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Abstract: Nasopharyngeal carcinoma (NPC) frequently occurs in Southern China. The main treat-
ments of NPC are chemotherapy and radiotherapy. However, chemo-resistance arises as a big
obstacle in treating NPC. Therefore, there is a great need to develop new compounds that could
reverse tumor drug resistance. In this study, eight matrine derivatives containing thiophene group
were designed and synthesized. Structures of these 8 compounds were characterized by 1H-NMR,
13C-NMR, and high-resolution mass spectrometer (HRMS). The cytotoxicity and preliminary syn-
ergistic effects of these 8 compounds were detected against nasopharyngeal carcinoma (NPC) cells
and cisplatin-resistant NPC cells (CNE2/CDDP), respectively. Furthermore, the in vivo and in vitro
tumor resistance reversal effects of compound 3f were evaluated. Moreover, docking studies were
performed in Bclw (2Y6W). The results displayed that compound 3f showed synergistic inhibitory
effects with cisplatin against CNE2/CDDP cells proliferation via apoptosis induction. Docking
results revealed that compound 3f may exert its effects via inhibiting anti-apoptosis protein Bcl-w.

Keywords: nasopharyngeal carcinoma; drug resistance; matrine derivative; molecular docking

1. Introduction

Nasopharyngeal carcinoma (NPC) is a common head and neck cancer characterized
with remarkable ethnic and geographic distributions which frequently occurs in Southern
China, Southeast Asia, and Northern Africa while rarely in Western countries [1]. Surgery
is one of the effective ways in the treatment of cancer. However, it is very difficult to
apply surgery in the treatment of NPC due to its anatomic location [2]. Fortunately,
NPC is a highly radio- and chemo-sensitive tumor, and NPC patients with early-stage
and locally advanced are treated with radiotherapy single or combined treatment of
chemo- and radiotherapy [3]. Although the combined chemo-radiotherapy produces a
satisfying survival rate (85−90% for 5-year) [4,5], there are still 8−10% patients undergoing
a recurrence and developing tumor metastasis [6,7]. For those recurrent NPC, the standard
treatment is multi-drug chemotherapy with platinum [8]. However, platinum resistance
arises a big obstacle in curing recurrent NPC patients [2]. Consequently, developing
potential compounds that show synergistic effects with cisplatin (CDDP) are of great
significance.

Matrine, which is the main component of Compound Kushen Injection, was approved
to treat various kinds of cancers as an adjuvant in China [9]. A large number of litera-
ture have reported that matrine displayed cytotoxicity in a range of cancers, including
lung cancer [10], breast cancer [11], liver cancer [12], and nasopharyngeal carcinoma [13].
Matrine has been recognized as an ideal lead compound for drug development due to
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its low toxicity, wide range of sources, and inexpensiveness. The main sites of structural
modification on matrine are its C-14 and C-13, which could greatly improve its anticancer
effects [14–16].

Recently, literature has reported that matrine could reverse drug resistance in breast
cancer [17], lung cancer [18], and bladder cancer [19]. The anti-chemoresistance effects
of matrine and its derivatives against nasopharyngeal carcinoma cells have been rarely
reported. In our previous study, matrine derivative with thiophene group displayed
reversal effect in NPC-CDDP resistance cells in vitro [20]. However, the reversal effects of
the derivative in vivo were not prominent. Thus, in the present study, we designed and
synthesized matrine derivatives with new thiophene side chains to explore potential drugs
that would show significant reversal effects in vitro and in vivo.

2. Results
2.1. Chemistry

In the present study, the synthetic routine was outlined in Scheme 1. Matrine (1) was
selected as a lead compound and a series of 14-methylene thiomatrine derivatives was
synthesized for their potential application as anti-chemoresistance agents. First, thioma-
trine (2) was easily obtained via thionation of matrine (1) with Lawesson’s reagent in
moderate yields [15]. Then, thiomatrine (2) was transformed into the corresponding
thiomatrine derivatives 3a–3h using lithium diisopropylamide (LDA) and aromatic alde-
hyde in THF [21]. These products 3a–3h were purified by silica gel column chromatography
using ethyl acetate and dichloromethane as gradient eluents and their structures were
characterized by 1H-NMR, 13C-NMR, and high-resolution mass spectrometer (HRMS)
analyses (Supplementary Materials). It is noticeable that there are two configurations of the
8 synthesized compounds, the (E)- and (Z)-14-methylene thiomatrine derivatives in theory.
In our previous work, a thiomatrine derivative (compound 3k) was synthesized using the
same synthetic route of the present study [15]. The single-crystal structure of compound
3k was analyzed and the results indicated that the configuration of 3k was E-form. The
results suggested that the configurations of 3a–3h were E-form. Another issue needs to be
addressed is that although compound 3a and 3b were firstly synthesized in our previous
work [15], the anticancer and CDDP resistant reversal activities of compound 3a and 3b
were not evaluated against NPC cells and CDDP resistant NPC cells. Thus, in the present
study, compounds 3a and 3b were involved.

2.2. In Vitro Cytotoxicity

Prior to determining the combined inhibitory effects against NPC CDDP-resistance
cells, the cytotoxicity effects of these 8 derivatives were evaluated against three NPC cell
lines (CNE2, HONE1, and HK-1) and CDDP resistance cell line (CNE2/CDDP) by using
MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays. The
results indicated that all the 8 derivatives displayed better anti-proliferative effects (IC50
ranging from 35 to 700 µM) than the parent compound matrine (IC50 more than 1000 µM).
Notably, among the 8 derivatives, compound 3f showed the most prominent proliferation
inhibition effects in NPC and NPC/CDDP resistant cells with IC50 ranging from 30 to 100
µM (Table 1). Moreover, a liver normal cell LO2 was involved to evaluate the selectivity of
these 8 compounds by using MTT assays. The results showed that these 8 compounds did
not exhibit selectivity (Table 1).

2.3. Combined Inhibitory Effects Evaluation of 8 Derivatives with CDDP

Compounds regularly show synergy effects with a relatively low dosage range (IC10 to
IC30) [22]. In order to preliminarily verify whether 8 compounds could increase cell sensi-
tivity to CDDP, CNE2/CDDP cells were co-treated with CDDP (5 µM) and each compound
(IC10), respectively. The cytotoxicity was evaluated by using MTT assays. The results
indicated that only compound 3f could increase the inhibitory effects of CDDP against
CNE2/CDDP cells (Figure 1). Thus, compound 3f was selected for further experiments.
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Scheme 1. Synthetic routine of 8 derivatives.

Table 1. The cytotoxicity effects of compound 3a–3h against nasopharyngeal carcinoma (NPC) cell
lines and NPC cisplatin (CDDP)-resistant cells.

Compound IC50 (µM)

CNE2 HONE1 HK-1 CNE2/CDDP LO2

3a 113.1 ± 7.2 152.4 ± 8.4 178.8 ± 12.1 375.3 ± 18.1 212 ± 15.3
3b 158.3 ± 11.3 125.3 ± 6.3 208.2 ± 9.4 582.6 ± 15.3 156 ± 11.7
3c 143.5 ± 10.3 182.6 ± 9. 8 191.4 ± 11.3 675.6 ± 23.8 285 ± 20.7
3d 92.4 ± 6.5 121.3 ± 7.7 138.5 ± 9.4 293.7 ± 20.1 138 ± 9.6
3e 147.6 ± 5.6 184.6 ± 12.4 179.5 ± 7.3 451.5 ± 26.8 243 ± 12.7
3f 35.7 ± 3.4 48.9 ± 5. 6 51.3 ± 3.5 91.4 ± 8.8 72 ± 5.8
3g 58.3 ± 2.9 71.5 ± 4.2 90.7 ± 6.6 205.7 ± 11.7 68 ± 5.1
3h 76.2 ± 4.5 89.7 ± 6.2 103.3 ± 7.8 177.7 ± 15.8 92 ± 8.6

Matrine >1000 >1000 >1000 >1000 >1000
CDDP 3.77 ± 0.26 5.23 ± 0.37 6.73 ± 0.42 29.53 ± 3.12 6.33 ± 0.56

Note: CNE2, HONE1, HK-1: Nasopharyngeal carcinoma cell lines; CNE2/CDDP: Nasopharyngeal carcinoma
cisplatin resistant cell line; LO2, normal liver cell; IC50: 50% inhibiting concentration.
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Figure 1. Combination treatment of CNE2/CDDP cells with CDDP (5 µM) and compounds 3a~3h.
The doses involved in assays of 3a~3h were 85, 112.7, 143.2, 73.1, 93.8, 20.4, 52.6, and 49.3 µM,
respectively. Data are represented as mean ± SD (Standard Deviation). Bar means SD value.
* p < 0.05; ** p < 0.01; ns, non-significance.

2.4. Synergistic Inhibitory Effect Evaluation of Compound 3f with CDDP

To determine whether compound 3f display synergistic inhibitory effects with CDDP
against CNE2/CDDP cells, an MTT assay was performed. Cells were co-treated with
compound 3f and CDDP or treated with CDDP or 3f alone. There are 9 groups of the
combination between 3f and CDDP (Table 2). Inhibition rates were calculated, and the
fraction affected (Fa) and CI (Combination Index) were generated for each group, and
dose–effect curves were obtained. The CI greater than, equal to, and less than 1.0 indicate
antagonistic, additive and synergistic effects, respectively. The results showed that in
CNE2/CDDP cells treated simultaneously with 3f and CDDP, the CI values were less than
1, indicating synergism between 3f and CDDP (Figure 2).

2.5. Combination Treatment of Compound 3f with CDDP Potentiated Apoptosis in
CNE2/CDDP Cells

Subsequently, to further verify whether the synergistic effects of compound 3f with
CDDP involved cell death, an apoptosis assay was conducted. CNE2/CDDP cells were
co-treated with CDDP and compound 3f, or CDDP and 3f alone for 24 h. Then, cells were
harvested for staining by using an apoptosis kit, following FACS detection (Figure 3a).
Then, the data from three independent experiments were analyzed and the results were
shown in the form of histogram (Figure 3b). The results indicated that combined treatment
with CDDP (4 µg/mL) and 3f (40 µM) increased significant cell apoptosis compared with
CDDP (15.53 ± 1.61 vs. 7.58 ± 0.82) or 3f (15.53 ± 1.61 vs. 9.97 ± 1.36) treatment alone
(Figure 3b).

Table 2. The combination of compound 3f and CDDP.

Group 3f CDDP Combination

1 20 µM 5 µM 3f (20 µM) + CDDP (5 µM)
2 20 µM 10 µM 3f (20 µM) + CDDP (10 µM)
3 20 µM 15 µM 3f (20 µM) + CDDP (15 µM)
4 40 µM 5 µM 3f (40 µM) + CDDP (5 µM)
5 40 µM 10 µM 3f (40 µM) + CDDP (10 µM)
6 40 µM 15 µM 3f (40 µM) + CDDP (15 µM)
7 60 µM 5 µM 3f (60 µM) + CDDP (5 µM)
8 60 µM 10 µM 3f (60 µM) + CDDP (10 µM)
9 60 µM 15 µM 3f (60 µM) + CDDP (15 µM)



Molecules 2021, 26, 417 5 of 12

Figure 2. Synergistic inhibitory effects of compound 3f with CDDP in CNE2/CDDP cells.
CNE2/CDDP cells were cultured with 3f and/or CDDP. After 72 h, 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2-H-tetrazolium bromide (MTT) was added. Two hours later, optical density (OD) was
detected, and the inhibition rate was quantified. Combination Index (CI) plots were then generated
using the Chou-Talay method and Calcusyn software.

Figure 3. Compound 3f (40 µM) increased apoptosis rate of CDDP (4 µg/mL) in CNE2/CDDP cells.
(a), representative apoptosis detection by FACS. (b), three independent experiments of apoptosis
assays were analyzed and p-value was calculated. Data are represented as mean ± SD. Bar means SD
value * p < 0.05, compared with CDDP; # p < 0.05, compared with 3f.

2.6. Molecular Docking of Compound 3f with Anti-Apoptosis Protein Bcl-w

The pro-survival protein Bcl-w has been demonstrated to contribute to reduced cell
apoptosis under cytotoxic conditions [23]. To better understand the mechanism of com-
pound 3f, molecular docking was carried out against Bcl-w (2Y6W). The results showed
that the nitrogen atom of 3f formed a hydrogen bond with glycine (gly90) around the
active pocket, and the thiophene ring formed a π-cation interaction with glycine (gly89
and gly90) on the side chain. Besides, the chloride atom on the compound group forms
hydrophobic interaction with glutamic acid (Glu), arginine (ARG), leucine (Leu), and
proline (pro) around the pocket (Figure 4a,b).

2.7. In Vivo Anticancer Evaluation of Compound 3f

Finally, to evaluate the combination inhibitory effects of compound 3f with CDDP in vivo,
the subcutaneous tumor-bearing model was applied by using strain of BALB/C nude mice. In
detail, 32 BALB/C nude mice without tumor were purchased and CNE2/CDDP cells (2× 107)
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were subcutaneously injected into the right flank of each mouse to make tumor burden. Then,
the 32 mice with tumor burden were divided into four groups which receive vehicle, CDDP
(5 mg/kg), compound 3f (40 mg/kg), and CDDP with 3f combination treatments (5mg/kg for
CDDP and 40 mg/kg for 3f), respectively, through intraperitoneal injection with two times
a week for one month. The results implied that the combined treatment of CDDP with 3f
significantly reduced tumor volume and weight compared with CDDP or 3f treatment alone
(Figure 5a–c). Meanwhile, we noticed that there was no significant difference in body weight
among mice in different groups (Figure 5d). The adverse effects of treatment were also tested by
detecting serum concentration of Alanine Aminotransferase (ALT), Aspartate aminotransferase
(AST), and creatinine (Cr). The results demonstrated that there were no significant changes in
the serum concentrations of ALT, AST, and Cr in each group (Figure 5e). These results inferred
that compound 3f displayed favorable synergistic effects against CNE2/CDDP cells in vivo
with no obvious side effects.

Figure 4. The molecular docking model of compound 3f and matrine with Bcl-w (PDB ID: 2Y6W). (a) 2D binding model of
3f with Bcl-w. (b) Binding pocket of compound 3f with Bcl-w.

Figure 5. The combination treatment of compound 3f (40 mg/kg) with CDDP (5 mg/kg) against CNE2/CDDP cells in vivo.
(a) Image of the internal tumor tissues after anatomy. (b) Curves of tumor volumes at various times after administration.
(c) Average mass of internal tumor tissues of mice. (d) Body weight of mice in each group. (e) The serum alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (Cr) levels of mice from each group were detected.
Data are represented as mean ± SD. Bar means SD value. * p < 0.05, compared with CDDP; # p < 0.05, compared with 3f.
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3. Discussion

It has been reported that matrine could reverse drug resistance in leukemia cells [24],
breast cancer cells [17], and bladder cancer cells [19] in vitro with a high dosage of more
than 1 mM. Accordingly, it can be inferred that the drug-resistant reversing effects of
matrine with relative low dosage could be improved by structure modification. Thiophene
is a heterocyclic scaffold containing sulfur which is generally present in many drugs on
the market, such as diuretic, antiasthma, and anticancer drugs [25,26]. Some thiophene
compounds have displayed favorable cytotoxicity activities [27,28]. Therefore, introducing
thiophene structure into matrine would improve its drug reversing effects. In our previous
study, a matrine derivative containing thiophene structure showed moderate drug resis-
tance reversal effect against NPC-CDDP cells (HONE1/CDDP) in vitro but not in vivo [20].
In this study, 6 new matrine derivatives with thiophene side chain were inducted into the
structure of matrine. Interestingly, we discovered that compound 3f exhibited prominent
synergistic inhibitory effects with CDDP against NPC-CDDP cells in vitro and in vivo
(Figures 2 and 5) with a relatively low dosage (20~60 µM) compared with that of matrine
(>1 mM) in leukemia, breast, and bladder cancer cells [17,19,24]. It is also reported that
thiophene compounds are limited in clinical use due to their risk of high toxicity [29]. Thus,
we performed preliminary toxicity assessment experiments of 3f in vivo by testing the
level of ALT, AST, and Cr. The results revealed that there was no obvious toxicity in the
physiological state with a dose of 40 mg/kg reflected by mouse body weight and ALT, AST,
and Cr detection (Figure 5d–e). The present work is a very basic preclinical study that is
far from clinical use. Whether compound 3f could be used in human patients and what
kind of dosage should be used needs to be further investigated.

Molecular docking technology can be used to study the interactions between drugs
and targets, and predict their binding mode and affinity. Our docking results indicated
that the chloride atom on the compound group can form hydrophobic interactions with
glutamic acid (Glu), arginine (ARG), leucine (Leu), and proline (pro) around the active
pocket (Figure 4a,b). Moreover, the docking assays of the other 7 derivatives and matrine
with Bcl-w were conducted. The results indicated that all the 8 derivatives showed a
stronger interaction than matrine and compound 3f displayed the strongest interaction
than the other 7 derivatives with a minimum London dG value (Supplementary Table
S1), indicating that compound 3f has the strongest affinity with Bcl-w which could inhibit
the activity of Bcl-w. These results may explain why compound 3f showed synergistic
inhibitory effects with CDDP. However, to elucidate the interactions between compound 3f
and Bcl-w, further experiments are needed.

4. Experimental
4.1. Chemistry Synthesis

The melting points were measured on a WRS-1B micro melting point apparatus and
were uncorrected. The 1H-and 13C-NMR spectra were obtained with Advance III HD 600
nuclear magnetic resonance (NMR) spectrometer (Bruker, Uster, Switzerland) operating at
600 MHz (for 1H) and 150 MHz (for 13C) in CDCl3 solution. Column chromatography was
carried out using 300–400 mesh size silica gel (Qingdao Marine Chemical Factory, Qingdao,
China). Reaction progress and target was monitored by TLC and visualized under UV
light (254 nm). Matrine (95%) was purchased from Shanxi Undersun Biomedtech Co.,
Ltd. (Xi’an, China). All other reagents were of analytical grade and were purchased from
Shanghai Energy Chemical Reagent Company (Shanghai, China) and were used without
further purification.

First, Lawesson’s reagent (0.5 eq, 5 mmol) was mixed with toluene (100 mL). After
adding 2.48 g (10 mmol) of matrine (1), the reaction mixture was stirred at 100 ◦C for 3 h.
The excess solvent was evaporated off. The residue was purified by silica gel flash column
chromatography (petroleum ether/ethyl acetate, 2:1) to afford thiomatrine (2) in 50%
yields. Then, thiomatrine (2, 0.528 g, 2 mmol) was dissolved in anhydrous tetrahydrofuran
(20 mL) in ice bath for 10–15 min under N2 protection. Lithium diisopropylamide (LDA,
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5 mmol) was added dropwise into the mixture and the reactants were stirred at room
temperature for 30 min. Aromatic aldehyde (5 mmol) was added in ice-salt bath, and then
the mixture was refluxed at room temperature for 3 h. Water (10 mL) was added to quench
this reaction. The residue was washed three times with dichloromethane (20 mL × 3). The
organic phase was dried with anhydrous Na2SO4 and then the solvents were evaporated
off. Purification of the crude products by silica gel column chromatography (ethyl acetate
/dichloromethane 1:2) yielded 8 thiomatrine derivatives among which 3a and 3b have been
reported previously [15] and 3c~3h are reported for the first time. The purity of 3a~3h has
been tested by HPLC, which showed ~90% purity for 3a~3h.

4.2. Characterization of 3c~3h

The characteristic data of 3a and 3b were described previously [15].
14-(thiophen-3-ylmethylene)thiomatrine (3c) Light yellow powder, m.p. 166.8–167.5 ◦C, yield:
67%. 1H-NMR (600 MHz, Chloroform-d) δ 8.24 (s, 1H), 7.36–7.31 (m, 2H), 7.18 (d, J = 4.9 Hz,
1H), 5.60 (dd, J = 12.1, 4.0 Hz, 1H), 4.18 (dt, J = 10.9, 6.9 Hz, 1H), 3.67 (t, J = 12.3 Hz, 1H),
2.93 (ddd, J = 14.3, 7.6, 3.8 Hz, 1H), 2.85 (dd, J = 25.2, 11.3 Hz, 2H), 2.47 (ddd, J = 14.4, 10.4,
3.8 Hz, 1H), 2.18 (tdd, J = 10.5, 8.5, 6.9, 4.2 Hz, 2H), 2.03 (ddd, J = 15.4, 7.8, 4.0 Hz, 3H),
1.89–1.83 (m, 1H), 1.76 (ddd, J = 21.7, 17.8, 13.3 Hz, 3H), 1.62 (ddt, J = 12.7, 8.5, 4.4 Hz,
3H), 1.47 (ddd, J = 21.8, 10.3, 5.4 Hz, 3H). 13C-NMR (151 MHz, Chloroform-d) δ 193.47,
137.93, 135.11, 135.02, 128.94, 126.09, 125.39, 63.50, 57.11, 57.00, 53.25, 43.49, 35.97, 27.77,
26.28, 25.63, 22.35, 21.23, 20.80. HRMS (ESI) m/z: calcd for C20H27N2S2 [M + H]+: 359.1610;
found 359.1620.
14-((5-methylthiophen-2-yl)methylene)thiomatrine (3d) Yellow powder, m.p. 186.2–187.4 ◦C,
yield: 54%. 1H-NMR (600 MHz, Chloroform-d) δ 8.40 (s, 1H), 7.08 (s, 1H), 6.71 (s, 1H), 5.54
(d, J = 11.9 Hz, 1H), 4.16 (d, J = 7.2 Hz, 1H), 3.62 (t, J = 12.2 Hz, 1H), 2.83–2.76 (m, 3H), 2.48
(s, 3H), 2.40 (d, J = 18.2 Hz, 2H), 2.14 (s, 2H), 1.99 (d, J = 9.4 Hz, 5H), 1.72–1.67 (m, 3H), 1.45
(d, J = 12.8 Hz, 4H). 13C-NMR (151 MHz, Chloroform-d) δ 192.89, 143.74, 137.56, 134.84,
132.87, 131.26, 125.86, 63.55, 57.01, 56.97, 56.91, 53.56, 42.97, 36.13, 27.80, 26.33, 24.70, 22.30,
21.27, 20.82, 15.62. HRMS (ESI) m/z: calcd for C21H29N2S2 [M + H]+: 373.1767; found
373.1779.
14-((3-methylthiophen-2-yl)methylene)thiomatrine (3e) Yellow powder, m.p. 193.6–195.0 ◦C,
yield: 71%. 1H-NMR (600 MHz, Chloroform-d) δ 8.57 (s, 1H), 7.30 (d, J = 4.6 Hz, 1H), 6.89
(d, J = 4.6 Hz, 1H), 5.55 (d, J = 11.9 Hz, 1H), 4.16 (d, J = 6.5 Hz, 1H), 3.63 (t, J = 12.4 Hz,
1H), 2.80 (dd, J = 23.5, 10.3 Hz, 3H), 2.36 (s, 3H), 2.20–2.13 (m, 4H), 1.98 (s, 5H), 1.73 (d,
J = 12.9 Hz, 3H), 1.45 (d, J = 12.2 Hz, 4H). 13C-NMR (151 MHz, Chloroform-d) δ 193.25,
141.42, 132.99, 132.83, 132.13, 130.29, 126.66, 63.53, 56.99, 56.93, 56.88, 53.52, 43.09, 36.07,
27.77, 26.29, 25.02, 22.31, 21.24, 20.79, 14.93. HRMS (ESI) m/z: calcd for C21H29N2S2 [M +
H]+: 373.1767; found 373.1778.
14-((5-chlorothiophen-2-yl)methylene)thiomatrine (3f) White powder, m.p. 226.4–227.6 ◦C,
yield: 75%. 1H-NMR (600 MHz, Chloroform-d) δ 8.32 (d, J = 6.3 Hz, 1H), 7.04 (s, 1H),
6.89–6.85 (m, 1H), 5.51 (d, J = 3.8 Hz, 1H), 4.17 (s, 1H), 3.63 (dd, J = 14.9, 8.0 Hz, 1H), 2.81 (d,
J = 7.6 Hz, 3H), 2.48 (d, J = 3.8 Hz, 1H), 2.14 (s, 2H), 2.01–1.96 (m, 3H), 1.83 (s, 1H), 1.70 (s,
3H), 1.56 (d, J = 14.3 Hz, 3H), 1.45 (d, J = 6.7 Hz, 3H). 13C-NMR (151 MHz, Chloroform-d) δ
192.34, 138.18, 133.67, 132.99, 132.76, 131.42, 126.58, 63.46, 56.98, 56.98, 56.95, 53.61, 43.04,
36.14, 27.78, 26.32, 24.63, 22.49, 21.24, 20.79. HRMS (ESI) m/z: calcd for C20H26N2ClS2 [M +
H]+: 393.1220; found 393.1235.
14-((4-bromothiophen-2-yl)methylene)thiomatrine (3g) Yellow powder, m.p. 245.7–246.3 ◦C,
yield: 57%. 1H-NMR (600 MHz, Chloroform-d) δ 8.35 (s, 1H), 7.31 (s, 1H), 7.16 (s, 1H), 5.56
(dd, J = 12.1, 4.0 Hz, 1H), 4.22 (dt, J = 11.8, 6.6 Hz, 1H), 3.68 (t, J = 12.3 Hz, 1H), 2.95–2.80
(m, 3H), 2.54 (ddd, J = 14.5, 9.7, 4.0 Hz, 1H), 2.26–2.17 (m, 2H), 2.06–1.98 (m, 3H), 1.88 (d, J
= 14.1 Hz, 1H), 1.74 (dt, J = 16.3, 5.6 Hz, 3H), 1.65–1.57 (m, 3H), 1.48 (ddd, J = 22.0, 11.5, 3.6
Hz, 3H). 13C-NMR (151 MHz, Chloroform-d) δ 192.30, 140.58, 134.64, 132.93, 132.18, 124.97,
110.77, 63.45, 57.00, 56.98, 56.97, 53.57, 43.14, 36.10, 27.77, 26.31, 24.75, 22.39, 21.23, 20.78.
HRMS (ESI) m/z: calcd for C20H26N2BrS2 [M + H]+: 439.0695; found 439.0710.
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14-((5-bromothiophen-2-yl)methylene)thiomatrine (3h) Yellow powder, m.p. 239.9–240.6 ◦C,
yield: 64%. 1H-NMR (600 MHz, Chloroform-d) δ 8.40 (d, J = 1.7 Hz, 1H), 7.06 (t, J = 3.5
Hz, 2H), 5.57 (dd, J = 12.1, 4.0 Hz, 1H), 4.23 (dt, J = 10.8, 6.4 Hz, 1H), 3.68 (t, J = 12.3 Hz,
1H), 2.90–2.81 (m, 3H), 2.56–2.49 (m, 1H), 2.26–2.17 (m, 2H), 2.06–2.00 (m, 3H), 1.88 (dt,
J = 13.9, 2.4 Hz, 1H), 1.76 (tdd, J = 16.7, 9.3, 5.0 Hz, 3H), 1.66–1.57 (m, 3H), 1.52–1.45 (m,
3H). 13C-NMR (151 MHz, Chloroform-d) δ 192.40, 141.03, 133.54, 132.96, 132.25, 130.25,
115.74, 63.49, 57.00, 56.99, 56.97, 53.63, 43.04, 36.13, 27.77, 26.32, 24.62, 22.54, 21.24, 20.79.
HRMS (ESI) m/z: calcd for C20H26N2BrS2 [M + H]+: 439.0695; found 439.0713.

4.3. Cell Viability Assay

Nasopharyngeal carcinoma cells (CNE2, HONE1, and CNE2/CDDP) were purchased
from Shanghai Aulu Biological Technologh Co., Ltd. (Shanghai, China). HK-1 cell was
purchased from Shanghai Shunran Biological Technologh Co., Ltd. CNE2, HONE1, and
HK-1 were cultured in DMEM medium supplemented with 10% fetal bovine serum, 1%
penicillin-streptomycin. CDDP-resistant NPC cell CNE2/CDDP was cultured in DMEM
medium supplemented with CDDP to sustain its drug resistance. Cell viability was
detected using the MTT assay. All the 8 derivatives were resolved with DMSO to make
a storage solution at 1 M, and CDDP was resolved with phosphate buffer saline (PBS) to
make a storage solution at 100 mM. The maximum concentrations of these 8 derivatives
and CDDP used in MTT assays were set as 1 mM and 100 µM diluted with DMEM medium,
respectively. Medium with 0.1% DMSO was set as control. To begin, an initial MTT assay
was conducted to evaluate the cytotoxicity of 3a~3h with a dose range of 50, 100, 200,
400, and 800 µM. Then, a more precise dose range was set to calculate the IC50 of each
compound (For 3a~3e: 50, 100, 200, 400, 600, and 800 µM; for 3f~3h: 12.5, 25, 50, 100, 200,
and 400 µM). Then, 5000 cells were seeded in a 96-well plate for each well and treated with
respective compounds at different concentrations for 72 h following additional treatment
with MTT for 2~3 h. Then, MTT was removed and 150 µL DMSO was added into each well
and the absorption values were measured at 490 nm using a SpectraMAX M5plate reader
(Silicon Valley, CA, USA).

4.4. Synergistic Effects Calculation

The combination index (CI) was evaluated using Calcusyn 2.0 based on the Chou-
Talalay method. Data from cell viability assays were applied to the CI calculation. CI < 1
suggests synergism, CI = 1 suggests an additive effect, while CI > 1 suggests antagonism.

4.5. Apoptosis Assay

CNE2/CDDP cells (3× 105) were seeded into a 6-well plate for each well. Twenty-four
hours later, medium was removed and cells were treated with different compounds for 72
h. Then, cells were harvested, washed with cold PBS, and stained with Annexin V-FITC
and PI for 15 min in dark. Finally, samples were analyzed by flow cytometer.

4.6. Molecular Docking

The molecular docking between compound 3f and Bcl-w (PDB ID: 2Y6W) was carried
out via applying the Molecular Operating Environment (MOE) software version 2008
as described previously [30]. Firstly, the molecular structure of compound 3f was plot-
ted by using ChemDraw. Then, the structure of compound 3f was subjected to energy
minimization using HyperChem via molecular dynamics (mm +) analysis, and the force
field partial charges were calculated for each molecule. After 3D protonation and energy
minimization, the protein active sites of Bcl-w were defined by molecular pore technology
for molecular docking. Stochastic conformational analysis was run for compound 3f using
default settings and the most stable conformer were retained.
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4.7. In Vivo Mouse Model

The in vivo studies were conducted according to protocols approved by the Animal
Ethics Committee of Guangxi University (GXU2018-019). The subcutaneous tumor-bearing
model using BALB/C nude mice was applied to assess the in vivo CDDP-resistant reversal
activity of compound 3f. In brief, 32 BALB/C nude mice without tumor were purchased
and CNE2/CDDP cells (2 × 107) were subcutaneously injected into the right flank of each
mouse to make tumor burden. Then, the 32 mice with tumor burden were divided into
four groups which receive vehicle, CDDP (5 mg/kg), compound 3f (40 mg/kg), and CDDP
with 3f combination treatments (5 mg/kg for CDDP and 40 mg/kg for 3f) (n = 8 for each
group; twice a week for a month). Drugs were resolved with sterile saline–ethanol–DMSO
(89:10:1, v/v/v). Sterile saline–ethanol–DMSO (89:10:1, v/v/v) was used as vehicle. Tumor
volume was calculated according to the formula: V = 0.5 × L ×W2 (L: the long diameter of
the tumor; W: the short diameter of the tumor). At the time of the animal sacrifice, tumors
were excised and weighted.

4.8. ELISA Assays

Mice were sacked at the time of the animal sacrifice and blood was collected to detect
ALT, AST, and Cr. Immediately, serum was separated by centrifugation at 2000 g, and ALT,
Cr, and AST were determined using ELISA kits (Shanghai Enzyme-linked Biotechnology
Co., Ltd., catalog: ml063179, ml058577, and ml057581) according to the manufacture in-
structions. The absorbance of the plates was read at 450 nm using an automated microplate
reader (Bio-Tek, Winooski, VT, USA).

4.9. Statistical Analysis

In the present study, data are present as the mean ± SD. Experiments were conducted
for three independent times. P values < 0.05 were considered as statistically significant by
using Student’s t-test of unpaired data.

5. Conclusions

Eight matrine derivatives containing thiophene group were designed and synthesized.
The cytotoxicity effects of these 8 compounds against nasopharyngeal carcinoma (NPC)
cells and cisplatin-resistance NPC cells (CNE2/CDDP) were detected and compound 3f
could induce apoptosis and display potent synergistic inhibitory effects with cisplatin
against CNE2/CDDP cell in vitro and in vivo.

Supplementary Materials: The following are available online: 1H and 13C NMR spectra, and HRMS
of 3c–3h; Table S1: Docking score of compounds 3a–3h and matrine against Bcl-w.
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ALT Alanine Aminotransferase
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