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Most of the mammalian neocortex is comprised of a highly similar anatomical structure,

consisting of a granular cell layer between superficial and deep layers. Even so,

different cortical areas process different information. Taken together, this suggests

that cortex features a canonical functional microcircuit that supports region-specific

information processing. For example, the primate primary visual cortex (V1) combines

the two eyes’ signals, extracts stimulus orientation, and integrates contextual information

such as visual stimulation history. These processes co-occur during the same laminar

stimulation sequence that is triggered by the onset of visual stimuli. Yet, we still

know little regarding the laminar processing differences that are specific to each of

these types of stimulus information. Univariate analysis techniques have provided great

insight by examining one electrode at a time or by studying average responses across

multiple electrodes. Here we focus on multivariate statistics to examine response

patterns across electrodes instead. Specifically, we applied multivariate pattern analysis

(MVPA) to linear multielectrode array recordings of laminar spiking responses to

decode information regarding the eye-of-origin, stimulus orientation, and stimulus

repetition. MVPA differs from conventional univariate approaches in that it examines

patterns of neural activity across simultaneously recorded electrode sites. We were

curious whether this added dimensionality could reveal neural processes on the

population level that are challenging to detect when measuring brain activity without

the context of neighboring recording sites. We found that eye-of-origin information

was decodable for the entire duration of stimulus presentation, but diminished in

the deepest layers of V1. Conversely, orientation information was transient and

equally pronounced along all layers. More importantly, using time-resolved MVPA,

we were able to evaluate laminar response properties beyond those yielded by

univariate analyses. Specifically, we performed a time generalization analysis by training
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a classifier at one point of the neural response and testing its performance throughout

the remaining period of stimulation. Using this technique, we demonstrate repeating

(reverberating) patterns of neural activity that have not previously been observed using

standard univariate approaches.

Keywords: cortical layers, cortical microcircuit, macaque, rhesus, machine learning, vision, visual cortex (V1)

INTRODUCTION

Certain anatomical motifs are repeated across disparate brain
areas with wide-ranging functions. The mammalian neocortex is

one such example as it predominantly features the same laminar
structure. A popular model for cortical function resting upon

this stereotypical structure is the canonical cortical microcircuit
(CCM: Douglas et al., 1989; Douglas and Martin, 1991; Bastos
et al., 2012). The CCM gives rise to a series of distinct,

yet overlapping, activation steps that are spatially segregated
between the superficial (supragranular), deep (infragranular),
and middle (granular) layers of cortex (Rockland and Pandya,
1979; Rockland and Virga, 1989; Callaway, 1998; Binzegger et al.,
2004; Douglas and Martin, 2004). According to this model,
ascending (feedforward) signals from parts of the brain that
are closer to the sensory periphery terminate in the middle
layers of cortical areas while descending (feedback) signals from
downstream areas target the layers above and below (Rockland
and Pandya, 1979; Rockland and Virga, 1989; Felleman and Van
Essen, 1991, but see Self et al., 2013).

Since the CCMapplies virtually ubiquitously across neocortex,
an improved understanding of the laminar cortical processing
chain is bound to translate into an improved understanding
of cortical processing more generally (Hubel and Wiesel, 1977;
Douglas et al., 1989; Felleman and Van Essen, 1991; Douglas
and Martin, 2004; Bastos et al., 2012). Our knowledge of laminar
neural activity in primates has grown greatly over the last decade
thanks to the prevalence of linear electrode arrays (Schroeder
et al., 1998; Xing et al., 2009, 2012; Burns et al., 2010; Buffalo
et al., 2011; Kajikawa and Schroeder, 2011; Maier et al., 2011,
2014; Hansen et al., 2012; Spaak et al., 2012; Smith et al.,
2013; Bastos et al., 2014, 2018; Van Kerkoerle et al., 2014;
Nandy et al., 2017; Cox et al., 2019a,b; Westerberg et al., 2019;
Dougherty et al., 2019a; Gieselmann and Thiele, 2020). Yet, our
knowledge about laminar neuronal activation remains limited
(e.g., Mignard and Malpeli, 1991). Recent studies demonstrated
that—matching predictions by the CCM—there are two distinct
sequences of laminar activation for feedforward and feedback
activation, respectively (Maier, 2013; Van Kerkoerle et al., 2014,
2017; Cox et al., 2019a). Much less is known about the different
types of feedforward processes that occur along cortical layers.
Specifically, we still know little about how one and the same
feedforward sweep of neural activation across cortical layers
entails multiple streams of stimulus-specific information that
manifest differently across space and time.

Our knowledge regarding laminar cortical processing is
bound to rapidly increase since there have been notable
advances in microelectrode technology. Specifically, the increase

in simultaneously placed electrodes and the associated increase
dimensionality of laminar neurophysiological data obtained by
second generation laminar arrays is rapidly approaching those
of other techniques such as fMRI (Jun et al., 2017; Steinmetz
et al., 2018; Musk and Neuralink, 2019). Yet, laminar recordings
are usually analyzed using the same univariate techniques that
have been established for single electrodes, rather than utilizing
the additional, contextual information provided by neighboring
electrode contacts in a multivariate fashion.

There are several statistical approaches that quantify
information distributed across neighboring measurements in the
brain, directly capturing neuronal interactions on the population
level. Specifically, machine-learning based multivariate pattern
classification analysis (MVPA) has proven fruitful in systems
neuroscience (Haxby et al., 2001; Kriegeskorte and Bandettini,
2007; Kriegeskorte et al., 2008; Kriegeskorte and Kreiman, 2012;
Rutishauser et al., 2018). More recently, time-resolvedMVPA has
emerged as a powerful technique to study the time courses with
which information processing occurs across the brain (Carlson
et al., 2013; Cichy and Pantazis, 2017; Tovar et al., 2020).
While time-resolved MVPA has been applied to multielectrode
recordings (Goddard et al., 2017), to date no study to our
knowledge probed whether this technique can reveal aspects of
laminar cortical activation that are opaque to univariate analyses.
For instance, through time generalization, which is achieved by
training a classifier at a specific time point—such as early in the
neuronal response to a stimulus—then testing it throughout the
remainder of the response, one can search for repeating patterns
of neural activity across electrodes that might be invisible when
analyzing single channels in isolation.

Here we use time-resolved MVPA to analyze the pattern
of spiking activity across 24 and 32 channel (first generation)
linear multielectrode array recordings in primate primary visual
cortex (V1). Instead of relying on the average response across
all electrode channels or only examining one channel at a time,
MVPA uses patterns of activity across neighboring channels to
classify neuronal responses. We use both time-resolved MVPA
and an MVPA-based “searchlight” analysis commonly used for
neuroimaging data to map how information regarding stimulus
orientation, eye-of-origin, and stimulus history differentially
flows within the laminar activation sequence of V1. We found
that MVPA can be utilized effectively despite the relatively
low channel counts of first generation laminar linear arrays.
We then explored time-generalization, as this analysis provides
insight that cannot be gained frommore conventional, univariate
approaches that are blind to patterns of activity that span
multiple electrodes. This analysis revealed repeating patterns
in neuronal activity that entailed information about whether a
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stimulus had previously been shown or not, which we had not
observed in a prior study that had relied on univariate analyses
exclusively (Westerberg et al., 2019). We discuss these findings
and their implications for the advent of massively increased
channel counts for linear multielectrode arrays that are rapidly
gaining prominence (Jun et al., 2017; Steinmetz et al., 2018; Musk
and Neuralink, 2019).

MATERIALS AND METHODS

Animal Care and Surgical Procedures
Data were collected from two macaque monkeys [Macaca
radiata, one female (designated Monkey 1) and one male
(designated Monkey 2)]. All procedures were in compliance with
regulations set forth by the Association for the Assessment and
Accreditation of Laboratory Animal Care (AALAC), approved
by the Vanderbilt University Institutional Animal Care and
Use Committee, and followed National Institutes of Health
guidelines. A detailed description of the surgical procedures
can be found in previous publications (Westerberg et al.,
2019, 2020a,b). Briefly, in a series of surgeries, each monkey
was implanted with a custom MRI-compatible headholder
and recording chamber over perifoveal V1 concurrent with
a craniotomy.

Behavioral Paradigm
In each recording session, monkeys viewed a 20” CRT monitor
(Diamond Plus 2020u, Mitsubishi Electric Inc.) operating at
60 or 85Hz. Monkeys passively fixated within a one-degree
radius around a central fixation dot and viewed stimuli through
a custom mirror stereoscope so that stimuli could be viewed
monocularly or binocularly (Figure 1A). To eliminate potential
response differences due to binocular disparity, prior to the main
tasks, a mirror calibration task was performed. In this task,
monkeys shifted gaze to a series of stimuli positioned across
the visual display and held fixation at each position to receive
fluid reward. Each stimulus was presented to only one eye at a
time. This resulted in two maps of fixation positions, one for the
set of stimuli presented to each eye. The stereoscope was then
adjusted if differences were observed in those maps (e.g., the
maps were not completely overlapping). Stimuli were generated
using MonkeyLogic (Asaad et al., 2013; Hwang et al., 2019)
via MATLAB (R2012, R2014a, The Mathworks, Inc.) running
on a computer using a Nvidia graphics card. Following 300ms
of fixation, monkeys viewed five sequentially presented stimuli
for 200ms each, with a 200ms inter-stimulus interval (ISI).
If fixation was maintained throughout the five presentations,
the monkey was rewarded with juice and relieved of the
fixation constraint for an inter-trial interval (ITI). If the monkey
broke fixation during trial performance, the presentation was
eliminated from analysis and the monkey experienced a short
timeout (1–5 s) before starting the next trial. Each stimulus
in the presentation sequence was a sinusoidal bar grating of
equivalent size, spatial frequency, and phase, with variable
orientation and eye-of-origin (Figure 1B). For each recording
session, the stimuli were optimized for the measured neural
activity evaluated by listening to the multi-unit activity (MUA)

during exposure to a wide variety of stimuli. We selected
stimulus parameters that evoked the greatest neural response.
For a more detailed description of the paradigm, as well as
further information on stimulus optimization and receptive field
mapping (Supplementary Figure 1), see previous publications
(Cox et al., 2013, 2019a,b; Dougherty et al., 2019a; Westerberg
et al., 2019).

Neurophysiological Procedure
All data used in this paper are available upon request from
the communicating author, pending approval by Vanderbilt
University. During task performance, broadband (0.5
Hz−12.207 kHz) intracranial voltage measurements were taken
at a sampling rate of 30 kHz and amplified, filtered, digitized
using a 128-channel CerebusTM Neural Signal Processing
System (NSP, Blackrock Microsystems LLC). Neuronal data
was downsampled offline to 1 kHz, following low-pass filtering
with an anti-aliasing filter. Gaze position was recorded at 1 kHz
(NIDAQ PCI-6229, National Instruments) using an infrared
light sensitive camera and commercially available eye tracking
software (Eye Link II, SR Research Ltd.; iView, SensoMotoric
Instruments). Recordings took place inside an electromagnetic
radio frequency-shielded booth and were performed using one
or two acute laminar multielectrode arrays with 24 or 32 contacts
with 0.1mm electrode spacing and impedances ranging between
0.2 and 0.8 megaohms at 1 kHz (U-Probe, Plexon, Inc.; Vector
ArrayTM, NeuroNexus). Electrodes were connected to the NSP
using analog headstages. In each recording, the electrode array(s)
were introduced into dorsal V1 through the intact dura mater
using a chamber-mounted microdrive (custom modification of
a Narishige International Inc. Micromanipulator) and adjusted
such that the majority of recording contacts spanned the cortical
sheet. This procedure was repeated across the 61 experimental
sessions (n= 13 for monkey I34).

Receptive Field Mapping
Since achieving single-unit isolation on every channel is difficult,
we instead opted to estimate the local population spiking
response by quantifying the time-varying activity in the spiking
frequency range (multi-unit activity, MUA) as we wanted to
ensure overlapping receptive fields along the cortical depth.
Verifying overlapping receptive fields provides confidence that
the activity we are recording across columns originates from the
same cortical location rather than spanning adjacent columns
(i.e., that the electrode penetration was orthogonal to cortex).
Monkeys performed a visual fixation task where a visual
stimulus was presented repeatedly in the contralateral visual
hemifield – relative to the position of the electrode array. Up
to five stimuli were presented on each trial for 200ms with
a 200ms interstimulus interval. Stimulus size and positioned
varied between recording sessions, but each session usually
consisted of a “coarse” receptive field mapping task followed
by a more focused version once an estimation for the exact
position was found. We mapped receptive fields using a reverse-
correlation technique (Supplementary Figure 1) which resulted
in 3-dimensional receptive field matrices where 2 dimensions
corresponded to visual space and the third, response magnitude
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FIGURE 1 | Experimental setup, paradigm, preprocessing, and analysis. (A) Monkeys were positioned in front of a monitor and tasked to passively fixate a central dot

through a custom mirror stereoscope. (B) Monkeys were shown a series of five grating stimuli of randomly varying orientations and ocular configuration with all other

parameters were held constant. (C) Linear multicontact array recording laminar neuronal responses at 100 micron spatial resolution spanning through visual cortex.

(D) Grand average multiunit spiking responses (MUA) to the stimulus sequence for all three main laminar compartments (both animals, all sessions). (E) Schematic of

multivariate pattern analysis (MVPA). Population spiking responses (MUA) from each laminar compartment were reorganized as a function of electrode contact and

time. A classifier was trained at each timepoint using linear discriminant analysis and 4-fold cross validation. (F) Decoding analysis was separately performed for

grating orientations, stimulus history (initial stimulus vs. repetitions), and eye-of-origin.

(Cox et al., 2013). Only sessions where the receptive field
matrices were overlapping along cortical depth were included
for further analysis. Additionally, this procedure determined
the position where the stimulus was positioned to stimulate
the column receptive field for the main task (see section
Behavioral Paradigm).

Laminar Alignment
Current source density (CSD) in response to brief visual
stimulation was used to find the boundary between the granular
and infragranular compartments of V1 as per previously
documented methods (Schroeder et al., 1998; Maier et al., 2010;
Maier, 2013; Ninomiya et al., 2015; Cox et al., 2019a,b; Dougherty
et al., 2019a; Westerberg et al., 2019). Only sessions that were
found to be perpendicular to the cortical surface were included
in analysis (see section Receptive Field Mapping). Additional
neurophysiological criteria were used, such as well-defined
patterns of LFP power spectral density (VanKerkoerle et al., 2014;
Bastos et al., 2018; Westerberg et al., 2019), signal correlations
between LFP recorded on differing channels (Westerberg et al.,
2019), and latency (Self et al., 2013) of stimulus-evoked MUA.

The granular to supragranular boundary was set to 0.5mm
above the granular to infragranular boundary (Figure 1C).
Supplementary Figure 2 demonstrates the reliability of these
functional markers following alignment of all sessions. Both
extracranial to intracranial and gray matter to white matter
boundaries were determined by finding the pair of recording
electrodes where no multiunit response to visual stimuli was
observed on one channel and a significant response was observed
on the other (Cox et al., 2019b; Westerberg et al., 2019).
Recording channels positioned between these pairs all showed
significant responses. That is, we found no instances of a lack
of response on a channel determined to be within the gray
matter. The L2/3–L4 boundary was set to 0.5mm above the L4–
L5 boundary as we do not have a reliable functional marker
and that distance is consistent with histological studies of V1
laminar structure (see Cox et al., 2019b; Westerberg et al., 2019
for details).

Data Preprocessing
All contiguous recording channels found to be within the
gray matter were taken and multiunit signals were computed.
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Channels in the gray matter were found by determining first
whether a visual response could be evoked on the channel and
second, whether a receptive field was present for the multiunit
and/or LFP activity through a previously described receptive field
mapping paradigm (Westerberg et al., 2019). If the channel was
found to be in the gray matter, the broadband neural signal
recorded at that channel was then band-pass filtered between
500 and 5,000Hz, rectified, and low-pass filtered at 200Hz
using Butterworth filters (Self et al., 2013; Shapcott et al., 2016;
Westerberg et al., 2020a). These derived neural signals, with
no further filtering of the multiunit activity, were then used
in performing both the univariate and multivariate analyses
(Figure 1D).

Multivariate Pattern Analysis
To track how sensory information from different stimulus
features are processed within this laminar microcircuit,
we applied multivariate pattern analysis (MVPA) using
CoSMoMVPA (Oosterhof et al., 2016) to the MUA of each of
the three laminar compartments (Figure 1E, left-most panel).
To do so, we assembled two-dimensional neuronal response
matrices (NRMs) that contained the millisecond-by-millisecond
population spiking response at each electrode channel as a
function of trials. Each row/electrode in the NRM can be thought
of as a separate axis forming a multidimensional space whose
dimensionality is determined by the number of electrodes. Each
stimulus presentation will elicit a different response across each
of the dimensions. The specific stimulus features we tested
comprised of grating orientation, the eye that the stimuli were
presented to (eye-of-origin) and the relative position of each
stimulus within the stimulation sequence (Figure 1F). We next
randomly divided trials within sessions to perform a 4-fold
cross-validation procedure. In this procedure, 3/4 of the data
is used to train an MVPA classifier (Figure 1E, second-to-left
panel). The remaining 1/4 of the NRMs are used to determine
classifier performance. To classify a given stimulus feature,
a different hyperplane or set of hyperplanes (as is the case
with the orientation where we have four orientations) is used
to distinguish stimulus feature on a trial by trial basis. The
decoding accuracy is the number of trials over the total number
of trials that classifier is able to correctly identify for each
session. We performed this computation separately within
each recording session on a millisecond-by-millisecond basis,
evaluating the accuracy of classifier performance as a function of
time (Figure 1E, second-to-rightmost panel). The resulting time
courses of decoding accuracy for each laminar compartment
were then pooled together and compared to a randomized trial
shuffle control to determine statistical significance (Figure 1E,
rightmost panel). To correct for multiple comparisons, we used
the false discovery rate (FDR) adjusted p-values with α = 0.01.
For each of the decoding distinctions, the subsets were balanced,
such that both training subsets and testing subsets contained the
same number of trials for each stimulus category.

For orientation decoding, all recording sessions were used for
analysis. However, some recording sessions included orientation
presentations that were not shown in other recording sessions
(i.e., 22.5◦ in one recording session and 30◦ in another sessions).

Therefore, orientation presentations were binned into four
categories: 0–44◦, 45–89◦, 90–134◦, and 135–179◦. For trial
repetition decoding, the five stimuli presentations for a given trial
were grouped as either the first presentation or as a repetition. To
have an equal number of first presentations and repetitions, we
randomly subsampled from the repetitions to match the number
of first presentations.

For each stimulus feature, we also performed a time
generalization analysis (Carlson et al., 2011; King and Dehaene,
2014) which uses a similar decoding procedure described,
with one notable exception — the classifier is trained on
the information at one time point for each stimulus feature
and the model is subsequently tested on all timepoints.
This procedure is repeated across all timepoints resulting in
a 2D “time generalization matrix” that plots training time
against decoding time to gain insight into how information at
specific timepoints evolve throughout the time course. Lastly,
to determine the effects of repeated stimuli presentations on
orientation and eye of origin decoding, we further divided
the repetition subset of data into balanced eye of origin
subsets and balanced orientation subsets. We then again
performed a 4-fold classification using a linear discriminant
analysis classifier.

RESULTS

Stimulus Feature-Specific Information
Within Neural Activation of the CCM
Before investigating each stimulus feature in isolation, we
evaluated whether the grand average spiking response to our
stimuli matched predictions from the CCM (Figure 2A). To do
so, we spatially aligned the spiking data from each recording
session to the layer 4C/5 boundary. Using these aligned datasets,
we computed the grand average spiking response to all stimuli
as a function of cortical depth and time (Figure 2B). The
resulting laminar profile of activation was consistent with both
the expectations set by the CCM and previous studies of laminar
visual activation in that layer 4C activity preceded that of
the other layers (Mitzdorf, 1985; Schroeder et al., 1998; Maier
et al., 2010; Spaak et al., 2012; Van Kerkoerle et al., 2014).
Interestingly, however, both the supragranular and infragranular
layers responded virtually simultaneously, which might either
be explained by (i) V1’s idiosyncratic laminar connections [i.e.,
there are also, less pronounced, geniculate projections outside
layer 4C (Callaway, 1998)], (ii) limitations of the CCM model
itself (e.g., Godlove et al., 2014; Ninomiya et al., 2015), or both.
This pattern of sensory activation occurs regardless of stimulus
feature, raising the question of how stimulus-specific information
is extracted within this activation sequence. To answer this
question, we appliedMVPAusing a “moving searchlight” analysis
(Etzel et al., 2013). Specifically, we limited both our training and
test data sets to three neighboring electrode channels, performed
MVPA over time, and then repeated the process after moving
this “searchlight” 0.1mm deeper along the electrode array. In this
analysis a classifier is trained and tested for each timepoint of the
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FIGURE 2 | Stimulus feature-specific information within neural activation of the CCM. (A) Canonical microcircuit model (CCM) of neural activation in V1. Feedforward

activation initially excites the middle layers before reaching upper and lower layers of cortex. (B) Grand average laminar MUA profile to all stimulus presentations along

the depth of the electrode (all sessions, both monkeys). (C) Decoding performance using a “moving searchlight” along the electrode array for eye of origin (leftmost

panel), grating orientation (middle panel), and stimulus repetition (rightmost panel). (D) Time series of MVPA decoding for eye of origin (leftmost panel), grating

orientation (middle panel), and stimulus repetitions (rightmost panel). Graphs show decoding accuracy as a function of time and laminar compartment, together with a

randomized shuffled control as a baseline. Significance is indicated with colored asterisks above the abscissa using Wilcoxon signed-rank test, FDR corrected, q <

0.01. Bar plots to the right indicate time-averaged statistics of the data with Wilcoxon signed-rank test P values (*p < 0.05, **p < 0.01, ***p < 0.001) above the plots.

response, in 1ms increments (Figure 2C). No spatial or temporal
smoothing were added.

We first focused on the eye-of-origin for each stimulus
presentation. While V1 harbors both neurons that respond to
one or both eyes, most of the neurons that respond to one eye
only (monocular neurons) are located in the middle, granular
layers (Hubel and Wiesel, 1977; Dougherty et al., 2019a). This
finding is consistent with neuroanatomy, as the granular layers
receive the bulk of (monocular, eye-specific) inputs from the
lateral geniculate nucleus of the thalamus (LGN) that connects
eye and cortex (Casagrande and Boyd, 1996). A long-standing
hypothesis is that the eye-specific inputs in the middle layers are
merged to a combined (binocular) response in the layers above,
even though most V1 neurons maintain preference for one eye
over the other (Hubel and Wiesel, 1972; Ohzawa and Freeman,
1986; Prince et al., 2002; Read and Cumming, 2004). Neurons
in the uppermost layers of V1 project to neurons in V1’s lower
layers, so if the upper layers form a combined binocular signal,
this signal should be present in the lower layers as well (Hubel
and Wiesel, 1972; Cox et al., 2019b; Dougherty et al., 2019a).
However, based on several other pieces of empirical evidence,
an alternative hypothesis postulates that the two eyes’ signals are
interacting at or before LGN responses arrive in the middle layers
of V1 (see Dougherty et al., 2019b for review).

Using MVPA, we found information regarding eye-of-origin
initially followed the CCM profile of general activation, with
neurons reliably indicating whether a stimulus was shown
to left or right eye in the middle layers, followed by the
upper layers of V1. This eye-specific information largely
diminished once neuronal activation reached the lower layers
of V1 (Figure 2C, left panel). These timing differences can
clearly be seen for a layer-specific MVPA using all electrode
channels within the middle, upper and lower layers of V1,
respectively (Figure 2D). We utilized this analysis to perform
several statistical comparisons. First, we compared decoding
performance on a millisecond-by-millisecond basis against a
randomized trial shuffle control. Second, we compared decoding
across laminar compartments. Decoding of eye-of-origin first
emerged in the middle layers (29ms), followed by the upper
(40ms) and lower layers (40ms). Decoding which eye the stimuli
were shown to was comparable between middle and upper layers
but significantly reduced in the lower layers, suggesting that eye-
specific information is largely preserved when granular neurons
project to neurons in the layers above. However, decoding
of eye-of-origin is relatively poor in the lower layers of V1,
suggesting that, at least on the multiunit-level, there is significant
binocular convergence after activation reaches the upper
layers of cortex. This finding demonstrates that eye-of-origin
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is more robustly represented in supragranular compared to
infragranular layers.

Next, we computed the laminar evolution of stimulus
orientation information. A common notion regarding the
functional layout of V1 states that orientation selectivity (tuning)
is less pronounced in the middle layers of V1 (Hubel and Wiesel,
1972, 1977; Ringach et al., 2002). Several authors have since
challenged this idea, arguing that V1 already receives orientation-
biased inputs (Daniels et al., 1977; Vidyasagar and Urbas, 1982;
Leventhal and Schall, 1983; Smith et al., 1990; Pugh et al., 2000;
Xu et al., 2002). We thus wondered what the laminar profile of
MVPA-based decoding of stimulus orientation across V1 layers
might be.

We binned our grating stimuli into four groups (0◦,
45◦, 90◦, and 135◦, respectively) and trained a classifier to
discriminate between them (Figure 2C). Interestingly, we found
that information regarding stimulus orientation was more
transient than information regarding of eye-of-origin. Moreover,
the laminar profile was strikingly different: the center of the
granular layers discriminated relatively poorly between gratings
of varying orientation, and neurons in the layers above and
below did so without any significant temporal delay. Closer
inspection of the layer-resolved decoding (Figure 2D), collapsed
across time, revealed that there was no significant difference
between any of the laminar compartments (bar plots). These
results seem to suggest that stimulus orientation information
is extracted almost uniformly across V1 layers. However, visual
inspection reveals clear differentiation within the middle layers,
which is lost when collapsing this layer into a single measure.
This heterogeneous pattern within the granular layers might at
least be partially explained by the fact that the middle layers host
several sublayers that each receive separate inputs from the LGN
(Casagrande and Boyd, 1996), although it is not immediately
clear how the granular sublayers relate to the specific pattern
we found.

Given that V1 is known to modulate its responses depending
on contextual cues, such as the behavioral state of the animal
or stimulus history (Van Kerkoerle et al., 2014; Cox et al.,
2019a; Westerberg et al., 2019), we next examined how stimulus
history affects the laminar flow of stimulus-specific information.
To do so, we first studied the laminar flow of information
of whether a stimulus was novel or preceded by another
stimulus in the stimulation sequence. We found that this
information regarding stimulus history yielded yet another
pattern of laminar information flow (Figure 2C). We found
that the bulk of information regarding stimulus history resided
outside the granular input layers. This finding was also apparent
in layer-specific MVPA (Figure 2D). These results are in line
with earlier work showing that V1 granular layers are least
affected by the adaptive effects of repeated visual stimulation
(Westerberg et al., 2019).

Quantifying Differences Between
Spatiotemporal Searchlight Maps
We next quantified the visual difference we observed between
the spatiotemporal maps for the stimulus-specific information

(Figure 3). Since we were primarily interested in relative
decoding performance throughout the cortical columns, we
normalized each channel (electrode contact) by subtracting
mean decoding performance across channels for each individual
timepoint in the time series for each stimulus feature. We then
calculated the Euclidean distance between each of our stimulus
feature at each timepoint. These results were then compared
to a shuffled label control where we similarly normalized our
electrodes at each timepoint and then calculated the Euclidean
distance (Figure 3B). Here, we find that the spatiotemporal
differences between eye of origin, orientation, and stimulus
history are all higher than the differences found in the respective
shuffled label control. Eye-of-origin, which was more readily
decoded in the granular layers was distinct from the decoding
of stimulus orientation and repetition, which both lead to higher
decoding in superficial and deeper layers. To statistically compare
the differences across space and time, we next converted the
searchlight matrices into one-dimensional vectors and then
normalized across channels before conducting a pairwise signed
rank test. Using this approach, we found significant decoding
differences between eye of origin and orientation (p < 0.001),
eye-of-origin (p < 0.001) and repetition (p < 0.001), and
orientation and stimulus history (p < 0.001). As expected,
there were no significant differences between the shuffled label
controls. These decoding differences between stimulus features
indicate that processing these stimulus features occurs distinctly
but simultaneously with the laminar microcircuit.

Temporal Dynamics of Stimulus
Information Using Time Generalization
To further investigate how feature information evolves over time
(see also: Ringach et al., 1997, 2002, 2003; Bair et al., 2002;
Smith et al., 2006; Shapley et al., 2007), we decoded neuronal
data based on a classifier that was trained for another time
period of the same neuronal response (“time generalization”)
(Carlson et al., 2011; King and Dehaene, 2014). The result of
this analysis is a 2D “time generalization matrix” that plots
training time against decoding time. Figure 4A illustrates several
possible outcomes for generalization matrices. It is possible,
for example, that there is little to no generalization between
a classifier trained at one time and tested on the remaining
time of a neuronal response. In other words, spiking might
be constantly changing in a way that any information used
to discriminate between stimuli is specific to each individual
point in time of the neuronal response (“unique states”). In
contrast, if the information used to discriminate between stimuli
were static across the neuronal response, we would expect a
square-like pattern (“sustained”). This analysis can also show
information decaying over time (“information decay”). An
asymmetric pattern occurs because a classifier trained on lower
signal-to-noise ratio (SNR) data generalizes better to higher SNR
data than the converse (van den Hurk and Op de Beeck, 2019).
Lastly, information might reoccur at a later time point of a
response (“recurrence”).

We performed time generalization analysis for the decoding
of eye-of-origin, stimulus orientation as well as stimulation
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FIGURE 3 | Statistical comparison of columnar flow of stimulus feature-specific information. (A) Schematic for comparison between stimulus-feature specific

searchlight analyses. Decoding results from the searchlight analyses for each of the stimulus features, normalized across all the channels for each individual timepoint

from 100ms prior to stimulus presentation to 400ms after stimulus presentation (B) Euclidean distance of the normalized decoding values calculated between each

stimulus feature. A shuffled control where stimulus labels have been shuffled prior to channel normalization and Euclidean distance calculation is shown for

comparison.

history within each laminar compartment (Figure 3 and
Supplementary Figure 2). Decoding eye-of-origin was mostly
sustained but also exhibited some information decay within
each laminar compartment (Figure 4). Decoding of stimulus
orientation, in contrast, was less sustained. Interestingly,
whether or not a stimulus preceded or succeeded other
stimuli showed a very different pattern. Specifically, the time
generalization matrix was suggestive of recurrent processing,
in that the initial information emerges, weakens and then
re-emerges at a later time point. This reactivation pattern
was most prominent in the supragranular and infragranular
layers (Figure 4).

To further investigate how the temporal dynamics for
each of the stimulus features varies within compartments.
We combined the searchlight and time generalization
analyses (Figure 5 and Supplementary Video 1). Using

this approach, we found that the electrode-specific time
generalization matrices were generally representative of their
respective compartments. However, within compartments
there was notable heterogeneity. For example, for eye of
origin decoding, time generalization was comparable across
contiguous electrodes. In contrast, for decoding stimulus
history (repetition), the reactivation pattern noted in Figure 5

waxes and wanes even within laminar compartments. These
results provide evidence for the notion that sub-layers
within laminar compartments differentially process distinct
stimulus features.

DISCUSSION

Recent studies using linear multielectrode arrays in V1
have successfully contrasted externally evoked feedforward
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FIGURE 4 | Temporal dynamics of stimulus information using time generalization. (A) Cartoon models of possible results. (B) Significant time generalization results,

FDR corrected for multiple comparisons, q < 0.025, for: (B) Eye-of-origin, (C) Orientation, (D) Stimulus repetitions (see Methods for details). Chance decoding level is

indicated on each color bar by a red line. Red and white arrows are added for emphasis.

activation with internally generated feedback (Spaak et al.,
2012; Maier, 2013; Van Kerkoerle et al., 2014, 2017).
These results are encouraging as they demonstrate that
the flow of neural activation across cortical layers is highly
informative regarding the context of neuronal activation – an
important insight that is largely absent in single electrode
recordings. In this study we went beyond these earlier
findings by showing how the build-up of cortical laminar
activation contains several parallel streams for information

specific to stimulus features that are difficult to trace
using univariate analyses, even when laminar data has
been obtained.

Drawing Insight From Multivariate Spiking
Profiles
In recent work, layer-specific processes are often grouped to
perform univariate analyses to investigate differences between
layers (see Westerberg et al., 2019 for example). This is
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FIGURE 5 | Combined time generalization and moving searchlight analysis along the depth of the linear electrode array. We performed this analysis for each of the

main stimulus features analyzed in this paper: Stimulus (A) eye-of-origin, (B) orientation and (C) repetition. Each sub-panel shows a series of time generalization plots

ranging from 100ms before stimulus to presentation to 400ms post stimulus presentation using a moving searchlight of three electrodes and two electrodes at the

end of the electrode array.

because we often consider cortical processes that follow a model
known as the canonical cortical microcircuit (see Bastos et al.,
2012 for review). This model hypothesizes three functional
compartments in granular cortex: a feedforward recipient
granular compartment sandwiched between supragranular and
infragranular compartments. While this model has provided
powerful insight into cortical function, we know that even
within layers there can be degree of heterogeneity in the
distribution of neurons. That is, neuron “A” might exist
in layer 2 of cortex where neuron “B” exists in layer
3. While both neurons are present in the supragranular
compartment and their activity might reflect the same process,
the information they carry might vary in meaningful ways.
MVPA incorporates information across all channels comprising
a predefined laminar compartment. This allows a more
integrative approach in evaluating the activity of laminar
compartments than previous approaches. Namely, previous work
considers independent channels from a laminar compartment
representative of the compartment’s overall activation state
(Westerberg et al., 2019). However, information might be
encoded in the dynamics within a layer that would be lost in
univariate analyses.

Another advancement afforded by the MVPA approach is by
being able to generalize information states across time. The time
generalization analysis allows us to track patterns of information
encoding. That is, by evaluating decode performance by training
and testing the classifier at different time periods, we can observe
how information processing is remaining consistent or evolving.
A stable representation of a feature will not only be decodable
at the timepoint in which a classifier is trained, but also at
later timepoints. Meanwhile, with a dynamic representation, a
classifier will not generalize far beyond the trained time (Carlson
et al., 2011; King and Dehaene, 2014; Mohsenzadeh et al., 2018).
Furthermore, we can infer how certain stimuli features vary in
time andmatch potential models of neural encoding found across
a number of studies (for review see King and Dehaene, 2014).

Implications for the Circuitry of Binocular
Combination, Orientation Representation,
and Repetition Suppression
The analyses performed here further our understanding of
several processes along the V1 laminar microcircuit. First
to consider is the laminar profile of binocular combination.
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Through our analyses, we found that visual signals of each eye
are more strongly integrated once they reach the deep layers. We
found a drastic reduction in eye-specific information in the lower
layers of V1, suggesting the information regarding eye-of-origin
are largely resolved prior to the lower layers. This pattern is in line
with earlier reports, locating the bulk of V1 binocular neurons
in both the upper and lower layers (Hubel and Wiesel, 1977).
This apparent paradox might be explained by a recent finding
that a large fraction of monocular V1 neurons are sensitive to
both eyes (Dougherty et al., 2019a). Thus, a neuron’s preference
for one or the other eye may not necessarily be predictive of
how it responds to binocular stimulation (see also Read and
Cumming, 2004). Furthermore, eye-specific information also
seemed to decrease in both the searchlight decoding and time
generalization results, indicating that it is more readily dispensed
by V1’s CCM compared to other types of stimulus information,
which seems in line with the fact that eye-of-origin information is
of low behavioral relevance (Blake and Cormack, 1979; Solomon
andMorgan, 1999; Schwartzkopf et al., 2010). While our findings
regarding the representation of eye information the lower layers
requires more direct testing to reconcile with previous work,
our other finding that each eye’s stream of information stays
largely separate until visual activation reaches the upper layers
of V1 are compatible with hypotheses regarding the origins of
binocular combination.

Our results also revealed a fine-grained spatiotemporal
laminar pattern of orientation tuning, with some but not
all sublayers of granular layer 4 exhibiting less sensitivity to
stimulus orientation than the superficial and deep layers of V1.
Although it is not immediately clear how the specific pattern
produced by MVPA relates to the magno- and parvocellular
recipient sublayers, our finding seems to be generally in line
with the idea that V1 receives at least some LGN inputs that
are somewhat “biased” toward certain stimulus orientations, with
further processing within V1 producing the more discerning
orientation tuning that characterizes this area.

With respect to the circuitry of adaptation in V1, it is
interesting to note that stimulus repetition yielded a unique
signature of time generalization in the feedback-recipient layers
of V1. Previous work suggested that adaptive changes largely
arise from changes in feedback activation in V1 (Westerberg
et al., 2019). The temporal features of this time generalization
pattern are somewhat reminiscent of prior descriptions of
feedbackmodulation in V1 (VanKerkoerle et al., 2014). However,
our finding goes beyond the demonstration of a secondary peak
in activation by revealing that the information content within this
activation is specific to contextual information.

Sources for Feature-Specific Activation
Patterns in V1
It is interesting to speculate as to the source of these differences
in layer-specific information flow. Could it be that differences
arise through differences in processing local to V1 or is
another brain area affecting feature-specific change in the V1
laminar microcircuit? Previous work has begun to investigate
such questions. For example, investigation into the origins of

adaptation resulting from visual repetition suggests that the
reduction in neural responses in V1 associated with visual
repetition comes about through a reduction in the feedback
activity to the V1 laminar microcircuit rather than through
changes in feedforward processing local to V1 (Westerberg
et al., 2019). This is in contrast to the process of binocular
combination which is largely thought to be accomplished
even prior to the feedforward activation of the supragranular
layers of V1. It is through these differences in activation
that might elicit the observed differences in information flow
along the layers. Further investigation, perhaps through causal
inactivation of feedback connections to V1 (Nurminen et al.,
2018), would shed light on whether feedback activation is
indeed necessary for the observed patterns of information flow
described here.

Toward Ultra-High-Resolution Laminar
Neurophysiology
We are on the cusp of a revolution in primate neurophysiology
that will allow for massively increased insights into the function
of mesoscopic neural circuits (Jun et al., 2017; Steinmetz
et al., 2018; Musk and Neuralink, 2019). Modern recording
technologies have advanced to allow for the simultaneous
recording from thousands of channels. This substantial advance
in resolution of data allows for the interrogation of data
through novel analytical methods. With increased resolution
of data comes the ability to investigate data in more
integrative approaches. MVPA has proven highly useful in
the functional imaging literature where large multichannel
datasets have been commonplace for decades. Through the
analyses demonstrated here, we propose these same analyses
as useful approaches to investigating ultra-high-resolution
neurophysiology as these recording techniques becomemore and
more common.
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