
RESEARCH ARTICLE National Science Review
6: 469–479, 2019

doi: 10.1093/nsr/nwz006
Advance access publication 22 January 2019

MOLECULAR BIOLOGY & GENETICS

Ecological principle meets cancer treatment: treating
children with acute myeloid leukemia with low-dose
chemotherapy
Yixin Hu1,†, Aili Chen 2,†, Xinchang Zheng2,3,†, Jun Lu1,†, Hailong He1, Jin Yang1,4,
Ya Zhang2,3, Pinpin Sui2,3, Jingyi Yang2,3, Fuhong He2, Yi Wang1, Peifang Xiao1,
Xin Liu2,3, Yinmei Zhou5, Deqing Pei5, Cheng Cheng5, Raul C. Ribeiro6,∗,
Shaoyan Hu1,∗ and Qian-fei Wang2,3,∗

1Department of
Hematology and
Oncology, Children’s
Hospital of Soochow
University, Suzhou
215025, China; 2CAS
Key Laboratory of
Genomic and
Precision Medicine,
Beijing Institute of
Genomics, Chinese
Academy of Sciences,
Beijing 100101, China;
3University of Chinese
Academy of Sciences,
Beijing 100049, China;
4Department of
Pediatrics, Nothern
Jiangsu People’s
Hospital, Yangzhou
225001, China;
5Department of
Biostatistics, St. Jude
Children’s Research
Hospital, Memphis TN
38105, USA and
6Department of
Oncology and Global
Medicine,
International Outreach
Program, St. Jude
Children’s Research
Hospital, Memphis,
TN 38105, USA

∗Corresponding
authors. E-mails:
wangqf@big.ac.cn;
hsy139@126.com;
raul.ribeiro@stjude.org
†Equally contributed
to this work.

Received 11
November 2018;
Revised 8 December
2018; Accepted 21
January 2019

ABSTRACT
Standard chemotherapy regimens for remission induction of pediatric acute myeloid leukemia (AML) are
associated with significant morbidity and mortality. We performed a cohort study to determine the impact
of reducing the intensity of remission induction chemotherapy on the outcomes of selected children with
AML treated with a low-dose induction regimen plus granulocyte colony stimulating factor (G-CSF)
(low-dose chemotherapy (LDC)/G-CSF). Complete response (CR) after two induction courses was
attained in 87.0% (40/46) of patients receiving LDC/G-CSF. Post-remission therapy was offered to all
patients, and included standard consolidation and/or stem cell transplantation. During the study period, an
additional 94 consecutive children with AML treated with standard chemotherapy (SDC) for induction
(80/94 (85.1%) of the patients attained CR after induction II, P= 0.953) and post-remission. In this
non-randomized study, there were no significant differences in 4-year event-free (67.4 vs. 70.7%; P= 0.99)
and overall (70.3 vs. 74.6%, P= 0.69) survival in the LDC/G-CSF and SDC cohorts, respectively. After the
first course of induction, recovery of white blood cell (WBC) and platelet counts were significantly faster in
patients receiving LDC/G-CSF than in those receiving SDC (11.5 vs. 18.5 d for WBCs (P< 0.001); 15.5
vs. 22.0 d for platelets (P< 0.001)). To examine the quality of molecular response, targeted deep
sequencing was performed. Of 137 mutations detected at diagnosis in 20 children who attained
hematological CR after two courses of LDC/G-CSF (n= 9) or SDC (n= 11), all of the mutations were
below the reference value (variant allelic frequency<2.5%) after two courses, irrespective of the treatment
group. In conclusion, children with AML receiving LDC/G-CSF appear to have similar outcomes and
mutation clearance levels, but significantly lower toxicity than those receiving SDC.Thus, LDC/G-CSF
should be further evaluated as an effective alternative to remission induction in pediatric AML.
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INTRODUCTION
Malignant tumors, including acute myeloid
leukemia (AML), are widely considered to have
a genetically heterogeneous cell population [1,2].
Recent studies have found that the intratumor
genetic diversity is much higher than previously
expected [3,4]. For example, the number of cod-
ing mutations in a single hepatocarcinoma was
estimated to be greater than 100 million under

a neutrality model [3]. In this model, the high
intratumor mutation load would be a consequence
of neutral (non-Darwinian) molecular evolution
whereby mutations are not eliminated by natural
selection (Darwinian). Moreover, population
genetic analyses support the neutral model during
tumor growth [5,6]. Except for the strong positive
selection of a few driving mutations, most of the
tumor cells are subject to little natural selection

© The Author(s) 2018. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open  Access article distributed under the 

terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0 /), which permits non-commercial reuse, distribution, and reproduction in 

any medium, provided the original work is properly cited. For commercial re -use, please contact journals.permissions@oup.com 

http://orcid.org/0000-0002-1751-1208
mailto:wangqf@big.ac.cn
mailto:hsy139@126.com
mailto:raul.ribeiro@stjude.org
mailto:journals.permissions@oup.com


470 Natl Sci Rev, 2019, Vol. 6, No. 3 RESEARCH ARTICLE

in the absence of therapeutic intervention and
changes in the microenvironment. However, an
originally neutral mutation could later become
adaptive in a changed environment, so called
the ‘Dykhuizen–Hartl effect’ [7]. Therefore, new
mutations are constantly occurring during tumor
formation, which likely gives rise to drug-resistant
mutations at a very low frequency.

With the pre-existence of small drug-resistant
subclones, the elimination of a dominant drug-
sensitive clone by current chemotherapy, usually
given at the maximum tolerated dose, might allow
the competitive release of resistant subclones to un-
dergo accelerated growth in a resource-rich environ-
ment, resulting in more rapid disease progression or
relapse [8,9].These observations are consistent with
the evolutionary ecological theory of biological con-
trol, in which successful eradication in exotic species
using high-dose pesticides may be impossible, and
usually results in the rapid emergence of resistant
strains [10]. Hence, reducing chemotherapy drug
dosagemaybe a logical way tomaintain a stable pop-
ulation of sensitive subclones, thereby restricting the
growth of resistant cells. Gatenby and colleagues
have devised adaptive therapy, which requires pro-
gressively lower dosing or even omitted schedules,
to maximize time to progression by stabilizing tu-
mor size in animal models [11,12]. Such a low-dose
adaptive concept may provide a novel strategy for
treatingnon-curable advancedormetastatic tumors;
however, it is not clear whether reduced chemother-
apy intensity can be clinically effective when cure is
the goal.

Pediatric AML is generally managed with two
courses of near-myeloablative therapy to induce re-
mission, followedby two-to-three additional courses
of chemotherapy or hematopoietic cell transplanta-
tion (HCT) in selected patients for post-remission
therapy [13,14]. However, intensive induction ther-
apy is associatedwith life-threatening complications,
as patients are most vulnerable to the effects of high
leukemia burden and profoundmarrow suppression
[15]. Treatment-related deaths are particularly high
in places with limited resources [16].

A low-dose chemotherapy (LDC) regimen fea-
turing one-tenth of the standard dose of chemother-
apeutic drug cytarabine and one-half of the dose
of anthracycline in conjunction with granulocyte
colony stimulating factor (G-CSF), was used in in-
duction and consolidation therapies for elderly pa-
tients with AMLwhoweremedically unfit to receive
intensive chemotherapy [17]. Approximately 35–
40% of patients given LDC/G-CSF attained com-
plete response (CR) [18]. However, this strategy
was originally aimed at improving the quality of life
but not curing the leukemia. Whether LDC/G-CSF

regimens followed by standard post-remission ap-
proaches can eradicateAMLremains unknown. Fur-
ther, the efficacy of LDC/G-CSFhas not been tested
in children with de novo AML.

Given the efficacy and good tolerance of
LDC/G-CSF regimens in older patients, we report
here a cohort study of children with newly diag-
nosed AML treated with the LDC/G-CSF regimen.
The clinical and biological features, and outcomes of
children with AML receiving at least one induction
cycle of LDC/G-CSF were compare with those
receiving standard-dose chemotherapy (SDC),
to investigate whether LDC could achieve similar
clinical efficacy as SDC.

RESULTS
Patient characteristics
Between July 2012 and May 2018, 140 children
(<15 years old) with de novo AML were treated at
our hospital. For induction I, 46 received LDC/G-
CSF and 94 received SDC. Median age of 82
males and 58 females was 81 months (range, 5–170
months). Median white blood cell (WBC) count
was 16.5 × 109/L (range, 0.4–606.0 × 109/L). Ac-
cording to World Health Organization (WHO) cri-
teria, 85 patients had AML with recurrent cytoge-
netic abnormalities and 55 had AML that was not
otherwise specified (Table 1).

Patients treated with LDC/G-CSF were signifi-
cantly younger (median, 54 months (range, 10–149
months) vs. 93 months (range, 5–170 months);
P = 0.014) and had lower initial WBC counts (me-
dian, 10.0 × 109/L (range, 1.3–69.5 × 109/L) vs.
22.1 × 109/L (0.4–606.0 × 109/L); P = 0.002)
than those treated with SDC.There were no signifi-
cant differences between other presenting clinical or
biological features between both groups (P= 0.466;
Table 1).

Treatment outcome and response
Induction remission in patients assigned to the
LDC/G-CSF group
Thirty-four of 46 (73.9%) children who received
the first course of LDC/G-CSF (induction I)
attained remission. Failure to attain remission was
observed in 12 (26.1%) patients because of no
response (NR) in 7 and partial response (PR) in
five patients (Table 1 and Supplementary Fig. S1).
A second course of LDC/G-CSF (induction II) was
administered to 28 of the original 46 patients. Two
patients abandoned treatment and 16 patients (nine
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Table 1. Baseline features and treatment responses of 140 children with AML.
Features LDC/G-CSFN (%) SDCN (%) TotalN (%) P value

Gender, n (%) 46 94 140 0.719a

Female 18 (39.1) 40 (42.6) 58 (41.4)
Male 28 (60.9) 54 (57.4) 82 (58.6)

Age (months) 46 94 140 0.014b

Median 54 93 81
Range 10–149 5–170 5–170

WBC count (×109/L) 46 94 140
Median 9.97 22.06 16.47 0.002b

Range 1.33–69.51 0.42–606.00 0.42–606.00
Gene rearrangements, n (%) 46 94 140 0.206a

RUNX1-RUNX1T1 20 (43.5) 34 (36.2) 54 (38.6)
MLLr 5 (10.9) 16 (17.0) 21 (15.0)
CBF/MYH11 2 (4.3) 14 (14.9) 16 (11.4)
BCR-ABL 0 (0.0) 1 (1.0) 1 (0.7)
Negative 19 (41.3) 29 (30.9) 48 (34.3)

Gene mutations, n (%)c 46 86 132 0.174a

KIT 10 (21.7) 22 (25.6) 32 (24.2)
NPM1 1 (2.2) 1 (1.2) 2 (1.5)
FLT3-ITD 0 (0) 11 (12.8) 11 (8.3)
CEBPα double mutation 3 (6.5) 5 (5.8) 8 (6.1)
PTPN11 2 (4.3) 2 (2.3) 4 (3.1)
Negative 30 (65.2) 45 (52.3) 75 (56.8)

Cytogenetics, n (%) 46 94 140 0.466a

Favorable 21 (45.6) 41 (43.6) 62 (44.3)
Intermediate 17 (37.0) 39 (41.5) 56 (40.0)
Adverse 7 (15.2) 8 (8.5) 15 (10.7)
Undetectable 1 (2.2) 6 (6.4) 7 (5.0)

AML risk group, n (%) 46 94 140 0.219a

Low risk 13 (28.3) 31 (33.0) 44 (31.4)
Intermediate risk 25 (54.3) 37 (39.4) 62 (44.3)
High risk 8 (17.4) 26 (27.6) 34 (24.3)

First induction, n (%) 46 94 140 0.570a

CR 34 (73.9) 64 (68.1) 98 (70.0)
PR 5 (10.9) 17 (18.1) 22 (15.7)
NR 7 (15.2) 13 (13.8) 20 (14.3)

Second induction, n (%) 44e 90 134 0.953a

CR 40 (90.9) 80 (88.9) 120 (89.6)
PR 1 (2.3) 4 (4.4) 5 (3.7)
NR 2 (4.5) 5 (5.6) 7 (5.2)
Unknown 1 (2.3) 1 (1.1) 2 (1.5)

HCT, n (%) 46 94 140 0.820a

No 25 (54.3) 53 (56.4) 78 (55.7)
Yes 21 (45.7) 41 (43.6) 62 (44.3)

Relapse, n (%) 46 94 140 0.514a

No 41 (89.1) 80 (85.1) 121 (86.4)
Yes 5 (10.9) 14 (14.9) 19 (13.6)

Deaths, n (%) 46 94 140 0.835a

No 34 (73.9) 71 (75.5) 105 (75.0)
Yes 12 (26.1) 23 (24.5) 35 (25.0)

Toxic deaths, n (%) 46 94 140 0.719a,d

No 42 (91.3) 84 (84.4) 126 (90.0)
Yes 4 (8.7) 10 (10.6) 14 (10.0)
Induction I 0 (0.0) 0 (0.0) 0 (0.0)
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Table 1. Continued.

Features LDC/G-CSFN (%) SDCN (%) TotalN (%) P value

Induction II 0 (0.0) 2 (2.1) 2 (1.4)
Post-induction 1 (2.2) 4 (4.3) 5 (3.6)
Post-HCT 3 (6.5) 4 (4.3) 7 (5.0)

Abandonment, n (%) 46 94 140 0.754a,d

No 43 (95.3) 86 (91.5) 129 (92.1)
Yes 3 (6.5) 8 (8.5) 11 (7.9)

AML: acute myeloid leukemia; ANC: absolute neutrophil count; LDC/G-CSF: low-dose chemotherapy concurrent with G-CSF; SDC: standard-dose
chemotherapy; WBC: white blood cell; CR: complete response; HCT: hematopoietic cell transplant; NR: no response; PR: partial response.
aExact Pearson’s chi-squared test.
bWilcoxon rank-sum test.
cEight patients did not receive gene mutation test.
dP value is given for comparing the first 2 rows (No and Yes) between LDC/G-CSF and SDC. Subsequent rows show the distribution of Yes patients by
treatment phase.
eSixteen patients received SDC for induction II.

cases with CR, two cases with PR and five cases with
NR) received SDC for induction II.

Overall, after inductions I and II, 40/46 (87.0%)
of patients originally assigned to the LDC/G-CSF
group attained remission. Persistent disease was the
most common cause of failure in achieving CR after
induction II (Table 1 and Supplementary Fig. S1).
No toxic deaths were observed in this group.

Induction remission in patients assigned to the
SDC group
Sixty-four of 94 children assigned to the SDC group
(68.1%) attained remission after induction I. Fail-
ure to attain remission was observed in 30 patients
(NR in 13 and PR in 17 patients). After induction
II, 80/94 (85.1%) of the patients attained remis-
sion. Causes of failure included persistent disease
(12 cases) and treatment-related death (two cases)
(Table 1 and Supplementary Fig. S1).

Post-remission therapy
Of 134 patients completing both inductions, 128 re-
ceived post-induction therapy (Table 1 and Supple-
mentary Fig. S1). Of the remaining six patients, four
died from leukemia and two from toxicity. Of 128
patients receiving post-induction therapy, one from
each group abandoned treatment.

By 31 May 2018, 105 patients, including 34/46
(73.9%) and 71/94 (75.5%) initially in the LDC/G-
CSF and SDC groups, respectively, were alive with-
out evidence of disease. At a median follow-up of
2.5 years (range, 0.08–5.41 years), 118 (84.3%), 80
(57.1%), 56 (40.0%) and 30 (21.4%) patients were
followed for at least 1, 2, 3 or 4 years, respectively.
The 4-year OS and event-free survival (EFS) for
140 children with AML were 73.5 ± 3.9% and 67.7
± 4.3%, respectively (Fig. 1A), and 4-year cumu-

lative incidence of relapse (CIR) was 25.0 ± 5.8%
(Fig. 1A).

There were no significant differences in OS and
EFS between the LDC/G-CSF and SDC groups (P
= 0.69 andP= 0.99, respectively, log-rank test strat-
ified by AML risk; Fig. 1B and C). For the LDC/G-
CSF and SDC groups, 4-year OS was 70.3 ± 7.8 vs.
74.6 ± 4.6% and EFS was 67.4 ± 5.1% vs. 70.7 ±
6.9%, respectively.

Multivariate Cox regression with chemotherapy
dose groups (LDC/G-CSF and SDC) and the AML
risk group (low, intermediate andhigh) as covariates
(SupplementaryTable S1) showedno significant as-
sociation of chemotherapy dose withOS (hazard ra-
tio (HR) = 0.955, P = 0.91) or EFS (HR = 1.052;
P = 0.885). High-risk AML was significantly asso-
ciated with OS (HR = 4.04, P = 0.009) and EFS
(HR = 4.58, P = 0.0015). Even when gender, age,
initial WBC and HCT were added as covariates,
chemotherapy dose was not significantly associated
with OS or EFS (Supplementary Table S2).

Similarly, 4-year CIR rates in the LDC/G-CSF
and SDC groups were not significantly different
(20.6 ± 3.8% vs. 25.9 ± 5.0%, respectively (risk-
stratified Gray’s test, P= 0.94; Fig. 1D)). Multivari-
ate Fine–Gray regression analyses with chemother-
apy dose group, AML risk classification, gender, age,
initial WBC and HCT as covariates revealed that
chemotherapy dose did not affect relapse risk (HR
= 0.74, P= 0.49; Supplementary Table S2).

Because only patients with WBC count <70 ×
109/L received LDC/G-CSF, we compared OS and
EFS of the LDC/G-CSF group and a SDC subgroup
with WBC count <70 × 109/L. OS and EFS were
not significantly different between both groups (log-
rank test P = 0.27 and P = 0.67, respectively; Sup-
plementaryFig. S2AandB). In this subset,multivari-
ate Cox regression with chemotherapy dose group,
risk, gender, age, initialWBC andHCT as covariates
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Figure 1. Survival and cumulative incidence of relapse in 140 children with acute myeloid leukemia. A. Overall survival (OS),
event-free survival (EFS) and cumulative incidence of relapse (CIR). B. OS according to regimen. C. EFS according to regimen.
D. CIR according to regimen.

revealed no effect of chemotherapy dose onOS (HR
= 0.57, P = 0.20). AML (HR = 4.02, P = 0.038)
and bone marrow (BM) transplant (BMT; HR =
8.81; P = 0.0039) were significant factors for death
(SupplementaryTable S3).MultivariateCox regres-
sion analysis also showed no effect of chemotherapy
dose onEFS (HR= 0.75,P= 0.46).High-riskAML
(HR = 4.26, P = 0.0119) was significantly associ-
ated with EFS. Similar results were obtained for risk
of relapse (Supplementary Table S3).

Toxicity
During inductions I and II, two patients receiving
SDCdied of toxicity.Themost common toxicitywas
myelosuppression. The median number of days to
reach an absolute neutrophil count (ANC) of 0.5
× 109/L was significantly shorter for those in the
LDC/G-CSF than the SDC group after both induc-
tions I (11.5 vs. 18.5 d, P < 0.001; Supplementary
Table S4 and Fig. 2A) and II (6.5 vs. 12.0 d, P <

0.001; Supplementary Table S4 and Fig. 2B). Strik-
ingly, in 11/46 patients in the LDC/G-CSF group
attaining at least PR after induction I, ANCs never
dropped below 0.5 × 109/L. The median number
of days to reach platelet counts of 20.0 × 109/L
was also significantly shorter for the LDC/G-CSF
group than the SDC group after inductions I (15.5
vs. 22.0 d, P < 0.001; Supplementary Table S4 and
Fig. 2C) and II (11.5 vs. 17.0 d, P < 0.001; Supple-
mentary Table S4, Fig. 2D).

Grade III or IV infectious complications oc-
curred in 4 (8.7%) and 23 (24.4%) patients receiv-
ing LDC/G-CSF and SDC regimens, respectively
(P < 0.001). Pulmonary infection and sepsis were
themost common complications. Non-hematologic
toxicities were mild (mostly grade I or II) in both
groups.

Molecular remission after induction
chemotherapy and during follow-up
Because of the possibility of residual leukemia-
associated genetic variants persisting after induc-
tion treatment with LDC/G-CSF, we investigated
the quality and duration of molecular remission by
targeted deep sequencing performed in 86 samples
from 20 patients who attained morphologic remis-
sion after induction I with the LDC/G-CSF (n= 9)
orSDC(n=11) regimens.Therewereno significant
differences in clinical and cytogenetic characteristics
by treatment group (Supplementary Table S5).

Median follow-up sampling time from diagnosis
was 9 months (range 1–25 months). A total of 149
mutations identified by exome sequencing, includ-
ing 137 found in diagnosis samples and 12 identified
in relapsed samples, were analyzed (Whole exome
sequencingdatanot shown), andmeancoveragewas
14 010.99 × (range, 206–120 429). At diagnosis,
the average number of mutations per patient for the
LDC/G-CSF and SDCgroupswas 7.6 (range 4–13)
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Figure 2. Duration (median number of days) of neutropenia and thrombocytopenia dur-
ing induction chemotherapy. A. Number of days to reach neutrophil count of at least
0.5 × 109/L after first induction according to treatment group. B. Number of days to
reach neutrophil count of at least 0.5× 109/L after second induction according to treat-
ment group. C. Number of days to reach platelet count of at least 20.0 × 109/L after
first induction. D. Number of days to reach platelet count of at least 20.0× 109/L after
second induction.

and 6.3 (range 2–13), respectively.The average vari-
ant allelic frequency (VAF)atdiagnosiswas29.4 and
35.3% for theLDC/G-CSFandSDCgroups, respec-
tively (68 and 69, respectively, for the LDC/G-CSF
or SDC groups; 2–13 mutations per patient; mean,
6.85).

A reference value of VAF < 2.5% has been de-
fined as molecular remission based on a previous re-
port [19]. After inductions I and II, there was no sig-
nificant difference in average VAF between the two
groups (0.025 vs. 0.028%, respectively; P = 0.876
(Wilcoxon rank-sum test); Fig. 3A). All of the mu-
tations identified in D0 samples were cleared in the
LDC/G-CSF group (Fig. 3B) and the SDC group
(Fig. 3C). The clearance pattern for each patient is
shown in Supplementary Fig. S3. In a comparison
of fusion gene-basedminimal residual disease detec-
tion with VAF changes of mutations by sequencing,
there was relatively high agreement between the two
methods (Supplementary Fig. S3).

We further examined mutation clearance of
leukemia-associated recurrent mutated genes
(RMGs) (Supplementary Table S6), as reported
previously [19–21]. A previous study found that dif-
ferent genes might respond differently to induction
chemotherapy in adult AML [19], for example, epi-
genetic regulators such as DNMT3A or TET2 are
likely to persist during clinical remission, whereas

somatic mutations that activate signaling pathways
are usually cleared. Interestingly, althoughmutation
clearance in the LDC/G-CSF group tended to be
delayed, recurrent signaling pathway-related muta-
tions KIT and NRAS were cleared after induction I
irrespective of treatment group, except one NRAS
mutation harbored in patient P2 (Fig. 3D and E).
Notably, one patient (P18) in the LDC/G-CSF
group carried a mutation in epigenetic regulator
KDM6A, which had been cleared after induction I
(Fig. 3D).

Of all mutations detected in D0 samples, only
onemutation remained in follow-up analyses by tar-
geteddeep sequencing (Fig. 3F).This persistentmu-
tation (CACNA1G; VAF, 1.1%) was detected dur-
ing the 11-month off-therapy visit of a child receiv-
ing SDC; this patient relapsed 4 months later. BM
samples from 19 CR patients during follow-up (0–
19 months off therapy) harbored no detectable mu-
tations (VAF < 1%). For 3/20 patients for whom
samples were collected after HCT, no mutation was
detectable 6–19 months after transplantation.

DISCUSSION
In our study, the CR, EFS, OS and CIR rates of 46
children with AML initially given a low-intensity
regimen for the first induction remission were
comparable to those of 94 children admitted to the
same hospital during the study period and given
the SDC regimen. Moreover, chemotherapy dose
during induction was not associated with CR, EFS,
OS or CIR. AML risk of relapse and HCT were
independently associated with outcome. Given that
∼90% of relapses in pediatric AML occur within 2
years of diagnosis [22], our results suggest that pa-
tients receiving LDC/G-CSF or SDC for remission
induction appear to have similar outcomes.

Observed clinical outcomes were supported
by mutation clearance patterns during and after
completion of therapy. Residual AML detected
by next-generation sequencing is an independent
prognostic factor and predictor of relapse in AML
[19,23], and thus provides a measure of the remis-
sion quality. In our study, molecular remission in
children attaining complete response with a first
course of LDC/G-CSF and then a second course
of the same regimen was comparable with that of
children receiving two courses of SDC. Targeted
sequencing revealed no difference in resurgence
of mutations during follow-up, irrespective of the
treatment regimen during induction remission.

Intensive chemotherapy regimens for pediatric
AML are associated with high morbidity and mor-
tality [24]. Intensifying the induction courses can
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Figure 3. Clearance patterns of mutations detected by sequencing of acute myeloid leukemia patients according to treatment regimen. A. Average
reduction in the allelic frequency of all mutations (n= 137) according to treatment intensity after first (ID26) and second induction (IID26) in 20 patients
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decrease CIR rates but not improveOS [13,25–27].
Patients receiving intensive induction courses de-
velop severe infections and many need prolonged
hospitalization [28]. In many regions of the world,
toxicity and costs associated with remission induc-
tion make treatment prohibitive [29,30]. In con-
trast, patients treated with this LDC/G-CSF reg-
imen receive only a two-drug regimen with 10-
and 2-times lower doses of cytarabine and an-
thracycline, respectively, than those given standard
AML remission induction regimens. Remarkably,
children receiving LDC/G-CSF attained hemato-
logic remission without prolonged myelosuppres-
sion. In 34.3% of patients receiving LDC/G-CSF,
ANC never dropped <0.5 × 109/L during induc-
tion I. Also, the frequencyof severe infections in chil-
drengivenLDC/G-CSFwas significantly lower than
for children given SDC. This finding is unexpected,
because 28.2%of patients treatedwith LDC/G-CSF
because they had active infection and were not can-
didates for SDC. Infection was managed simulta-
neously with AML treatment and no patient died
from toxicity. Reduced duration of neutropenia and
thrombocytopenia, and fewer infectious complica-
tions, suggest that the integrity of the hematopoi-
etic system was preserved during hematologic re-
mission in children receiving LDC/G-CSF. These
observations challenge the concept [31] that near-
myeloablation is required for complete and durable
remission.

Although mechanisms underlying the clinical
efficacy of LDC/G-CSF are currently unknown, it is
possible that G-CSFmakes leukemia cells more vul-
nerable to chemotherapy through sensitization or
priming [32,33]. G-CSF can also reduce the overall
viability of AML cells when cocultured with BM
stroma but not alone [34]. These observations are
consistent with findings that resistance of leukemia
cells to cytarabine appears to be, in part,mediated by
interactions between leukemia cells and BM stroma
[35,36]. Finally, G-CSF mobilizes T-regulatory
cells and has other immunomodulatory effects
[37,38]. Such changes in immune regulation can be
exploited by immunotherapy for AML. In some tri-
als, G-CSF/GM-CSF can accelerate BM recovery,
and thereby reduce morbidity and mortality when
used immediately after completion of induction
chemotherapy [39,40]. However, these trials have
not established that G-CSF improves remission
rates of AML patients.

Because G-CSF can potentially stimulate
leukemia cell proliferation [41], children withWBC
counts higher than 70 × 109/L did not receive
LDC/G-CSF in our study. We found no evidence
of increased expansion of leukemia cells in the
peripheral blood of children receiving LDC/G-CSF

during first induction remission (data not shown).
Importantly, as the initial WBC count is considered
to be one of the most important influencers on
the outcome of AML, we added initial WBC as
covariates and found that chemotherapy dose
was not significantly associated with OS or EFS
in our cohort. Also, the OS and EFS were not
significantly different between the LDC/G-CSF
group and a SDC subgroup with WBC count
<70 × 109/L. Nevertheless, the efficacy of the
LDC/G-CSF regimens in pediatric AML patients
with hyperleukocytosis remains to be investigated.

Our initial rationale for offering a low-intensity
regimen for children with AML was based on the
high risk of toxicity-related death or treatment
abandonment due to economic reasons. Hence,
our results have major implications for children
in limited-resource countries. Furthermore, low-
intensity treatment as induction remission therapy
might impart a reduced selection pressure on the
leukemic genome and clonal structure, while use
of G-CSF will concurrently sensitize leukemic cells
to achieve efficient mutation clearance. However,
our study has some limitations including that it was
non-randomized, recruited a relatively small num-
ber of patients (n = 46) and possible selection bias
(WBC counts <70 × 109/L). Randomized multi-
center clinical trials are needed to further investigate
the clinical efficacy of the LDC/G-CSF regimen as
induction remission therapy.

CONCLUSIONS
Pediatric patients with AML treated with LDC/G-
CSF during induction had comparable CR, EFS and
OS rates, but much lesser toxicity than those treated
with SDC. Targeted deep sequencing showed that
the quality of remission was also similar between
both cohorts. Our findings suggest that hematologic
remission can be attained in pediatric AML patients
without severemyelosuppression, and that leukemia
cell reduction can occur simultaneously with normal
hematopoietic regeneration.

PATIENTS AND METHODS
Patients
This non-randomized cohort study included chil-
dren (aged<15 years) with newly diagnosed AML,
as defined by WHO criteria [42]. The study was
approved by the ethics committee of the Affili-
ated Children’s Hospital of Soochow University.
Informed consent was obtained from parents or
guardians.
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Table 2. Children’s Hospital of Soochow University pediatric acute myeloid leukemia chemotherapy regimens.

Drug Dose Schedule Days

Induction
LDC/G-CSF Cytarabine 10 mg/m2 Every 12 h, subcutaneous 1–10

Homoharringtoninea 1 mg/m2 Once a day 1–7
Or
Mitoxantrone 5 mg/m2 Once a day 1, 3, 5
G-CSF 5μg/kg Once a day, subcutaneous 1–10

SDC Cytarabine 100 mg/m2 Every 12 h 1–10
Etoposide 100 mg/m2 Once a day 1–5
Homoharringtoninea 3 mg/m2 Once a day 1–7
or
Daunomycin 50 mg/m2 Once a day 2, 4, 6

Post-remission
Consolidation I Cytarabine 2 g/m2 Every 12 h 1–3

Mitoxantrone 10 mg/m2 Once a day 3–5
Consolidation II Cytarabine 3 g/m2 Every 12 h 1–3

Etoposide 150 mg/m2 Once a day 1–3
Consolidation III Cytarabine 3 g/m2 Every 12 h 1, 2, 8, 9

L-asparaginase 6000 U/m2 Once a day, intramuscular 3, 10
Consolidation IV Cytarabine 2 g/m2 Once a day 1–5

Fludarabine 30 mg/m2 Once a day 1–5
G-CSF 300μg/m2 Once a day, subcutaneous 0–5

G-CSF: granulocyte colony-stimulating factor; LDC/G-CSF: low-dose chemotherapy concurrent with G-CSF; SDC: standard-dose chemotherapy.
aMitoxantrone (n= 22 patients) and daunomycin (n= 16 patients) substituted for homoharringtonine.

Diagnosis and risk assignment
AML diagnosis was based on morphologic, im-
munophenotypic, karyotyping and molecular ge-
netic studies. Patients with promyelocytic leukemia,
AML arising after the diagnosis of myelodysplastic
syndrome, treatment-relatedAMLorAMLofDown
syndrome were not included in this study. AMLwas
classified as low, intermediate or high risk accord-
ing to National Comprehensive Cancer Network
criteria [43].

Treatment
The LDC/G-CSF regimen comprised cytarabine
and mitoxantrone or homoharringtonine concur-
rently administered with G-CSF. The SDC reg-
imen comprised cytarabine, mitoxantrone or ho-
moharringtonine, and etoposide at standard doses
(Table 2 and Supplementary Fig. S4). Patients with
WBC counts >70 × 109/L were not eligible for
LDC/G-CSF. Post-remission therapy was the same
for all patients and administered in the following
sequence: (1) cytarabine and mitoxantrone, (2)
etoposide and cytarabine, and (3) high-dose cytara-
bine and L-asparaginase (Table 2 and Supplemen-
tary Fig. S4). The management of central nervous
system leukemia is described in the Supplementary
Appendix. Patients at high risk of relapse underwent
HCT. Conditioning regimens and prophylaxis for
graft vs. host disease have been reported [44], and
are summarized in Supplementary Table S7.

Response evaluation, cost estimation and
toxicity monitoring
Response was evaluated after each course of induc-
tion chemotherapy. CR was defined as WBC ≥ 1.0
× 109/L, ANC ≥ 0.5 × 109/L, platelet count ≥
50.0 × 109/L and BM with <5% leukemia cells by
morphologic examination. PR was defined as more
than 5% and less than 20% of leukemia cells, andNR
was defined as 20% or more leukemia cells in the
bone marrow. Responses were measured on day 26
of each induction chemotherapy course. Measure-
ment of minimal residual disease by flow cytome-
try after induction courses was not performed. The
Supplementary Appendix provides additional infor-
mation on response evaluation and the cost of each
induction course. Toxicity was evaluated after each
treatment course and graded using WHO classifica-
tion criteria [45].

Targeted deep sequencing
Targeted deep sequencing of mutations detected
at diagnosis was performed in 9 patients who
had received LDC/GCSF for induction I and
II, and 11 patients who had received SDC for
both induction courses. These 20 patients were
selected based on sample availability. Sampling
time points for sequencing samples are given
in Supplementary Fig. S5. The sequencing data
reported in this paper were deposited into the
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Genome Sequence Archive at the BIG data center,
Beijing Institute of Genomics, Chinese Academy
of Sciences under accession number CRA000956
(http://bigd.big.ac.cn/gsa/s/kwgoQ6mK).

Statistical analyses
Exact Pearson’s chi-squared test was used to com-
pare categorical variables between two or more
groups. Wilcoxon rank-sum test was used to com-
pare continuous variables between two groups. Risk
group was used in survival analyses as a stratifica-
tion factor or a covariate. Kaplan–Meier analysis was
used to estimate survival functions. Stratified log-
rank test and Cox regression model were applied to
compareOSandEFSbetween theLDC/G-CSFand
SDC groups. CIR or refractory AML was estimated
by the Kalbfleisch–Prentice method, accounting for
competing risk [46]. Gray’s test and the Fine–Gray
regression model were applied to compare cumula-
tive incidence of relapses between both groups. All
tests were two-sided. P<0.05 was considered statis-
tically significant. Time to failure is defined in the
Supplementary Appendix.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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