convective

Courant-Friedrichs-Lewy (CFL) number of 0:1 was used. Numer-

ical integration of Eq. (55) to obtain unit-speed curve was done

using GSL [43] library.

Fig. 10 shows the axial and lateral velocities (normalized by the

wave speed, Uw~Lf ) of center of mass of the eel as a function of

time (normalized by 1=f ). It is seen that the proposition that the

kinematics that maximized a(vi,wi) would also maximize the speed

of the swimmer is valid even for nonlinear high Reynolds number

problems. Fig. 11 compares the isovorticity contour for an eel

swimming according to the kinematics given by G0, G1, and G2 at

time t~5=f . As can be seen in the figure, the stronger vortex wake

for G2 kinematics results in a faster swimming speed of the eel as

compared to G0 and G1 kinematics. The observed flow pattern is

also consistent with prior results [24] (see Videos S1 and S2 in

Supporting Information for the time evolution of flow features).

3.3.3 How stiff should muscles become for optimal

swimming? According to Eq. (6), muscle activated moment is

proportional to the Young’s modulus E of the body. A stiffer body

has a higher value of the Young’s modulus, which helps the body

to match its preferred curvature ki. Thus, the swimming speed

depends on ki and the bending stiffness of the body represented by

EJi (Eq. (6)).

If the body is very stiff then the observed kinematics closely

follow ki. This will be shown below. In this case, optimality for fast

swimming is achieved if ki corresponds to the optimal kinematics

found, for example, in the previous section for fast swimming.

Tytell et al. [1] reported optimal body stiffness that led to

maximum swimming velocity. Their results were based on

simulations that used fully resolved fluid-elastic body interactions.

Here, those results are qualitatively reproduced and explained

using the reduced-order model. All cases were solved using the

nonlinear resistive chain-link model. All physical parameters were

the same as those in section 2.3 except for the Young’s modulus E,

which was varied. Fig. 11 shows a plot of the swimming velocity as

a function of E (or body stiffness EJi). As reported by Tytell et al.

[1], there is an optimal stiffness at which the swimming velocity is

maximized. It is shown below that the preferred curvature of the

body ki that results from muscle activation is important to explain

this trend.

At low stiffness, the natural frequencies of the body are lower.

Hence, a given forcing frequency triggers higher deformation

modes of a less stiff body (see insets Fig. 9). In other words, the

body appears floppy and is not able to efficiently propel itself

forward due to the presence of higher deformation modes. At high

stiffness, the observed deformation kinematics are nearly the same

of those due to ki. If the imposed ki does not represent the best

deformation kinematics for fast swimming, then at high stiffness

the swimming velocity is lower than optimal. At intermediate

stiffness the body kinematics are optimal for fast swimming,

leading to the trend shown in Fig. 12(a). It is also noted that the

swimming velocity is practically unchanged with any further

increase in body stiffness beyond a certain value (Fig. 12(a)). This

can be explained by noting that the body kinematics remain the

same as those imposed by ki beyond a certain body stiffness.

Fig. 12(a) also shows a plot of a(vi,wi) as function of E. It is seen

Figure 10. Fully resolved simulations of three-dimensional eel
for the kinematics cases G0, G1, and G2. The figure shows
normalized axial U and lateral V velocities (normalized by the wave
speed, Uw~Lf ) of the center of mass of the eel as a function of
normalized time t (normalized by 1=f ). Upper: axial velocity; Lower:
transverse velocity. In the figure U(G2)wU(G1)wU(G0). (–0–) U profile
for G1 from Kern and Koumoutsakos (K & K) [24].
doi:10.1371/journal.pcbi.1003097.g010

Undulatory Swimming

PLOS Computational Biology | www.ploscompbiol.org 12 June 2013 | Volume 9 | Issue 6 | e1003097



that the trend in a(vi,wi) is consistent with the trend of the

swimming velocity. As seen earlier a(vi,wi) directly correlates with

the deformation kinematics. Thus, the observed trend in

swimming velocity in Fig. 12(a) is a consequence of the

deformation kinematics that the body acquires as a function of

its stiffness.

To further verify the importance of ki, the deformation

kinematics at the optimal condition in Fig. 12(a) were noted.

Then another set of simulations were done with ki equal to these

optimal kinematics. In this case, since ki now represents optimal

kinematics, once the body becomes stiff and follows ki, the

swimming velocity should not reduce. Thus, the swimming

velocity trend should plateau as a function of E instead of

showing an optimal (i.e. a maximum) point. This is confirmed in

Fig. 12(b). Once again, the trend in a(vi,wi) is found to be

consistent with the trend in swimming velocity.

Figure 11. Comparison of three-dimensional flow structures for an eel swimming with kinematics given by (a) G0, (b) G1, and (c) G2 at
time t~5=f . Isosurface of normalized vorticity (normalized by f ) magnitude of 4 and color coded by normalized transverse velocity (normalized by
Uw~Lf ) is shown.
doi:10.1371/journal.pcbi.1003097.g011
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Discussion

In this work our primary thesis is that the deformation is a result

of some forcing which can be caused by muscles or the

surrounding fluid or both. We have used a forced damped

oscillation framework to formulate the problem of swimming. This

is in the same spirit as the damped harmonic oscillator framework

that has been applied in the past to analyze numerous engineering

systems such as the tuned mass damper used in power

transmission, automobiles, and buildings to reduce vibrations.

The results presented above validate several hypotheses that

show the utility of the forced damped oscillation framework. These

examples (points 1–4, below), which provide new insights, are

discussed below.

1. Our hypothesis was that the forced damped oscillation

framework would provide unified insights into how the body

deformation emerges and subsequently how the body deformation

leads to swimming movement. First, the problem formulation and

the results discussed earlier validate this hypothesis where it is seen

that body deformations emerge as a superposition of various

deformation modes in response to some forcing. This is similar in

principle to how various deformation modes emerge on a guitar

string or a fluttering flag. Second, insights into how body

deformations lead to forward swimming movement is represented

by Eq. (24). As hypothesized, this equation provides a unified

insight into how forward swimming momentum is obtained, no

matter how the system is forced. Thus, active and passive

swimming scenarios are understood in a unified way. It is to be

noted that although Eq. (24) was based on a simplified model, the

results were verified from fully resolved computational fluid

dynamic simulations of optimal gaits for fast swimming.

2. Our hypothesis was that the forced damped oscillation

framework will provide insights into why relatively simple forcing

patterns can trigger seemingly complex deformation kinematics

that lead to movement. This was validated from our results where

we show how forcing triggers different deformation modes of the

body. The presence of multiple deformation modes makes the

body deformation appear complex.

3. We hypothesized that the proposed framework will explain

why lower deformation modes (i.e., fewer number of waves on the

body) are typically observed in undulatory swimming in nature.

This was resolved by our results where we show how the value of

the forcing frequency relative to the natural frequencies of the

body is important to trigger the various deformation modes of the

body (see Fig. 9). Typical forcing frequencies in nature are lower

than the typical resonance frequencies of the damped oscillator

(i.e., the fish body). Hence, it is not surprising that lower

deformation modes are observed in nature. In anguilliform

swimmers, the body is long and slender. As a result the first few

deformation modes would be triggered in these swimmers.

However, carangiform, sub-carangifrom, and thunniform swim-

mers have relatively short and stiff bodies. In such swimmers, the

body deformations are predominant in the caudal fin region

indicating lower deformation modes compared to anguilliform

swimmers, as expected from our results.

4. The proposed framework helped identify parameters for

which swimming is viable. The specific parameters that were

identified include appropriate frequencies for swimming (Fig. 9),

appropriate body stiffness for swimming (Figs. 12(a) and 12(b)),

and appropriate gaits for fast swimming (Figs. 10 and 11). The

forced damped oscillation framework was crucial to obtain key

insights into each of these parameters. For example, the forcing

frequencies at which swimming would be viable are those that do

not trigger the higher deformation modes (Fig. 9). Thus, high

frequencies relative to the natural frequencies are not appropriate

for swimming. Similarly, for a given forcing frequency the body

should be stiff enough for swimming to be possible (Figs. 12(a) and

12(b)). This is because higher stiffness leads to higher natural

frequencies compared to the forcing frequency which in turn

would not trigger the higher deformation modes that are not

desirable for swimming. Finally, the gaits that maximize the

forward momentum transfer according to Eq. (24) are most

appropriate for fast swimming. It was found that higher

deformation modes do not work well according to this metric.

These results were confirmed from fully resolved simulations

(Fig. 10).

The results in point 4, above, are practically the most important

since they have biological as well as engineering relevance. The

practical utility of the above results in engineering is apparent if

one considers the design of a biomimetic underwater robotic

vehicle. The above analysis helps identify material properties as

well as viable frequencies of an undulator that would drive the

vehicle.

Figure 12. (a) Normalized swimming speed (U=Uw) (— %—, left
vertical axis) and the objective function a(vi,wi) (–0–, right
vertical axis) as a function of Young’s modulus E (or
equivalently bending stiffness EJi for constant Ji). The preferred
curvature ki of a traveling wave is used to actuate the swimming
motion. (b) Normalized swimming speed (U=Uw) (—%—, left vertical
axis) and the objective function a(vi,wi) (–0–, right vertical axis) as a
function of Young’s modulus E (or equivalently bending stiffness EJi

for constant Ji). The curvature at the optimal condition of (a) is used as
the preferred curvature ki to actuate the swimming motion.
doi:10.1371/journal.pcbi.1003097.g012
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The above results may also provide useful insights in

evolutionary biology. In particular consider the issues pertaining

to the evolutionary emergence of certain species. To that end

consider the evolution of aquatic animals that use the undulatory

mode for propulsion. Assume that only those undulatory animals

that can swim effectively would have survived. If so, then it is of

interest to know if specific parameters such as body stiffness and

activation frequency of the muscles are crucial for survival. Based

on the results above, one could hypothesize that only those species

with appropriate muscle activation frequency (low; e.g., Fig. 9) and

body stiffness (high; e.g., Fig. 12(b)) would survive and evolve.

Thus, this analysis helps identify the key mechanistic parameters

that would have been crucial to the evolutionary emergence of

undulatory swimmers. While our study certainly does not directly

consider evolution, it points to the ways to combine analyses such

as ours with evolutionary biology to explore what impact the

mechanics of movement may have played on the emergence of

certain animals.

Similarly, these results could be potentially used to gain insights

into the ability to adapt through evolution. As an example,

consider a hypothetical scenario where the ability to move is

dependent on having a very specific deformation of the body

which in turn is very sensitive to the muscle activation pattern. In

such a scenario, any change in the parameters would seriously

hamper the ability of that animal to move. Such an animal would

not be very robust in its ability to move in a changing

environment. In addition, it is very likely that any small changes

to physical characteristics from one generation to next (and

through evolution) would have a detrimental effect on the survival

of that species. Our results suggest that in reality the above

scenario may not occur. We find that the ability to swim, while

dependent on the mechanistic parameters, may not be very

sensitive to it. For example, results in Fig. 12(b) indicate that as

long as the body stiffness is above a certain value, the ability to

swim fast is insensitive to the value of stiffness. Similarly, as long as

the frequency is below certain value (v30 Hz for the parameters

used in Fig. 9), the wave efficiency is not significantly affected,

once again suggesting some degree of robustness to changes in the

parameters. Finally, the result that simple forcing patterns can lead

to swimming movement is also suggestive of robustness in the

sense that it is not essential to have a very specific and complex

forcing pattern to make swimming viable. One may therefore

hypothesize that the relative insensitivity to parameters, and the

noncomplexity of the feasible forcing patterns would be beneficial

for adaptation through evolution. Although we do not directly

interrogate this issue of adaptation, such hypotheses motivated by

the mechanics of movement warrant further investigation.

The proposed framework leads to an understanding of many

key parameters that are critical to movement. In turn, it has the

potential to provide further insights into how movement can be

controlled in biomimetic underwater vehicles and analogously to

decipher how neuronal control of movement might function in

animals.

In this work we also quantified the pathway of power transfer

from muscles to forward swimming. It is shown that over a steady

swimming cycle, the net power generated by the muscles is

transferred into the elastic power of the body which is then

dissipated into the fluid while undulating the body (Table 3).

Identifying this pathway is crucial to obtain a measure for useful

work during swimming. This in turn can be used to estimate useful

measures for swimming efficiency. This result is important because

the efficiency of undulatory swimmers is conventionally defined as

the ratio of power spent in overcoming hydrodynamic drag in the

direction of swimming to the total muscle power produced.

‘‘Gray’s paradox’’ [44–46] was based on this definition of

efficiency where it was paradoxically found that the drag power

was greater than the muscle power. Although the paradox is now

considered resolved, our results suggest that the assumption,

underlying Gray’s result, that the useful power is the one spent to

overcome drag in the swimming direction may not be appropriate.

The useful power is in fact the one spent to undulate the body.

Thus, ‘‘Gray’s paradox’’ should be revisited in the context of our

results on the pathway of power transfer.

In summary, we applied the forced damped oscillation

framework to undulatory swimming to understand the emergence

of movement due to muscular and/or environmental forcing.

Supporting Information

Video S1 Video S1 shows a three-dimensional vortex wake

behind the eel, swimming with G0 kinematics, as given in the

section 3.3.2

(MPEG)

Video S2 Video S2 shows a three-dimensional vortex wake

behind the eel, swimming with G2 kinematics, as given in the

section 3.3.2. The G2 kinematics produces a stronger wake

structure as compared to the G0 kinematics. Hence, it results in a

faster swimming velocity for the eel. Also notice the typical V-

pattern wake behind the eel. It results from the vortex-shedding at

tip of the tail during each half-cycle of swimming.

(MPEG)
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