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INTRODUCTION

Feed-forward loops are means of managing homeostasis under dynamic conditions (1–4). It is a way
for organisms and cells to manage inputs and responses while maintaining optimal functioning (1).

Feed-forward control differs from feedback control in a number of ways, including how a feed-
forward controller is 1) responsive to process parameter changes in the system and 2) corrects for
disturbances in the system (4). While the more widely known feedback systems track a continuous
measurement (“an error signal”) and attempt to correct it by matching their “control signals”, feed-
forward systems are command and control: once the control signal has been issued, it cannot be
adjusted until a new control signal has been issued.

An example will make the distinction between these two forms of control clearer. While driving,
slowing down before making a turn is a form of feed forward control, because the driver (“controller”)
anticipates the effects of inertia upon the moving car and attempts to pre-compensate. Adaptive cruise
control offers an example of a feedback system: the car’s “computers” continuouslymeasures the speed of
the car and either accelerates or decelerates to keep the speed constant at the desired level. In this
analogy, the Fas and FasL expression induced following stimulation (5) are the ‘control’ signals, and the
ensuing differentiation, cytotoxic acquisition, and apoptosis via Fas (which can terminate in effector
function and death) is the ‘turning’ maneuver. The maneuver (turning vs. differentiation with death or
effector function) has a preparation stage that depends on the ‘speed’ (which is the differentiation state of
the T-cells in the pool).

Feed-forward loops (FFLs) are common in physiological systems and immunological responses
(1, 2, 6, 7). For example, the mTORC1/Akt axis has been shown to be regulated in a feed-forward
manner, and a feed-forward inflammatory loop has been implicated in lethal influenza (7, 8).
Notably, the Akt pathway has been shown to be the predominant pathway controlling T cell
memory and effector differentiation (9). Illustrating its importance for T-cell effector function, the
inhibition of this pathway following stimulation uncouples T cell differentiation and proliferation
following T cell stimulation and keeps t cells in the memory state (10, 11).
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T cells can exert a contact-dependent paracrine Fas-FasL
mediated differentiation effect on co-stimulated T cells in vivo
and in vitro (5, 12, 13) with directionality from the FasL-
expressing memory and effector cells to the Fas-expressing
naïve T cells and other memory/effector cells. Following
stimulation but before differentiation occurs, a non-apoptotic
Fas (CD95) signal travels through the Akt pathway in order to
differentiate T-cells. Illustrating this, Fas blockade in a pool of T
cells following stimulation in vitro also uncouples differentiation
and proliferation of T cells and prevents their terminal effector
differentiation and release of effector cytokines. This means the
canonical death receptor CD95 is involved in the function and
fate of T cells in a pool. This behavior of T-T interactions which
influence the acquisition of effector function represents quorum
decision-making for differentiation, cytotoxicity, and apoptosis,
all via Fas, implying T cells behave as a highly regulated quorum
sensing tissue that relies on its homotypic immediate
environment for context (14).

Typically, feed-forward control is described in a single cell,
but since T cells are able to cause the differentiation of paracrine
T cells and also ‘soak up’ like a cytokine sink or withhold
differentiation of paracrine T cells, they are able to act as a
Frontiers in Immunology | www.frontiersin.org 2
quorum (Figures 1A–C) (5). In this sense, a single cell with a
given phenotype, such as an activated naive or Tscm CD8 T cell
expressing CD95 for example, is able to inhibit effector
differentiation of adjacent memory cells by ‘soaking up’ or
acting as a ‘sink’ for CD95L, for example.

That is the first component of the feed-forward loop we
describe in Figure 1D. The second component of the loop are the
effector cells (in red) that highly express both CD95 and CD95L
and will agonize adjacent cells and bring about their
differentiation and subsequent death, which is limited to
terminally differentiated effectors (5). By terminating the FFL
with apoptosis in those cells which are terminally differentiated
and therefore have high effector function, this allows for self-
limiting effector responses.

However, the naive and Tscm cells will prevent this from
occurring when they are present, by virtue of ‘soaking up’ this
CD95L signal (5). The sum of this interaction comprises a feed-
forward loop (Figure 1D). This interaction we believe is a
method in control in the balance of T cell homeostasis
between the blood, lymphoid organs, and peripheral tissues.

In lethal cases of Covid-19 there is a necrosis of the spleen and
lymph nodes perhaps indicative of excessive T cell effector
A

B
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FIGURE 1 | Illustration of the Paracrine Fas/FasL differentiation and death system (A) Stimulation of a naive-rich pool of T-cells corresponding to a youthful repertoire
(B) Stimulation of a more differentiated pool of T-cells (C) Stimulation of a pool of T-cells with few Tn, where the population will reach cytotoxic function more
exuberantly (D) Proposed coherent type 2 Feed-Forward Loop of Fas-mediated differentiation and death (solid line), with a negative feedback loop on naive T cells
from effector T cells (E) FFL error from coherent type 2 to incoherent type 2 in ALPS and the murine model Fas C194V due to a defect in CD95-mediated Apoptosis
but not CD95-mediated differentiation. (Figure adapted with permission from Leonardi and Proenca, 2020).
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differentiation (15, 16). Indeed, many peripherally-infiltrating
lymphocytes in infection are short-lived and are not
accompanied by Naive and Tscm cells that could prevent their
full effector function (17). Furthermore, immune privileged sites
like the eye exploit this susceptibility by expressing FasL to
quickly delete wayward T cells (18, 19). Therefore, this
Terminal portion of the Fas-FasL feed-forward loop is an
essential component of immune tolerance and T cell control
(20, 21).

The specific kinetic and dynamic mirrors a type 2 coherent
Feed Forward Loop where disturbances are corrected for and
responses are accelerated and then quite literally, terminated, by
apoptosis (2, 3, 5, 6). Prior evidence includes 1) how naive CD8
T-cells act as a “sink”, withholding differentiation and cytotoxic
function in memory CD8 T-cells (5), and 2) how acute T-T
interactions can prime Tumor-specific effector T cells to more
exuberantly act against tumor (22).

The significance of this Feed-Forward Loop is shown by the
protective effect of Tn CD8+ cells in Covid-19 (23), which
reconciles the highly discrepant outcomes seen between
children (low mortality) (24, 25) and elderly adults (high
mortality) (26, 27). A Fas-mediated role of excessive T-cell
death in severe cases has recently become more evident as well,
lending credibility to the earlier proposal about its role in
apoptosis (12, 28).

Indeed, André et al. propose blocking Fas-mediated death via
a pan caspase inhibitor Q-VD (28). Finally, given the
differentiation and depreciation of the Tn pool from infection
likely due to the overshooting T-cell stimulation from SARS-
Cov-2’s cryptic (29) accumulation of superantigenic biomass (12,
30, 31), T cell activation via complement (32), and bystander
activation (33), we can use the model to anticipate the possibility
of worsening disease upon reinfection in cases where there is not
adequate early control and a highly differentiated T cell
repertoire (34). This does not mean all reinfections will be
worse, rather that they will be worse when the parameters of
this feed-forward model are met.
DISCUSSION

What Explains Heightened Severity in the
Aged and Mild Illness in the Youth?
There is a dire need to explain the wide gamut of immune
dysfunction in Covid-19 between mild and severe disease (35).
Here, we incorporate a major correlation of Covid-1 severity; the
proportion of CD8+ naïve T cells (12, 23, 36). As described by
Moderbacher, et al., a higher proportion of these cells is
protective in Covid-19. Indeed, much of the pathology in
Covid-19 is T cell driven, and it would be useful to incorporate
these observations into a system/model that reconciles them. We
previously described how Tn and Tscm can act as ‘sinks’ for a
differentiation and death signal (12, 37). de Candia et al.
proposed that naive repertoires exert better control by virtue of
greater TCR repertoire diversity which historically is associated
with lower CD4 and CD8 T cell activation (38). however no
Frontiers in Immunology | www.frontiersin.org 3
model reconciles 1) the low Case Fatality Rate (CFR) seen in
children (24, 25); 2) the high CFR seen in the elderly (39); 3)
cases of more severe reinfection (40); 4) the efficacy of steroids,
which cause a rapid reduction in CD8+ T-cells, and suppress Fas
and FasL in T-cells (41–45); 5) the efficacy of anti GM-CSF (46,
47), which downregulates Fas expression on T-cells (48); and the
high degree of Fas-mediated T cell apoptosis which characterizes
severe Covid-19 (28).

Proposing A Fas/Akt Differentiation and
Death Feed-Forward Loop
We previously described a system where, under costimulation,
Tscm expressed CD95 and acted as a ‘sink’ for CD95L expressed
by Teff, Tem, and Tcm (12, 37). This CD95L expression induces
differentiation in proximal cells where CD95 is ligated, except in
terminally-differentiated cells where it induces death (5). This
effect can be blocked with CD178 blockade or AKT inhibition
without affecting T cell proliferation (5, 12). Based on the
differentiation status/proportion of Tn of the T cell population
undergoing stimulation, we can gauge how prone to exuberant
effector function the resultant pool of T cells will behave, with
higher proportion of Tn being protective as described by
Moderbacher et al. (23) (Figures 1A–C) As FasL is expressed
later in the stages of T cell differentiation, there is an epigenetic
controller regulating its expression as part of a canonically
developmental type 2 coherent feed forward loop (2, 3, 5)
(Figure 1D). Furthermore, there is negative feedback in the
system where Tem push the differentiation of CD95-expressing
Tn (or Tscm) which reduces the dampening effect of the Tscm by
reducing their numbers and promoting their acquisition of
CD95L. This negative feedback is prototypically implemented
alongside feed-forward loops (4, 49). The FFL ends when CD8+
T cells that have reached terminal differentiation undergo
apoptosis and are removed from the pool. Disturbances in this
terminal element of coherent FFL control are exemplified in
ALPS, where the apoptotic function of Fas is ablated but the
terminal effector differentiation is maintained (50) (Figure 1E).
Indeed, we see the consequence of what is ideally, a type 2
coherent FFL mutagenically switched to a type 2 incoherent FFL
which loses the termination of the differentiation effect via
apoptosis, as described by Mangon and Alon (2, 49). The
difference in whether a FFL is coherent vs. incoherent depends
on the sign (positive or negative, respectively) of the output (2).
For example, in the condition ALPS Fas- mediated death is
disrupted, so the FFL drives to terminal effector differentiation
without apoptosis, reversing the sign of the outcome (2, 21). As
such, we can contextualize the autoimmune toxicity to peripheral
tissues and lymphoproliferation and see the physiological utility
of the coherent FFL as opposed to an incoherent FFL in the Fas/
Akt Differentiation and Death feed-forward system (2, 5, 12, 37,
50, 51).

Perilous “Recall”: Depletion Dependent
Enhancement
In SARS Cov-2 infection, peripheral blood CD8+ phenotypes
exhibit a significant reduction in the proportion of Tn and an
March 2022 | Volume 13 | Article 853606
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increase of Teff (52). In a single cell analysis of T cell memory
following infection, Adamo et al. observe that severe cases of
Covid-19 are marked by a CD8+ T cell effector population they
assume is induced by bystander activation, and mild cases
marked by a memory phenotype (53). Cohen et al. examined
the differences in T cell induction of IFN-g and found increased
age was associated with higher T-cell activation and concluded
that reduced the T-cell activation in children may be responsible
for milder Covid-19 (25). Previously, we described a model of T-
cell driven Covid-19 severity incorporating the finding of
Moderbacher, et al., where an increased proportion of CD8+
Tn had a protective effect (12, 23, 37). In the model, we showed T
cells with a higher proportion of Fas expression would
differentiate due to a Fas-potentiated non-apoptotic Akt signal,
thereby causing the exuberant T cell effector function seen in
severe cases (12). Given the possible frequency of Covid-19
reinfection and rechallenge, the model can be updated to
incorporate T cell differentiation and effector function
conferred by reinfection. Based upon data showing a retraction
of the Tn repertoire following infection by Townsend et al, and
Phetsouphanh et al, we can speculate regarding a possible “T cell
depletion dependent enhancement” as the stimulated repertoire
(which includes the T cells specific to SARS-Cov-2 epitopes,
those activated by a bystander effect, and those also stimulated
superantigenically and by complement) has lost a proportion of
its Tn and is thereby able to quickly differentiate into T cell
Effectors since there is no CD95L sink that the CD95 expression
on Tn and Tscm offer (30–32, 54). This effect would be more
evident in the aged 60+, who have significant reductions in CD8
+ Tn proportions following SARS Cov-2 infection, due to the
bystander, complement, and superantigen-induced excessive
stimulation (30–32, 34). Of course, primed T-cells such as
those from vaccination are capable of exerting earlier control
of infection (55); and indeed, early CD8 bystander activation is
associated with better control of infection (33), so we anticipate a
degree of protection conferred from vaccination when the
individual has a paucity of naïve T cells, such as in Figure 1C.
We must note, however, infection with SARS-CoV-2 represents a
challenge for the CD8+ compartment given its immune evasion,
like Major Histocompatibility Complex 1 (MHC 1)
downregulation (29). In cases where early control is not
accomplished, T cell memory could contribute to an
overexuberant response (12, 37, 38). Indeed, exuberant CD8+
T-cell mediated pathology has been documented in infections
like RSV and SARS-CoV-2 alike (32, 56, 57). Memory CD8+
responses have been shown to exert immunopathology and
severe disease in murine models of RSV (56).

Additionally, this model suggests a pathogenic role in FasL-
mediated T cell differentiation in the development of Type 1
diabetes, as shown in the NOD mice model by Xiao, et al. (58,
59) In NOD mice, CD8+ T-cells have been shown to exert b-
cell destruction, which can be abrogated with FasL blockade,
which would reduce CD8+ effector differentiation and function
(11, 58, 59). This pathway is growing in relevance considering
the risk for newly diagnosed autoimmune diabetes (Type 1)
following SARS-Cov-2 infection, and consideration of this
Frontiers in Immunology | www.frontiersin.org 4
mode l and the nonspec ific T-ce l l a c t i va t ion and
differentiation observed in COVID-19 would proffer
mechanism in part (60).
Pride Goeth Before The Fall: The Utility of
Apoptosis Following Differentiation
On T-cells, the CD95 receptor potentiates a differentiation signal
via AKT until the T-cell reaches terminal differentiation,
whereby CD95 engagement induces apoptosis (11, 50).
Evolutionarily, programming apoptosis into the same system
of effector differentiation by the adaptive immune system is an
elegant means of assuring self-limiting effector T cell responses.
Where CD95-mediated death does not occur, such as in cases of
ALPS, T-cell effector populations may accumulate, manifesting
in autoimmunity and lymphoproliferation (61, 62).
“Driven” by Danger, Effector T Cells Cut
the Brake Lines and Step on the Gas
The feed-forward model proposed here represents a quorum-
like T cell dynamic in activated states (63). To revisit our
analogy, naïve T cells are like the ‘brakes’ for a high response
whereby they ‘absorb’ CD95L. In situations with persistent and
broad activation of naïve T cells they would be subjected to
FasL expressing cells upon arrival to the lymph nodes and
differentiated by those means. Long Covid’s paucity of naïve T
cells would fit this dynamic (54). As shown in the dotted
negative feedback line in Figure 1D, FasL-expressing effectors
can precociously differentiate naïve T cells, like “cutting the
brakes” before a turn (12, 37). Such negative feedback loops are
canonically found alongside feed-forward loops (4, 49). If there
was a persistent or evasive antigenic reservoir capable of
evading adaptive immunity and continually stimulating T
cells it could explain the persistent elevation of Effectors and
depletion of Tn seen in some cases of Long Covid (54).
Persistent activation could hasten T cell differentiation and
manifest in a naïve depletion, effectively manifesting as “cutting
the brakes” in this model where naïve T cells dampen exuberant
responses. A persistent command on the feed-forward
controller could deplete the naive T cell subset by this
mechanism, if the stimulation is broad enough. This
mechanism may also, in part, describe an insidious
lymphocyte depletion where there is chronic activation and
loss of T populations in chronic infections with substantial
bystander activation (64).
CONCLUSION

T-cell differentiation and acquisition of effector function is
accomplished via Feed-forward control. In Covid-19, there is
nonspecific and possibly bystander cytotoxic CD8+ T-cell
activation which may be a double-edged sword, exerting
damage to tissues and vital organs like the lung and pancreas
(14, 30–32, 52, 53, 60). The FFL proposed here gives a
March 2022 | Volume 13 | Article 853606
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mechanism for both the exuberant T-cell response observed in
severe cases and the protective effect of Tn (12, 23, 32, 37). It also
anticipates the consequences of a diminishing pool of Tn if we
are to consider the documented reduction of the naive T cell
repertoire in SARS Cov-2 convalescence (34, 52), which may be
induced by the superantigenic nature of infection and the
bystander activation of T cells (30, 32). If this dynamic is
correct and appreciable, COVID-19 reinfections may manifest
more severe disease as T cell repertoires age and Tn reduce in
frequency, manifesting in an individual and demographic level.
Frontiers in Immunology | www.frontiersin.org 5
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