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The primary goal of rational drug discovery is the identification of selective ligands

which act on single or multiple drug targets to achieve the desired clinical outcome

through the exploration of total chemical space. To identify such desired compounds,

computational approaches are necessary in predicting their drug-like properties. G

Protein-Coupled Receptors (GPCRs) represent one of the largest and most important

integral membrane protein families. These receptors serve as increasingly attractive

drug targets due to their relevance in the treatment of various diseases, such as

inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic

disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were

solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR

structural biology.” Moreover, accumulation of data about the chemical properties of

GPCR ligands has garnered much interest toward the exploration of GPCR chemical

space. Due to the steady increase in the structural, ligand, and functional data of GPCRs,

several cheminformatics approaches have been implemented in its drug discovery

pipeline. In this review, we mainly focus on the cheminformatics-based paradigms

in GPCR drug discovery. We provide a comprehensive view on the ligand– and

structure-based cheminformatics approaches which are best illustrated via GPCR case

studies. Furthermore, an appropriate combination of ligand-based knowledge with

structure-based ones, i.e., integrated approach, which is emerging as a promising

strategy for cheminformatics-based GPCR drug design is also discussed.

Keywords: GPCR, cheminformatics, drug discovery, ligand-based drug design, structure-based drug design

INTRODUCTION

Rational drug design is the inventive process of identifying pharmaceutically-relevant drug
candidates based on the information garnered from a biological target (Jazayeri et al., 2015).
Discovery of ligands that modulate a target’s activity has contributed largely to the understanding
of both physiological and pathological processes (Wacker et al., 2017a). Navigating vast chemical
space to identify such ligands seems a daunting task (Oprea and Gottfries, 2001; Lipinski and
Hopkins, 2004). Techniques including medicinal chemistry, combinatorial chemistry, and high-
throughput screening (HTS) are helpful in the identification of ligands, which can serve as effective
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modulators for pharmaceutically attractive targets. However,
considering the astronomical number of possible drug-
like candidates (∼1023-1060), chemical space assessed by
experimental techniques is still limited (Rodríguez et al., 2016;
Mullard, 2017). In such a scenario, cheminformatics, which
belongs to a part of the in silico realm, dominates in the
exploration of a larger fraction of the chemical space.

Cheminformatics was defined by Brown (1998) as the
combination of all available information that can be used in the
optimization of a ligand to a potential drug candidate (Bajorath,
2004). This method aids in storing, searching, managing, and
analyzing huge amount of chemical data, thereby expediting
the development of novel ligand phenotypes (Bajorath, 2004;
Valerio and Choudhuri, 2012). Additionally, the extraction of
information and knowledge from chemical data could be helpful
in the modeling of relationships between chemical structures
and biological activities, and in the bioactivity prediction of
other compounds from their structures (Schuffenhauer et al.,
2006; Humbeck and Koch, 2017). Interestingly, cheminformatics
fuses both chemical and biological data from drug candidates
and drug targets, respectively, for the identification of new
chemical entities (NCEs) and improvement of the reliability of
data outcomes.

In the drug discovery pipeline, several cheminformatics
approaches play a potent role in the identification of drug target
and lead compounds, as well as in the prediction of ADMET
properties (Figure 1). Chemogenomics-based databases, as well
as computational polypharmacological analyses, have increased
in popularity over the last several years as a supplementary
method in the identification and validation of potential drug
targets (Xie et al., 2014). Once a drug target is identified,
the lead candidates with desirable properties are screened out
of huge chemical compound libraries, thus underscoring the
importance of cheminformatics tools in virtual screening (VS)
(Varnek and Tropsha, 2008). Another potent cheminformatics
approach, machine-learning is employed for the identification
of novel drug candidates from lead compounds via generation
of computational models (Lee et al., 2010, 2017; Varnek
and Baskin, 2012; Mitchell, 2014). Other cheminformatics
approaches including similarity and substructure searching could
be utilized for the identification of novel scaffolds from large
compounds repositories (Vass et al., 2016). The candidate
compounds retrieved could be further docked onto the target
protein to propose their possible binding affinities toward the
target (Lenselink et al., 2016b). Upon identification of the drug-
like candidates, these could be further evaluated for ADMET
properties using computational models, thus helping in the
elimination of undesired compounds at an early stage of drug
discovery, and minimizing the time and costs involved.

G protein-coupled receptors (GPCRs) belong to a large family
of signaling proteins that mediate cellular responses to most
hormones, metabolites, cytokines, and neurotransmitters, and
therefore serve as “fruitful targets” for drug discovery (Shoichet
and Kobilka, 2012). More than 800 genes comprise this receptor
family, which modulate several signaling processes involved
in behavior, blood pressure regulation, cognition, immune
response, mood, smell, and taste (Thomsen et al., 2005). GPCRs

are categorized into six classes based on sequence and function,
namely Class A—rhodopsin-like receptors, Class B—secretin
family, Class C—metabotropic glutamate receptors, Class D—
fungal mating pheromone receptors, Class E—cAMP receptors,
and Class F—frizzled (FZD) and smoothened (SMO) receptors
(Lee et al., 2018). All GPCR members share a common seven
transmembrane (7TM) architecture linked by three extracellular
(ECL) and three intracellular (ICL) loops (Ciancetta et al., 2015).
However, they have low sequence identity and possess different
extracellular N-terminal domains and diverse ligand-binding
pockets (Figure 2). In case of class A GPCRs, the endogenous
ligand is recognized by a ligand-binding site in the 7TM region.
For class B GPCRs, the ligand is recognized by both extracellular
and 7TM domains. For class C GPCRs, the ligand-binding pocket
is found in the extracellular domain (ECD) that contains a Venus
flytrap (VFT) module. In case of class F GPCRs, both SMO
and FZD receptors possess an ECD that is comprised of an
extracellular cysteine-rich domain (CRD) and an ECD linker
domain. The endogenous lipoglycoprotein ligand, Wnt binds to
the CRD of the FZD receptors (Wang et al., 2013; Wu et al.,
2014). Upon ligand binding, GPCRs activate at least one of
the two signaling partners, namely heterotrimeric GTP-binding
proteins (G-proteins) or β-arrestins, and mediate signal flow via
modulation of various downstream effectors.

GPCR drug discovery has been successful and many of
the world’s top-selling drugs have targeted this receptor family
(Sriram and Insel, 2018). Class A GPCRs are the most immensely
investigated GPCR drug target within the drug market due to
their centrality in diseases, structural availability, and relative
ease of accessibility. The high druggability of GPCRs and its
central role in diseases (including alzheimer’s disease, cancer,
diabetes, obesity, and psychiatric disorders) provide a strong
spearhead for its continuous efforts in drug discovery and
development (Tautermann, 2016). A recent study of all GPCR
drugs and agents currently in clinical trials revealed that
475 drugs (i.e., ∼34% of all drugs approved by Food and
Drug administration [FDA]) mediate their effects through 108
unique GPCRs (Hauser et al., 2017). Additionally, the success
rates for GPCR-targeted agents in the last 5 years were 78%
(phase I), 39% (phase II), and 29% (phase III) (Hauser et al.,
2017). The most recently FDA approved GPCR-targeted drug
is Zilretta (triamcinolone acetonide extended-release injectable
suspension), a glucocorticoid receptor agonist, which is used for
the pain management of knee osteoarthritis (https://www.drugs.
com/history/zilretta.html).

To utilize cheminformatics approaches in GPCR drug design,
understanding the nature of the ligands, structural intricacies
of the receptor, ligand-receptor interactions, and interaction
of the receptors with downstream signaling complexes or
other signaling partners is essential. Additionally, unveiling the
relationships among ligand, receptor, and effector is necessary
to investigate positive and negative allosterism, inverse agonism,
biased signaling, and multimeric receptor pharmacology (Lane
et al., 2017). Recent upsurge in the crystal structures of GPCRs
provides a robust, 3D structural framework for identification of
pharmaceutically-relevant ligands using ligand– and structure-
based computational approaches, including molecular modeling
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FIGURE 1 | Role of Cheminformatics in the drug discovery process. Cheminformatics is involved in almost every step of the drug discovery pipeline due to the

employment and analysis of available data to translate into valuable knowledge, which can in turn be used as a data for further studies.

of receptor dynamics, ligand docking, and virtual ligand
screening (VLS) (Coudrat et al., 2017a). Following the successful
application of VLS approaches in targets such as kinases,
proteases, and other enzyme families, it is also becoming
a popular ligand screening tool for GPCRs (Heifetz, 2018).
The success of structure-based VLS could be visualized by
the encouragingly high hit-rates ranging from 20 to 70% in
the identification of novel ligands for several class A GPCRs
(Table 1).

In this review, we deliver a comprehensive assessment on
the state-of-the-art cheminformatics approaches for GPCR drug
discovery with successful models from literature. Firstly, insights

on GPCR ligand space and its recent structural advances are
summarized. Subsequently, the key principles and boundaries
of ligand–, structure-based, and integrated cheminformatics
approaches in GPCR drug discovery are discussed in the
main text. We also shed some light on the contemporary
cheminformatics tools utilized in GPCR drug discovery.
Additionally, the limitations associated with cheminformatics
approaches have been discussed, which could assist the reader
to rationale the best in silico tool during their research. Lastly,
we conclude with a summary of the review contents and
prospects of the cheminformatics approaches in GPCR drug
discovery.
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FIGURE 2 | Crystal structures of representative GPCR-ligand complexes from classes A, B, C, and F presenting diverse ligand-binding sites. Class A GPCRs are

classified into rhodopsin (bRho, PDB ID: 2HPY) and nonrhodopsin GPCRs. The representative structures of class A nonrhodopsin GPCRs which are further

subdivided into aminergic-like (β2AR, PDB ID: 3P0G), nucleotide-like (A2AAR, PDB ID: 3QAK), peptide-like (µ-OR, PDB ID: 5C1M), and lipid-like receptors (CB1R,

PDB ID: 5XRA) along with their bound ligands are shown. Similarly, representative structures for class B (CRF1 [PDB ID: 4K5Y], GCGR [PDB ID: 5EE7], full-length

GLP-1R [PDB ID: 5NX2], and CTR [5UZ7]), class C (mGlu1R [PDB ID: 4OR2]), and class F (SMO [PDB ID: 4QIN] bound to negative allosteric modulator) are shown.

Receptors are shown in cartoon representation and the ligands are shown as stick models with transparent surfaces. Agonists are represented as red sticks,

antagonists are shown as purple sticks, and negative allosteric modulator is shown as blue stick model.

BOOMING AGE OF GPCR STRUCTURAL
BIOLOGY

The pioneering study of two-dimensional (2D) structure for
bovine rhodopsin (bRho) in 1983 marked the beginning of
GPCR structural biology (Hargrave et al., 1983). A decade later,
2D projection map was calculated from the solved 2D crystals
of bRho using electron cryomicroscopy, which served as the
basis for the construction of the receptor molecular model
(Baldwin, 1993; Schertler et al., 1993). However, the first three-
dimensional (3D) structure of bRho in its inactive state was
released only in 2000 (Palczewski et al., 2000). Despite relentless
efforts, elucidation of GPCR structures remained challenging
due to several factors, including maintenance of structural
integrity of the receptors by embedding in a membrane-
like environment, presence of flexible ECLs and ICLs, low
expression level of the receptor, and displaying basal signaling
activity even in the absence of a ligand. However, all the
aforementioned problems have been circumvented with the
advances in GPCR crystallography, protein engineering, and
innovations in biotechnology. Introduction of small, stable fusion
proteins (T4 lysozyme and b562RIL) decreased the flexibility
of the receptor regions (ICL3, ICL2, and N-terminal regions),
and improved the crystal contacts. Likewise, antibody fragments
or nanobodies improved the conformational stability of the
receptors. Insertion of mutations (stabilized receptor (StaR)
approach) enhanced the receptor thermostability in a particular
conformational state and increased the protein expression levels.

The first structural breakthrough of a human GPCR, i.e.,
β2-adrenergic receptor (β2AR with a diffusible ligand), using

different crystallization techniques came in 2007 (Cherezov et al.,
2007). Moreover, the first crystal structures for GPCR classes
B, C, and F have been solved (Hollenstein et al., 2013; Wang
et al., 2013; Wu et al., 2014). So far, experimental structures of
44 distinct GPCRs and∼205 ligand-receptor complexes covering
all the four classes, A–C, and F are available, of which most
belong to the Class A subfamily (Hauser et al., 2017). It is to
be noted that most of the existing GPCR structures are inactive
ones, bound to an inhibitor. In the last year (2017) alone,
more than 40 GPCR crystal structures have been determined
which are listed in Table 2. GPCR structural studies have
revealed the arrangement of the TM domains, location of the
orthosteric, allosteric, bitopic, and biased ligand binding sites,
homo– or heterooligomerization of receptors, and structural
rearrangements involved in conformational changes upon GPCR
activation or inactivation (Manglik and Kruse, 2017; Schrage
and Kostenis, 2017). Besides garnering these 3D structural
insights, the molecular basis of GPCR signal transduction
coupled to G-proteins or β-arrestins were elucidated through
X-ray crystallography and electron cryomicroscopy techniques.
Oligomeric complex structures of bRho coupled to G-protein
peptide (Rho/GαCT) (Scheerer et al., 2008), human Rho coupled
to visual arrestins (Kang et al., 2015; Zhou et al., 2017),
β2AR coupled to Gs-protein (Rasmussen et al., 2011) and β-
arrestin 1 (Shukla et al., 2014), A2A adenosine receptor (A2AAR)
in complex with a mini-Gs protein (Carpenter et al., 2016),
glucagon-like peptide 1 receptor (GLP-1R) in complex with a
Gs-protein (Zhang et al., 2017), and calcitonin receptor (CTR)
coupled to Gs-protein (Liang et al., 2017) have been elucidated.
These complex structures provide full mechanistic insights into
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TABLE 1 | Key details of GPCR virtual screening campaigns reported in the last 5 years (2013–2017).

GPCR class and

classification type

Receptor

type

VS library and size Hits/hit rate Structure of notable hits References

A, nonrhodopsin

(aminergic)

β2AR ZINC database: (a) 2.7 million

lead-like subset (b) 400k

fragment-like subset

6 hits

(27.3%)

Weiss et al.,

2013

pKi = 3.9

A, nonrhodopsin

(aminergic)

D2R ZINC database: (a) 2.7 million

lead-like subset (b) 400k

fragment-like subset

3 hits (20%) Weiss et al.,

2013

pEC50 = 4

A, nonrhodopsin

(aminergic)

M2R ZINC database: 3.1 million

compounds

11 of 19

(57.9%)

Kruse et al.,

2013

Ki = 1.2 uM

A, nonrhodopsin

(aminergic)

M3R ZINC database: 3.1 million

compounds

8 of 16 (50%) Kruse et al.,

2013

Ki = 1.2 uM

A, nonrhodopsin

(lipid-like)

CB2R Enamine, Otava, ChemBridge,

ChemDiv, Vitasm, IBS,

LifeChemicals, Specs, and

TimTec: 5,613,820 compounds

13 hits ≥ 50%

inhibition at 10

uM (13.4%)

Renault et al.,

2013

Ki = 2.3 nM

A, nonrhodopsin

(aminergic)

AgOAR45B ZINC drug-like subset: 12 million

compounds

45 hits (64.3%) Kastner et al.,

2014

Ki = 2.7 uM

A, nonrhodopsin

(aminergic)

5-HT1AR WDI, PCL, TimTec, and ASINEX:

80,800 compounds

9 hits ≥ 50%

inhibition at 10

uM (60%)

Luo et al.,

2014

IC50 = 2.3 nM

A, nonrhodopsin

(peptide-like)

NOP

receptor

ZINC database CNS Permeable

subset: 400,000 compounds

6 hits ≥ 50%

inhibition at 300

uM (30%)

Daga et al.,

2014

Ki = 1.42

(Continued)
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TABLE 1 | Continued

GPCR class and

classification type

Receptor

type

VS library and size Hits/hit rate Structure of notable hits References

A, nonrhodopsin

(peptide-like)

PAR2 FDA-approved drugs: 1,216

compounds

4 hits ≥ 50%

inhibition at 30

uM

Xu et al.,

2015

IC50 = 10 uM

A, nonrhodopsin

(aminergic)

5-HT6R ChEMBL: 12,608 compounds 6 hits (16.7%) Kelemen

et al., 2016

IC50 = 0.1 uM

A, nonrhodopsin

(aminergic)

H1R ChEMBL: 108,790 compounds 19 hits (73.1%) Kooistra

et al., 2016

pKi = 4.72

A, nonrhodopsin

(aminergic)

β2AR ChEMBL: 108,790 compounds 18 hits (52.9%) Kooistra

et al., 2016

pEC50 = 4.52

C, metabotropic

glutamate

mGlu1R Asinex: 695,855 compounds 5 hits (14.3%) Jang et al.,

2016

IC50 = 10.22 uM

FGSG_02655

(Class I,

pheromone

receptor)

Life Chemicals GPCR Targeted

Libraries: 11,571 compounds

10 VS hits Bresso et al.,

2016

A, nonrhodopsin

(peptide-like)

PAR2 (a) Asinex: 433,973 compounds

(b) ChemDiv: 1,213,470

compounds

3 hits ≥ 30%

inhibition at 10

uM (6.4%)

Cho et al.,

2016

IC50 = 8.22 uM

(Continued)
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TABLE 1 | Continued

GPCR class and

classification type

Receptor

type

VS library and size Hits/hit rate Structure of notable hits References

A, nonrhodopsin

(peptide-like)

NTSR1 ZINC, ChemBridge, and J&K:

1,000,000 compounds

4 hits (9.1%) Zhang et al.,

2016

IC50 = 14.47 uM

A, nonrhodopsin

(aminergic)

5-HT2AR ZINC Clean Lead-like subset:

140,809 compounds

15 VS hits Gandhimathi

and

Sowdhamini,

2016

A, nonrhodopsin

(aminergic)

D2R 6,500,000 compounds 10 hits (47.6%) Kaczor et al.,

2016

Ki = 58.1

A, nonrhodopsin

(aminergic)

M2R NCI Diversity Set: 1,600

compounds

19 hits (50%) Miao et al.,

2016

pKi = 3.8

A, nonrhodopsin

(aminergic)

H3R Phase database 6 hits (8%) Frandsen

et al., 2017

pKi = 6.1

A, rhodopsin GPR91 ZINC In-Stock subset:

12,782,590 compounds

12 hits (10.8%) Trauelsen

et al., 2017

EC50 = 1.9 uM

GPCR and biased signaling, thus underpinning their functional
significance and pharmacological targeting.

GPCRs are known to exist or function as monomers,
dimers, and/or higher order oligomers, including homo– or
hetero– dimers/oligomers (Guo et al., 2017). In addition to
the accumulated experimental data through biochemical and
biophysical techniques, the structural information on GPCR
dimers or higher order oligomers were provided by X-ray
crystallography. The first reported higher-order crystal structure
of Rho and opsin in native membranes were reported in
2003 (Liang et al., 2003). Consequently, several structures

including rhodopsin and nonrhodopsin class A GPCRs were
elucidated (Lee et al., 2018). The oligomeric structures of GPCRs
are essential for modulation of receptor function, mediation
of cross-talk between GPCRs or other signaling pathways,
and cellular trafficking, hence they have been associated with
specific functional effects. Moreover, targeting these oligomeric
structures as drug candidates could provide a new arena for
drug development and specificity. The wealth of information
supporting the existence of homo- and heterooligomers of
GPCRs can be retrieved from the RCSB PDB (https://www.rcsb.
org/pdb/home/home.do) or GPCR Oligomerization Knowledge

Frontiers in Pharmacology | www.frontiersin.org 7 March 2018 | Volume 9 | Article 128

https://www.rcsb.org/pdb/home/home.do
https://www.rcsb.org/pdb/home/home.do
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Basith et al. Cheminformatics-Based GPCR Drug Design

TABLE 2 | Summary of GPCR solved structures released in the past 1 year (Dec ‘16-Nov ‘17).

Class type,

classification

Receptor

type

Species Ligand Ligand type Released

year

Resolution PDB ID

A, rhodopsin Rhodopsina Human N/A N/A 2017 3.0 5W0P

Rhodopsinb Bovine N/A N/A 2017 2.7 5TE3

Rhodopsin Bovine 10,20-Methanoretinal Agonist 2017 4.0 5TE5

A, nonrhodopsin

(aminergic

receptors)

β2AR Human Carazolol; 4-carbamoyl-N-[(2R)-2-

cyclohexyl-2-phenylacetyl]-L-phenylalanyl-

3-bromo-N-methyl-L-phenylalaninamide

Inverse

agonist;

Allosteric

antagonist

2017 2.7 5X7D

D4R Human Nemonapride Antagonist 2017 2.0 5WIU

D4R Human Nemonapride Antagonist 2017 2.1 5WIV

5-HT2B Human Lysergic acid diethylamide Agonist 2017 2.9 5TVN

5-HT2B Human Ergotamine Agonist 2017 3.0 5TUD

A, nonrhodopsin

(nucleotide-like

receptors)

A1AR Human DU172 Covalent

antagonist

2017 3.2 5UEN

A1AR Human PSB36 Antagonist 2017 3.3 5N2S

A2AAR Human ZM241385 Inverse

agonist

2017 1.7 5NM4

A2AAR Human ZM241385 Inverse

agonist

2017 2.0 5NM2

A2AAR Human ZM241385 Inverse

agonist

2017 2.1 5NLX

A2AAR Human Theophylline Antagonist 2017 2.0 5MZJ

A2AAR Human PSB36 Antagonist 2017 2.8 5N2R

A2AAR Human Caffeine Neutral

antagonist

2017 2.1 5MZP

A2AAR Human ZM241385 Inverse

agonist

2017 2.8 5JTB

A2AAR Human ZM241385 Inverse

agonist

2017 3.2 5UVI

A2AAR Human 5-Amino-N-[(2-Methoxyphenyl)methyl]-2-

(3-Methylphenyl)-2h-1,2,3-Triazole-4-

Carboximidamide

Bitopic

antagonist

2017 3.5 5UIG

A, nonrhodopsin

(peptide-like

receptors)

CCR2 Human BMS-681; CCR2-RA-[R] Orthosteric

antagonist;

Allosteric

antagonist

2016 2.8 5T1A

CCR5 Human 5P7-CCL5 Antagonist 2017 2.2 5UIW

CCR9 Human Vercirnon Allosteric

antagonist

2016 2.8 5LWE

NTSR1 Rat NTS8−13 Agonist 2016 3.3 5T04

APJR Human AMG3054 Agonist 2017 2.6 5VBL

PAR2 Human AZ3451 Allosteric

antagonist

2017 3.6 5NDZ

PAR2 Human AZ8838 Antagonist 2017 2.8 5NDD

PAR2 Human AZ7188 Antagonist 2017 4.0 5NJ6

AT2R Human N-benzyl-N-(2-ethyl-4-oxo-3-{[2′-(2H-

tetrazol-5-yl)[1,1′-biphenyl]-4-yl]

methyl}-3,4-dihydroquinazolin-6-

yl)thiophene-2-carboxamide

Antagonist 2017 2.8 5UNG

AT2R Human N-[(furan-2-yl)methyl]-N-(4-oxo-2-propyl-

3-{[2′-(2H-tetrazol-5-yl)[1,1′-

biphenyl]-4-yl]methyl}-3,4-

dihydroquinazolin-6-yl)benzamide

Dual

antagonist

2017 2.9 5UNH

(Continued)
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TABLE 2 | Continued

Class type,

classification

Receptor

type

Species Ligand Ligand type Released

year

Resolution PDB ID

AT2R Human N-benzyl-N-(2-ethyl-4-oxo-3-{[2′-(2H-

tetrazol-5-yl)[1,1′-biphenyl]-4-yl]

Antagonist 2017 2.8 5UNF

ETBR Human Bosentan Dual

antagonist

2017 3.6 5XPR

ETBR Human K-8794 Antagonist 2017 2.2 5X93

A, nonrhodopsin

(lipid-like

receptors)

FFAR1 Human MK-8666; AP8 Partial

agonist; Full

allosteric

agonist

2017 3.2 5TZY

FFAR1 Human MK-8666 Partial agonist 2017 2.2 5TZR

LPA6R
b Zebrafish N/A N/A 2017 3.2 5XSZ

CB1R Human AM11542 Full agonist 2017 2.8 5XRA

CB1R Human AM841 Full agonist 2017 3.0 5XR8

CB1R Human Taranabant Inverse

Agonist

2016 2.6 5U09

B, secretin-like

receptors

GLP-1R Human Truncated peptide Agonist 2017 3.7 5NX2

GLP-1R Human PF-06372222 Negative

allosteric

modulator

2017 2.7 5VEW

GLP-1R Human NNC0640 Negative

allosteric

modulator

2017 3.0 5VEX

GLP-1Rc Rabbit GLP-1 Agonist 2017 4.1 5VAI

GCGR Human NNC0640 Negative

allosteric

modulator

2017 3.0 5XEZ

GCGR Human NNC0640 Negative

allosteric

modulator

2017 3.2 5XF1

CTRc Human sCT Agonist 2017 4.1 5UZ7

aArrestin-bound state of the receptor.
bLigand-free basal state of the receptor.
cFully-active receptor complexed with a G protein.

Base (Khelashvili et al., 2010). In addition to these structural
intricacies, GPCR signaling is also modulated by the presence
of ligands other than orthosteric, which will be discussed
in the following sections. Furthermore, adding details like
GPCR dynamics to the structural information would provide a
bigger picture to the biomedical researchers in this field. Such
dynamic events triggered upon receptor activation or inhibition
mechanisms could be covered by powerful methodologies
including, bottom-up Hydrogen Deuterium eXchange Mass
Spectrometry (HDX-MS) and resonance energy transfer (RET)
(Li et al., 2015; Zhang, 2017). These important structural
tools aid in better GPCR drug design by adding valuable
information to our understanding of GPCR function, dynamics,
protein-protein interactions, and receptor-ligand interactions
(Vilardaga, 2011; Kauk and Hoffmann, 2017). Collectively, all
the structural studies provide unprecedented insights into the
structural and functional diversity of this receptor family. The
wealth of structural information on all GPCRs is invaluable

for ligand-based drug design (LBDD), structure-based drug
design (SBDD), and integrated paradigms which complement
traditional drug discovery efforts.

INSIGHTS INTO GPCR LIGAND SPACE

Various signaling pathways involve several GPCRs whose
activities are mediated by ligand binding. Based on activation
intensity, GPCR modulators can be divided into agonists, partial
agonists, antagonists, and inverse agonists. Full agonists can
stimulate maximal GPCR activity leading to recruitment of
downstream proteins for signal transduction. Partial agonists,
on the other hand, cannot induce 100% activation of receptors
and acts as a type of antagonist while in the presence of full
agonists. However, it can act as full agonists when there are excess
receptors and in the absence of actual full agonists. Antagonists
act as agonist blockers and can be divided into neutral antagonists
and inverse agonists. Neutral antagonists can bind to GPCRs but

Frontiers in Pharmacology | www.frontiersin.org 9 March 2018 | Volume 9 | Article 128

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Basith et al. Cheminformatics-Based GPCR Drug Design

do not affect the receptor’s constitutive activity, whereas inverse
agonists can block agonist effects. These modulators can directly
interact with the orthosteric binding site of GPCRs (Wacker et al.,
2017a).

While structural architecture of the TM region is largely
conserved, the remarkable diversity in GPCR sequences are most
notable in the ECL and ICL regions. This leads credence to the
capacity of the GPCR family to interact with a wide range of
ligands that vary in size, shape, and physicochemical properties,
most of which bind to the orthosteric site to modulate receptor
activity. In the ECL region, ECL2 plays a critical role in ligand
recognition, access, and selectivity (Dror et al., 2011; Kruse
et al., 2012; Zhang H. T. et al., 2015). For Class A GPCRs,
lipophilic ligands often come from the lipid membrane and
access the orthosteric site through the “lid” formed by the N-
terminus and ECL2. In the case of hydrophilic ligands, ECL2 of
different receptors only partially covers the ECL region through
a variety of structures that shapes the entrance to the binding
pocket (Venkatakrishnan et al., 2013). On the other hand,
modulators of class B GPCRs are frequently peptide ligands,
which possess large volume and high flexibility, requiring a
more solvent-accessible orthosteric binding pocket (Liang et al.,
2017).

Increase in static GPCR structures and advances in MD
facilities have assisted in the elucidation of GPCR-ligand binding
interaction. A thorough investigation of the ligand binding
pocket of several GPCRs indicated the presence of multiple
topologically equivalent residues that forms a consensus ligand
binding network in almost all Class A receptors, providing
an explanation for cross-reactivity and polypharmacology.
Moreover, deviations from these consensus binding residues
can account for ligand specificity in different GPCR members,
and can thus be exploited in the design of specific and
potent ligands (Venkatakrishnan et al., 2013). Regardless of
the upsurge in information in the last few decades, it is
still difficult to understand the differences in ligand binding
requirements for agonists, antagonists, and inverse agonists
of a given receptor, despite having almost identical structures
(Figure 3). This calls for more studies focused on identifying
key residues for agonism and antagonism, not only ligand
binding specificity. Along with this, it is important to scrutinize
activity cliffs of ligands as significant shifts in modulation
type could be observed through small changes in ligand
structures.

Besides the orthosteric site, GPCR ligands can also bind
to allosteric pockets and indirectly modulate receptor activity.
Allosteric modulators can be divided into two types: (a)
positive allosteric modulators (PAMs), which increases agonist
affinity, and (b) negative allosteric modulators (NAMs), which
acts as an allosteric antagonist or inverse agonist to decrease
agonist affinity (Christopher et al., 2013, 2015; Kenakin,
2016). Additionally, there are some molecules that can both
interact with orthosteric and allosteric sites, known as bitopic
modulators (Dror et al., 2013; Fronik et al., 2017). Allosteric
modulators can be either endogenous molecules, like sodium
and cholesterol (Katritch et al., 2014), or exogenous molecules
like natural products and synthetic compounds. Since allosteric

modulators bind to sites other than the orthosteric site, they
can co-bind with the putative ligand on the receptor to
alter conformation and activity, thus affecting downstream
signaling.

In case of CC chemokine receptor type 9 (CCR9), vercirnon
(antagonist) was co-crystallized and unexpectedly found
to interact with the intracellular binding site, blocking G-
protein coupling (Oswald et al., 2016). Another example of an
allosteric modulator is 1-(2-(2-(tert-butyl)phenoxy)pyridin-
3-yl)-3-(4-(trifluoromethoxy)phenyl)urea (BPTU), which
binds outside the purinergic P2Y1 receptor, flanking the TM
bundle inside the lipid bilayer. While BPTU shows lower
potency than known orthosteric antagonist, MRS2500, its
allosteric interactions allow higher selectivity for the P2Y1

receptor (Zhang D. et al., 2015). Apart from small molecule
compounds, ions can also function as an allosteric modulator,
as illustrated by the discovery of the conserved allosteric
binding pocket for Na+ in Class A GPCRs (Katritch et al.,
2014).

The current rising star in GPCR research is biased signaling.
Previously, GPCRs were presumed to exist as a simple two-
state receptor model [“on” (activation) and “off” (inactivation)].
However, extensive analyses of different signaling pathways
paved way to an exciting discovery that GPCRs have multiple
conformations, each tailored to a specific response and
downstream effect. Different ligands induce different receptor
conformations, and each conformational state could initiate
a specific downstream signal. While this finding increases
the difficulty in drug discovery and design, there is also an
opportunity to selectively block pathways implicated in various
pathologies, while leaving normal homeostatic processes intact
(Bologna et al., 2017). Typically, G protein signaling occurs upon
agonist binding, whereas arrestin-mediated signaling occurs
through arrestin binding. In this instance, GPCR drug design
strategy could be dependent on identifying agonists biased
for either G protein or arrestin signaling, leading to higher
drug efficacy and diminished adverse effects (DeWire and
Violin, 2011). Some excellent examples of biased ligands include
lysergic acid diethylamide (LSD) (Wacker et al., 2017b), a well-
known hallucinogen which appears to display bias toward β-
arrestin signaling, and synthetic opioids TRV-130 (DeWire et al.,
2013) and PZM-21 (Manglik et al., 2016), which are biased
toward G protein signaling. Altogether, these accumulated data
may provide extremely beneficial hints in the discovery and
design of GPCR ligands based on the intended activity and
targeted pathology. Figure 4 depicts some of the common GPCR
modulators that are distinguished by activity types.

CHEMINFORMATICS-BASED PARADIGMS
IN GPCR DRUG DISCOVERY

Cheminformatics Approaches Based on
the Knowledge Derived From GPCR
Ligands
Cheminformatics tools are frequently utilized in GPCR research
due to the enormous amount of GPCR ligand data. Difficulties in
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FIGURE 3 | Examples of β2-adrenergic receptor (β2AR) orthosteric ligands with similar structures but possess different activities. (A) BI167,107 acts an agonist (PDB

ID: 4LDE) (Ring et al., 2013), (B) alprenolol acts an antagonist (PDB ID: 3NYA) (Wacker et al., 2010), and (C) carazolol acts as an inverse agonist (PDB ID: 2RH1)

(Cherezov et al., 2007).
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FIGURE 4 | Representative chemical structures of various GPCR modulators.

crystallizing membrane proteins and receptor flexibility hindered
structural elucidation and drug discovery research for this
receptor. Due to these shortcomings, ligand-based approaches
started to thrive in order to provide a better understanding of
GPCR function and pharmacology. Some of the major ligand-
based cheminformatics approaches are detailed below.

Cheminformatics and Virtual Screening
In silico screening method started to become popularly used
after the integration of high throughput screening (HTS)
and information technology (Coudrat et al., 2017b). Several
computational and VS methods are frequently utilized in

different stages of drug discovery and development, but some of
the earliest and most commonly used ones are similarity- and
QSAR-based strategies due to their efficiency and capability in
analyzing simple 2D structures. These strategies are dependent
on the principle that similar structures are predicted to display
similar activities. Similarity-based methods need at least one
established hit whose chemical structure is used to calculate
pertinent molecular fingerprints, which is then employed to
screen chemical libraries for compounds containing similar
structure or fragments. On the other hand, QSAR-based
strategies rely on the developed mathematical models which
require an adequate number of biologically active compounds
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with activities covering a wide span of concentration. In this case,
screening is dependent on the quality of the dataset used and the
accuracy of the developed model (Luo et al., 2016).

Similarity-based VS was applied in a recent study for the
discovery of a novel series of cannabinoid receptor 2 (CB2R)
agonists (Gianella-Borradori et al., 2015). CB2R is a class A,
lipid-like GPCR that regulates the effects of endogenously
produced cannabinoid receptor ligands and has been implicated
in several inflammatory diseases. In this study, an in-house
database containing around 25,000 compounds was screened
based on 40 low-energy conformations of known active and
selective compound HU-308. Compounds were ranked based
on their similarity with any of the 40 conformers of HU-308,
and the top 94 were selected for biochemical screening based on
the combined color score, which refers to chemistry alignment
akin to pharmacophore features, and shape Tanimoto score,
which accounts for 3D conformer overlay. From the initial hits,
the top 16 active compounds displayed 6 new core scaffolds.
Upon combined inspection of bioactivity, molecular weight, and
lipophilicity, DIAS1 was chosen and used for further mining
of the in-house library with the help of the newly identified
scaffold. The second VS led to the discovery of DIAS2, which
exhibited better activity and reduced lipophilicity as compared
to DIAS1. Further structure-activity relationship (SAR) studies
were performed for the optimization of the lead compound to
improve potency, selectivity, and pharmacokinetic properties,
resulting in candidate compounds that show nanomolar activity
and selectivity for CB2R.

Another study used the US EPA’s ToxCast database to develop
QSAR models for 18 aminergic GPCRs (Mansouri and Judson,
2016). While the ToxCast program can screen hundreds of
compounds in vitro to determine toxicity, the chemical space
covered by their database is not enough to include all compounds
of interest. However, the database can be employed in the
development of predictive QSAR models. Two QSAR models
were developed during the study, a qualitative (active vs. non-
active) and a quantitative (potency value prediction) model.
Various descriptors were calculated from the 2D structures of
the compounds in the database and were subjected to genetic
algorithms (GAs) to identify the best and most predictive
descriptors. Several model-fitting methods, including PLSDA
(partial least square discriminant analysis), SVMs (support vector
machines), kNNs (k-nearest neighbors), and PLSs (partial least
squares), were used to generate the QSAR models, which were
later evaluated for accuracy and predictability. As a result, they
were able to produce suitable models for aminergic GPCR assays
and demonstrate the reliability of QSAR-based methods for
analysis.

Cheminformatics and de Novo Ligand Design
Typically, ligand-based de novo drug design utilizes approved
drugs or known inhibitors as reference structures or a source
of pharmacophores that are relevant for bioactivity to build
new chemical structures. While novelty and potency are always
favored in drug discovery research, de novo structures should
also have desirable pharmacokinetic properties (Kawashita
et al., 2015). The combination of de novo drug design and

computer-aided VS, along with the application of ADME/Tox
models for the prediction of pharmacokinetic properties, has
the capability of more effectively identifying NCEs with the
desirable pharmacological activity profiles. In this sense, de novo
drug design approach has become the forerunner of the long-
envisioned personalized medicine where patients can be given
custom-tailored drugs with increased efficacy and reduced
adverse effects.

Rodrigues et al. worked on 5-hydroxytryptamine receptor
subtype 2B (5-HT2B) drug discovery and were able to identify
selective ligands through multidimensional de novo design
(Rodrigues et al., 2015). In the Molecular Ant Algorithm
(MAntA) software (Reutlinger et al., 2014), chemically advanced
template search version 2 (CATS2), pharmacophores, and
Morgan substructure fingerprints were employed to generate 5-
HT2B selective ligands via reductive amination, resulting in over
5,000 new compound structures from which 4 were selected
based on calculated 5-HT2B selectivity. To further improve
selectivity and increase the scaffold diversity, de novo design
software DOGS (Hartenfeller et al., 2012) and FDA-approved
drug molecule structures were utilized to produce NCEs. The
resulting compounds were screened with PAINS (Baell and
Holloway, 2010) and ADMET filters (Lagorce et al., 2008) to
remove undesirable molecules before performing experimental
validation assays. Finally, four more compounds were obtained
and among them, one compound showed promising selectivity
for the 5-HT2B receptor. Even though the newly designed
compound was not comparable in potency with the most
potent existing antagonists, this study still provides an excellent
application of de novo drug design in GPCR drug discovery field.

Cheminformatics and Chemical Genomics
While the number of currently available GPCR structures
is increasing, it only covers a small portion of this protein
superfamily and several other pharmaceutically relevant
members are not yet elucidated. Chemical genomics can
be applied to overcome the difficulty of target and drug
identification by screening small molecule libraries and
measuring their effects on entire biological systems or a
specific group of targets, such as GPCRs. This combines
the strength of traditional pharmaceutical techniques and
genomics to facilitate discovery and validation of therapeutic
targets, as well as identification of potential drug candidates
for optimization (Hauser et al., 2018). Moreover, application
of this strategy provides information concerning activated
signaling pathways and biological effects through measurable
gene expressions, leading to relevant data about target specificity
and noninteraction pairs. In this sense, chemical genomics
works on mining huge chemical data with the help of structural
bioinformatics to rapidly identify target structure-function
relationships (Valerio and Choudhuri, 2012). One of the most
popular chemical genomics-based database found online is
GLIDA (GPCR-Ligand Database), a publicly available Chemical
Genomics database that can be used for GPCR drug discovery
(Okuno et al., 2008). It contains GPCR biological and ligand
information, as well as GPCR-ligand binding data. Therefore,
it can be utilized for LBDD with the help of techniques such

Frontiers in Pharmacology | www.frontiersin.org 13 March 2018 | Volume 9 | Article 128

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Basith et al. Cheminformatics-Based GPCR Drug Design

as machine learning-based classification and similarity-based
search.

Shiraishi et al. reported an interesting research wherein
chemical genomics approach was employed to predict GPCR-
ligand interaction for class A GPCRs (Shiraishi et al., 2013).
GPCR-ligand interaction data was collected from GVK
Biosciences database and kernel methods were applied to
evaluate compound-protein interaction (CPI) pair similarities
based on Extended Connectivity Fingerprint (ECFP) and Dragon
software descriptors generated for the ligands, along with target
specific regions, such as full structure, loop region, and TM
region. The results showed that compared to kernels accounting
for the full structure and loop regions, kernels for the TM region
showed significantly improved performance, which agrees with
experimental findings that the TM region of class A GPCRs
plays a critical role in ligand binding. Reliability of the machine
learning model was improved with the addition of negative
noninteraction pairs. Careful investigation of GPCR-ligand
pairs revealed that high co-occurrence of residue-fragment
pairs may be indicative of importance in ligand binding and
specificity, as well as conservation of binding modes among
Class A GPCRs. Key interactions identified in their study can be
used for future VS and lead optimization studies and is beneficial
when employed in combination with structure-based studies.

Cheminformatics, Polypharmacology, Drug

Repositioning, and Repurposing
Recently, pharmaceutical research focuses not only on the
discovery of novel compounds for a known target but also
on the discovery of new indications for currently approved
drugs. Polypharmacology has quickly emerged as a critical
part of drug discovery research with the knowledge of how
interconnected pathways in biological systems are. Though
this field is most often used to investigate adverse effects and
toxicity, information garnered from possible off-target effects
can also offer information about new drug indications or
cross-reactivity leading to higher drug efficacy (Jacobson et al.,
2014). With the upsurge of polypharmacological information,
it is no surprise that it is now frequently combined with
cheminformatics strategies to predict off-target effects ahead
of extensive biochemical analyses in order to save time and
resources.

Xie et al. reported an interesting chemical genomics-based
polypharmacology study focusing on GPCR-related drug abuse
problem (Xie et al., 2014). Initially, a drug-abuse domain
specific chemogenomics knowledgebase (DA-KB) was built to
consolidate chemogenomics data regarding drug abuse and CNS
diseases. This database was later used to investigate molecular
interaction networks that encompass both drug abuse and
GPCR modulation. Upon identifying 85 drug abuse-related
GPCRs, distribution information of these receptors was collected
and studied from the MetaCore database (Ekins et al., 2006).
Using HTDocking (https://omictools.com/htdocking-tool) and
GPCRDocking programs, polypharmacology and polydrug
addiction analyses were performed to investigate the interactions
between drug abuse-related receptors and ligands, along with
cross-reactivities. As a result, the DA-KB became a powerful

tool that has the capability of transforming data to useable
polypharmacology knowledge. Moreover, TargetHunter server
was also developed and can be used for target or off-target
discovery.

Cheminformatics Approaches Based on
the GPCR Structural Data
SBDD is one of the potent tools in lead discovery and
optimization (Andrews et al., 2014). The application of SBDD is
proven to be more efficient than traditional methods due to its
working principle, which includes understanding the molecular
basis of the disease and utilizing the 3D structural data of
the target protein in the drug discovery pipeline (Cavasotto
and Palomba, 2015). It has played a valuable role in several
drug discovery projects involving enzyme targets (Wlodawer
and Vondrasek, 1998; Varghese, 1999). Due to the difficulties
in the expression and crystallography of GPCRs, there was
only limited information available for SBDD of such targets.
However, methodological advances in GPCR crystallography
have paved way for the elucidation of several GPCR structures
in the recent past. The availability of GPCR structures led to
increased application of structure-based approaches in GPCR
drug design, an area which has long been dominated by
ligand-based ones. Breakthroughs in GPCR structural biology
provide invaluable insights into the GPCR structure, function,
and polypharmacology. The abundance of ligand-bound GPCR
structures unveils the intricacies of ligand-receptor interactions,
thus triggering a shift from conventional HTS techniques to
less cost and highly efficient SBDD approaches for the design
and discovery of potent ligands with improved pharmacological
profiles. The main drawback of SBDD approaches lies on
the scoring functions used by docking algorithms, wherein
numerous approximations and restraints to protein flexibility
are applied to expedite the process (Kim and Cho, 2016). In
the following section, we briefly discuss the structure-based
cheminformatics approaches for identifying novel GPCR ligands
targeting ligand- and/or allosteric binding sites with few thriving
models from the literature.

Identification of GPCR Novel Chemotypes via

Structure-Based Virtual Screening
Utilizing crystal structures or homologymodels of target proteins
in rational drug design is considered as the most powerful and
popular method of choice in the design and/or screening of new
lead compounds. In the early phase of drug discovery pipeline,
structure-based virtual screening (SBVS) or docking-based VS
has been utilized for the prediction of novel bioactive compounds
from large and chemically diverse libraries (Cheng et al., 2012).
In general, SBVS requires knowledge about the target’s (protein
or receptor) 3D structural information determined through
experimental (X-ray or NMR) or in silico methods (homology
modeling). Procedure involves docking of large chemical libraries
of small compounds into crystal structure or homology model
of the receptor. The selection criteria of small compounds for
further experimental testings are based on the docking score,
which assesses the binding affinity of protein-ligand complexes,
predicted binding poses, chemical diversity, interactions with key

Frontiers in Pharmacology | www.frontiersin.org 14 March 2018 | Volume 9 | Article 128

https://omictools.com/htdocking-tool
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Basith et al. Cheminformatics-Based GPCR Drug Design

residues, etc. (Ngo et al., 2016). The small compounds that cause a
biological response are known as hits, which act as new chemical
scaffolds for hit-to-lead development. The general VS workflow
applied in several GPCR VS studies is shown in Figure 5.

SBVS studies for the first crystal structures of GPCRs,
including β2AR, A2AAR, dopamine D3R, and histamine (H1R)
have shown high hit rates. The pioneering study of SBVS for a
druggable GPCR using the β2AR crystal structure was reported
(Cherezov et al., 2007). In another SBVS, the authors utilized the
inactive structure of β2AR/carazolol (PDB code: 2RH1) (Sabio
et al., 2008) and screened proprietary and public databases
for the identification of β2AR ligands. The hit rates obtained
were 36 and 12%, respectively. Similarly, Kolb et al. (2009)
docked ∼1 × 106 commercially available compounds onto the
same crystal structure and the top 25 virtual hits were selected
based on their commercial availability, chemical diversity, and
complementarity to the binding sites, and subjected for biological
testings. Among them, six compounds had detectable binding
affinities with the best one showing a Ki of 9 nM. All six
hit molecules had novel chemotypes, and five of them were
confirmed as inverse agonists. Apart from the reported VS

studies using crystal structures, there were also few reports
using receptor homology models. Langmead et al. identified
highly potent and novel chemotype 1,3,5-triazine derivatives
using A2AARhomologymodels (Langmead et al., 2012). A virtual
library of 5.45 × 105 compounds was screened and the initial
hits were selected based on the shape geometry and electrostatic
properties of the orthosteric site. A hit rate of 9% was obtained
and the structures were modified and optimized using X-ray
crystallography and structure-based optimization techniques.
This series of optimization led to the successful identification
of AZD4635 (HTL-1071), which is in phase 1 clinical trials for
immunooncology (Jazayeri et al., 2017).

Interestingly, a large-scale VS study was carried out by Lane
et al. (2013) for the identification of both orthosteric and
allosteric ligands of D3R. Based on the crystal structure of
D3R, two optimized D3R models were prepared. To account for
protein flexibility, conformers of D3R models were generated
and subsequently evaluated by VS performance, i.e., conformers
that can separate D3R actives from decoys were selected for
the following analyses. The Molsoft Screen Pub database, which
contains 4.1 × 106 compounds, was virtually screened using

FIGURE 5 | Overview of the typical workflow of structure-based virtual screening (SBVS).
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docking calculations. Top 300 hits in each model were selected
and clustered by chemical similarity (0.3 Tanimoto distance). The
top 25 compounds selected did not have a positively charged
amine forming a conserved salt bridge to D1103.32, which is
contrary to D3R apo model, but has interactions with TM1, 2, 3,
and 7 as well as ECL1 and ECL2. These hits also reach dopamine
and D1103.32 at the end of the orthosteric pocket. Finally, the
predicted novel allosteric ligands were experimentally validated,
showing distinct functional profiles on dopamine-signaling
efficiency. Another SBVS approach identified nanomolar lead
compounds for the melanin-concentrating hormone-1 receptor
(MCH-1R) (Lionta et al., 2014). This approach combines GPCR
molecular modeling, antagonist binding site prediction, design,
synthesis, and a focused library screening. A primary hit
compound from a pyranose-based VAST library was initially
used for the construction of a high quality MCH-1R model.
Furthermore, the model validation was performed using a virtual
enrichment experiment, along with the model-driven structure-
based expansion of the initial hit, for identification of potent
interactions in the binding site. A SBVS of a library with ≤0.7
Tanimoto similarity to existing MCH-1R ligands provided a 14%
hit rate and 10 unique chemotypes of potent MCH-1R inhibitors,
including two nanomolar leads (Lionta et al., 2014).

In silico screening territory for classes B, C, and F largely
remains uncharted due to the limited number of crystal
structures available. Using SBVS approach, noncompetitive
ligands (allosteric modulators) of related class B GPCRs, namely
glucagon receptor (GLR) and glucagon-like peptide 1 receptor
(GLP-1R), were identified (de Graaf et al., 2011b). Based
on the crystal structure of corticotropin-releasing factor 1
receptor (CRF1R), a homology model for GLR was constructed.
A database containing 1.9 × 106 compounds was assessed
for chemical similarity to the current GLR noncompetitive
inhibitors and docked onto the TM cavity of GLR. Based on
the protein-ligand interaction fingerprints (IFPs), 23 compounds
were selected and subjected for in vitro evaluations. Only two
compounds were found to dose-dependently inhibit the effect
of glucagon. One hit that was predicted as inactive for GLR
bound to GLP-1R and potentiated a response similar to the
endogenous GLP-1 ligand. For class C GPCRs, successful in silico
VS studies were carried out against the VFT crystal structures
(orthosteric N-terminal domain) of metabotropic glutamate
receptor subtypes, mGlu3R and mGlu4R (Selvam et al., 2010).
Besides the above-mentioned studies of VS campaigns, there
are several computational works reported in the literature to
discover novel orthosteric ligands for various GPCRs (which
is well summarized in several review articles; Andrews et al.,
2014; Cavasotto and Palomba, 2015; Shonberg et al., 2015; Ngo
et al., 2016; Lee et al., 2018). Since SBVS on GPCRs is too
broad to cover in this section, we have summarized representative
case studies reported in the last 5 years (2013–2017) in
Table 1.

Relevance of Fragment-Based Drug Discovery

(FBDD) on GPCR Targets
Sequential piecing of fragments together to develop a novel lead
compound is known as fragment-based drug discovery (FBDD)

or fragment-based lead discovery (FBLD). FBDD is a potent
scaffold-hopping and lead structure optimization tool for drug
discovery projects and serves as an alternative to HTS (Matricon
et al., 2017). The success of this approach in drug discovery
campaign could be visualized by the increase in the number of
compounds (originated from virtual fragment screens) entering
clinical trials. A remarkable example of drugs identified via
FBDD approach is vemurafenib, which was approved for the
treatment of metastatic melanoma in 2011 (Baker, 2013). FBDD
uses small molecules comprising ≤20 heavy atoms as a starting
fragment for effective hit optimization. The main concept of this
approach is to discover ligands that are smaller than a regular
drug compound. The enlarged coverage of uncharted chemical
space in fragment databases provides an exciting opportunity
to find ligands after screening only a few thousand compounds
(Chen et al., 2013). A fragment library can be designed and
screened using molecular docking studies (Lee et al., 2018).
The retrieved fragments could be further optimized using other
computational approaches for growing, linking, or both.

Strategies utilized in the development of fragments into a
lead compound include fragment growing, fragment linking,
sequential docking, and group-based QSAR techniques.
Fragment growth strategy initially begins with a fragment in
the receptor’ active site and allows extension of the fragment
to maximize its interaction with the residues in the binding
pocket. Fragment linking refers to the covalent linking of two or
more fragments to form a single molecule which provides a new
chemical scaffold in the active site. The application of FBDD to
SBVS increases the structural space of hit-to-lead compounds.
Even though ligands retrieved from fragment libraries lack
selectivity and exhibit low affinity, they can be used as starting
points for novel lead discovery. Despite its numerous advantages,
there are still limitations associated with this approach, such
as low accuracy prediction of fragment binding modes and
rapid accumulation of errors. However, this approach proves to
be useful when complemented with experimental techniques.
Fragment screening of GPCR ligands via experimental methods
(NMR, SPR, and X-ray crystallography) is challenging due to
the difficulties in obtaining substantial amounts of functional
protein, inherent conformational flexibility of the receptors
outside the membrane, and low expression of the receptors
(Lee et al., 2018). Therefore, in silico FBDD approaches could
be utilized for GPCRs and other therapeutic targets. In the
following paragraphs, we discuss the successful application of
FBDD on GPCR drug discovery from literature.

The importance of in silico screening against GPCR protein
structures or homologymodels to investigate novel fragment-like
ligand chemical space is applicable for several GPCR targets. One
of the first successful virtual fragment screening was developed
by de Graaf et al. against doxepin bound human H1R crystal
structure (de Graaf et al., 2011a; Shimamura et al., 2011).
In this approach, molecular docking and receptor-ligand IFP
protocols were combined to discover a chemically diverse set
of new fragment-like H1R ligands. Out of 26 fragment-like
compounds, 19 showed high binding affinity at the receptor
level (hit rate 73%). Similarly, another structure-based virtual
fragment screening (SBVFS) was performed against two GPCR
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targets, namely dopamine (D3R) crystal structure and H4R
homology model structure, and an in-house fragment library of
12,905 fragments (Vass et al., 2014b). Additionally, molecular
dynamics (MD) simulations were performed to represent
different conformational states of the receptor orthosteric site
(Vass et al., 2014b). Single structure- and ensemble docking
screens were carried out for both receptors. The resulting 50
virtual hits were subjected for in vitro studies. Both the single and
ensemble structures were found to be suitable for docking-based
VS of fragments against GPCR targets. Chen et al. complemented
in silico SBVFS with experimental biophysical screening to test
the efficiency of their developed method (Chen et al., 2013).
Initially, a set of 500 fragments were docked onto the orthosteric
pocket of antagonist-bound A2AAR crystal structure (Jaakola
et al., 2008) and ranked by affinity prior to target immobilized
NMR screening of the same library (TINS). TINS resulted in 94
hits, where five fragments were identified to exceed the threshold
affinity for the GPCR target. In the in silico screening, four out
of five compounds were found in the top 50 fragments. Apart
from these four fragments, the remaining 46 fragments also
showed high binding affinities. Thus, a second computational
screening approach using commercially available fragments (3.28
× 105) was performed and the 22 top-ranked compounds were
tested experimentally. Among them, 14 fragments were identified
as A2AAR ligands. Furthermore, QSAR studies were performed
for three potent A2AAR ligands followed by optimization of
the fragments by MD simulations and free-energy calculations.
Similarly, another successful application of fragment-based
screening and lead optimization using both biophysical and
in silico techniques was shown in β1AR target leading to the
discovery of novel high affinity leads (Christopher et al., 2013).

Verheij et al. studied target selectivity against histamine
subtype H4R and 5-HT3A (ion channel) homology models using
SBVFS approach (Verheij et al., 2011). The results of fragment-
based screening showed that both receptors yielded a common
pool of hit fragments, thus underlining remarkable similarities
in ligand recognition. This knowledge could assist in efficiently
navigating chemical space during hit optimization. Besides the
orthosteric binding site (primary), allosteric sites (secondary)
have also been targeted for identification of novel compounds by
SBVFS approach. Vass et al. applied a sequential docking protocol
to predict starting points for fragment linking using D3R crystal
structure andD2R homologymodel to identify subtype selectivity
(Vass et al., 2014a). Two in-house focused fragment libraries (196
fragments function as primary binding site ligands for D2 and D3

receptors and 266 fragments function as secondary binding site
ligands for D3R) were docked in the orthosteric and allosteric
binding sites and the best fragment combinations were listed.
Similar top-scoring fragments were identified for the orthosteric
site, whereas allosteric site fragments showed subtype selectivity.
Three fragment-linked compounds that showed 9-, 39-, and 55-
fold selectivity for D3R were synthesized, and docking results
were validated by the experimental data.

In tandem with SBDD, FBDD has also been successfully
applied to other GPCR classes. Novel mGlu5R NAMs were
identified through combination of fragment-based screening
and medicinal chemistry approaches (Christopher et al., 2015).

In addition, the binding modes of NAMs with the receptor
were crystallographically solved. Recently, an in silico fragment-
based approach was applied on the crystal structures of mGlu5R
(Doré et al., 2014; Christopher et al., 2015) for the design
of novel allosteric modulators (Bian et al., 2017). Initially, a
fragment library for reported GPCR allosteric modulators was
constructed using the data from Allosteric Database (ASD).
Subsequently, the novel compounds were generated and analyzed
using retrosynthetic combinatorial analysis procedure (RECAP).
Molecular docking was applied to screen the hits for the target
by docking the in silico generated compounds into the binding
pocket. Additionally, other computational methodologies, such
as benchmark dataset verification, docking, QSAR model
simulations, etc., were performed to assess validation of the
hits. Twenty structurally diverse hits were predicted as potential
mGlu5 allosteric modulators based on the binding energies and
docking scores. This study highlights the importance of purely
computational FBDD approach for facilitating the design of
novel compounds for other targets as well. In addition to the
above-mentioned GPCR case studies on SBVFS campaigns, there
are several other in silico reports available regarding the discovery
of novel ligands which are summarized elsewhere (Hubbard and
Murray, 2011; Murray et al., 2012; Shoichet and Kobilka, 2012;
Visegrády and Keseru, 2013; Andrews et al., 2014; Lee et al.,
2018).

Integration of Ligand- and Structure-Based
Cheminformatics Approaches
The use of cheminformatics in drug discovery provides an
excellent foundation for the integration of structure- and ligand-
based strategies due to its application in different stages of
drug discovery. With the rising number of available structures,
biological databases, and in silico techniques for cheminformatics
and modern drug discovery, it is not surprising that ligand-
and structure-based approaches are used in combination to
take advantage of the abundant GPCR ligand information
while employing recently elucidated crucial protein structural
information to aid in increasing success in GPCR drug
discovery research. Furthermore, integration of LBDD and
SBDD complements strengths and weaknesses of each method,
leading to better insights in critical ligand functionalities and
receptor-ligand interaction information. Researchers are now
able to use 3D protein structures to predict binding modes
and study the pharmacology of known drugs and their analogs
through docking, providing rationalization of ligand activity and
useful SAR information for the design and optimization of new
agonists and antagonists (Munk et al., 2016). In addition, rapid
innovation of hardware and computing power allows the use
of MD simulations for more in-depth study of GPCR ligand
binding and activity modulation (McRobb et al., 2016; Clark,
2017).

An excellent case of ligand- and structure-based integration
in GPCR drug discovery is shown in studies involving A2AAR,
an attractive drug target for the treatment of Parkinson’s disease.
Since A2AAR receptor was one among the first GPCRs to
be crystallized, it has become one of the most extensively
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studied drug target. The later release of a high-resolution
A2AAR structure, which revealed the presence of water in the
binding site, further increased the efforts for drug design and
optimization. Over the years, most of A2AAR antagonists, such
as istradefylline (Jenner, 2005) and preladenant (Neustadt et al.,
2007), have been designed based on the purine scaffold and
other related heterocycles. Although the abundance in ligand
information for A2AAR helps in the elucidation of important
chemical fingerprints and ligand binding interactions, it has
become difficult to discover novel entities for drug development.
In a study by Lenselink et al. (2016a), they performed VS
using an ensemble of A2A receptor structures split into a
structure-based decision tree (Lenselink et al., 2014). Ligands
were docked to each protein structure and proceeded to the
next receptor docking based on a GlideScore cut-off of the
previous procedure. The resulting ligands were filtered using
Rapid Elimination of Swill (REOS) (Walters andNamchuk, 2003)
and re-scored using MM-GBSA. Consequently, similarity-based
analysis (against compounds tested for A2AAR activity recorded
in ChEMBL) was performed to determine the structural novelty
of the remaining hits and select themost unique compounds to be
tested experimentally. Out of 71 novel ligands, only 2 compounds
displayed suitable A2AAR binding affinity. They also performed a
retrospective analysis of the current A2AAR ligands to determine
novelty in structure and its relation to observed A2AAR activity.
Decades of research efforts for this target left little room for
discovery of new ligand scaffolds, as seen in previous VS studies
showing ligand Tanimoto similarity in the range of 0.19–0.68
(Carlsson et al., 2010; Katritch et al., 2010; Langmead et al., 2012;
Rodriguez et al., 2015), with the lowest similarity showing the
least activity. While most of the virtual hits were found to be
similar in structure to experimentally validated compounds from
ChEMBL, it should be noted that several of the tested compounds
or scaffold structures were also discovered using computational
methods, highlighting the value of in silico approaches in drug
discovery and design.

Aside from combining known structure- and ligand-based
methods, hybrid tools that assimilate features from both
approaches have been developed to afford computational
chemists other strategies which can compensate current
individual limitations of SBDD and LBDD. One of the
hybrid methods that has gained popularity in recent years
is proteochemometric (PCM) modeling. PCM modeling is
similar to traditional QSAR studies since both methods require
descriptors, bioactivity data, and machine learning functions
for model development (Qiu et al., 2017). However, a cross-
term descriptor is also required in PCM modeling to consider
amino acids and ligand functional groups that are crucial
for binding interaction of the complex (Lapinsh et al., 2001;
van Westen et al., 2011; Qiu et al., 2017). This method has
been found to be useful on polypharmacological studies as it
can provide information on target selectivity (Cortes-Ciriano
et al., 2015), especially in large protein families like GPCRs.
In a recent study by Gao et al. (2013), 24 PCM models were
developed for amine GPCRs and their corresponding ligands
using machine learning methods, support vector regression
(SVR), and Gaussian processes (GP). Two typical descriptors

were generated per receptor: z-scale and transmembrane identity
descriptors, and two typical descriptors were generated for each
ligand: general (atomic contributions, logP, etc.,) and drug-like
index descriptors. These descriptors were first used to build 24
PCM models, which were validated using a test-set. Although,
most of the models showed strong goodness-of-fit (R2) and
predictivity (Q2), the addition of cross-terms led to a lower
predictive capability of the PCM models. This may be because
it is still difficult to fully translate receptor-ligand interfaces to a
descriptor value. Despite this, their PCM models showed great
potential in predicting cross interactions between GPCRs and
ligands.

SUMMARY OF CHEMINFORMATICS
SOFTWARES/TOOLS UTILIZED IN GPCR
DRUG DISCOVERY

HTS has undergone technological advances and innovations
that has rendered it as the principal method of drug discovery
for years. However, it did not necessarily lead to a great leap
forward in the discovery of NCEs as the hit rate for this
method is frequently low, in addition to the enormous costs and
efforts involved. In turn, computer-aided drug design (CADD)
have been recognized and continuously receives increase in
interest and usage such that most of GPCR drug discovery
research efforts make use of one or more computational tools,
especially in the initial stages of drug design. Due to the
complexities of experimental GPCR research, it is of no surprise
that CADD has emerged as a method of choice to expedite
GPCR drug discovery and design. Furthermore, increasing
knowledge of GPCR systems has led to the rising popularity
of cheminformatics and chemogenomics as evidenced by the
growing number of publicly available databases, which can
provide structural or interaction information regarding receptor
and its associated ligands.

There are several cheminformatics softwares and web servers
available to identify lead compounds targeting GPCRs (Khan
et al., 2011; Yadav et al., 2016). As mentioned previously,
in silico approaches are classified into two approaches: SBDD
and LBDD. If there are already known NMR and X-
ray crystal structures or reliable homology models available,
computational methods based on target protein structures can
be exploited (Lyne, 2002). These tools are related with several
computational approaches, including molecular docking, VS,
pharmacophore generation, and binding pocket detection. As
shown in Table 3, several in silico cheminformatics methods
have been applied for GPCR targeted drug discovery. In
cases where no protein structures are available, ligand-based
virtual screening (LBVS) can be utilized. LBVS can be further
sub-classified into three: pharmacophore-, similarity-, and
machine learning-based VS (Basith et al., 2016). As shown
in Table 4, several in silico cheminformatics methods could
be exploited for generation of pharmacophores, searching
3D similarity, and identifying targets (polypharmacology).
Moreover, commercially available chemical libraries for VS are
shown in Table 5.
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TABLE 3 | Cheminformatics tools for structure-based drug discovery.

Tools Description Availability References

VS Docking Pharmacophore generation Cavity detection

AutoDock 4 Y Y Public Morris et al., 2009

AutoDock Vina Y Y Public Trott and Olson, 2010

FlexX Y Y Commercial Kramer et al., 1999

OEDocking (FRED, HYBRID) Y Y Commercial McGann, 2012

Galaxy7TM Y Public Lee and Seok, 2016

Glide (HTVS, SP, XP) Y Y Commercial Friesner et al., 2006

GOLD Y Y Commercial Jones et al., 1997

GOMoDo Y Y Y Public Sandal et al., 2013

GPCR automodel Y Public Launay et al., 2012

ICM-Pro Y Y Commercial Neves et al., 2012

MOE Y Y Y Commercial Roy and Luck, 2007

Snooker Y Y Sanders et al., 2011

Surflex-Dock Y Commercial Jain, 2007

fPocket Y Y Public Le Guilloux et al., 2009

Pocketome Y Public Kufareva et al., 2012

UCSF DOCK Y Y Commercial http://dock.compbio.ucsf.edu/

MOLS Y Public Paul and Gautham, 2016

iScreen Y Y Y Public Tsai et al., 2011

TABLE 4 | Cheminformatics tools for ligand-based drug discovery.

Tools Description Availability References

VS Pharmacophore generation 3D similarity searching Poly pharmacology

Discovery studio Y Y Commercial

FlexS Y Commercial Lemmen et al., 1998

ICM-Pro Y Y Y Y Commercial Grigoryan et al., 2010

LigandScout Y Y Commercial Wolber and Langer, 2005

PharmaGist Y Y Commercial Schneidman-Duhovny et al., 2008

QSARPro Y Y Commercial http://www.vlifesciences.com

ROCS Y Commercial Hawkins et al., 2007

Surflex-Sim Y Commercial Spitzer and Jain, 2012

Swiss similarity Y Public Zoete et al., 2016

Topomer CoMFA Y Y Commercial Cramer, 2003

LIMITATIONS OF CHEMINFORMATICS
APPROACHES IN GPCR DRUG
DISCOVERY

In the last several years, the increasing number of high resolution
GPCR structures has unlocked new avenues for structure-based
GPCR drug discovery and design. However, several obstacles
remain, including rapid identification of novel fragment-like
compounds and structure-based elucidation of GPCR ligand
function to name a few.

With the recent innovations in high-throughput, computer,
and software technologies, as well as the upsurge of publicly
available data, cheminformatics methodologies has no doubt
become an essential part of most drug discovery efforts to date.
However, a major flaw is seen during cheminformatics model

development, wherein the experimental data used is assumed
to be correct. In contrast to this assumption, databases can
contain errors for ligand structures, bioactivity, activity types,
and other information, which often results in ambiguous models
leading to erroneous findings. Several recent articles (Fourches
et al., 2010, 2016; Williams and Ekins, 2011; Williams et al.,
2012) have discussed this topic at length and how it can have
a negative effect on model development and performance. A
study by Olah et al. (2005) mentioned that there were two
molecules with incorrect structures on average for eachmedicinal
chemistry journal, indicating a total error percentage of 8%
in the WOMBAT database. Another more recent study by
Tiikkainen et al. (2013), estimated the ligand error rates in
ChEMBL, Liceptor, and WOMBAT databases to be 5, 7, and 6%,
respectively. Error values for activity values in the three databases
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TABLE 5 | Available chemical database for high-throughput virtual screening.

Database Number of compounds Containing GPCR focused library References

AnalytiCon 35,000 https://ac-discovery.com

Asinex 600,000 Y http://www.asinex.com

Bionet 80,700 https://www.keyorganics.net

ChemBridge 1,100,000 Y http://www.chembridge.com

ChemDiv 1,500,000 Y http://www.chemdiv.com

CoCoCo 6,981,500 http://cococo.isof.cnr.it/cococo

eMolecules 5,900,000 https://www.emolecules.com

Enamine 2,300,000 Y http://www.enamine.net

InterBioScreen 550,000 https://www.ibscreen.com

Life Chemicals 1,292,000 Y http://www.lifechemicals.com/

Maybridge 53,000 http://www.maybridge.com/

NCI 260,000 https://cactus.nci.nih.gov/

OCTVAchemicals 260,000 Y http://www.otavachemicals.com

Prestwick Chemical 1,280 http://www.prestwickchemical.com

Selleck Chemicals 482 Y http://www.selleckchem.com

SuperDrug2 3,900 http://cheminfo.charite.de/superdrug2/downloads.html

TCM Database 32,300 http://tcm.cmu.edu.tw/

Timtec 2,300 Y http://www.timtec.net/

Vitas-M 1,500,000 http://www.vitasmlab.com

ZINC 35,000,000 Irwin et al., 2012

ranged from 1 to 2%. It is therefore important to carefully and
manually curate chemical and biological databases, since even
minor errors can cause a substantial decrease in the predictive
capability of generated models. Moreover, while the increasing
sophistication of computer programs has allowed researchers
an atomistic view of several GPCR systems, approximations of
crucial energy terms that cannot be computationally explored at
present has greatly limited the accuracy in the perception of these
systems. Because of these, researchers should constantly gauge
findings against their own scientific knowledge to see whether
the results are significant or not. It should always be remembered
that computational tools are created and continuously developed
to assist in making the drug discovery process more efficient,
but nothing can replace a researcher’s own knowledge and
experience.

Moreover, insights about GPCR structure, function, and
binding partners have increased significantly compared to a few
decades ago. Despite this, a great deal of information is still
beyond our fingertips, such as protein structures of hundreds of
unique GPCRs and ligand information for orphan GPCRs. It is
imperative not lose fervor in gathering new knowledge to further
enhance our understanding of GPCR structures and functions.

CONCLUSIONS

In the nineteenth century, chemical space exploration was
initiated as a counting game to estimate its size (Reymond, 2015).
However, the advent of cheminformatics field and powerful
in silico technologies assisted in the exploration of uncharted
ligand space from large chemical libraries. The availability of
large public and commercial chemical databases, as well as

ligand chemical space exploration tools, provide researchers the
ease of accessibility to handle and explore huge chemical data.
Cheminformatics is a complex field of study that translates large
data into useful knowledge for drug design and optimization
protocols. The expansion of GPCR structures and ligands over
the past decade is mainly due to the progress in its structural
biology and theoretical advancements. These structural and
in silico breakthroughs have led to the implementation of
cheminformatics approaches in GPCR drug discovery pipeline.
In the GPCR drug discovery protocol, ligand- and structure-
based approaches are the most commonly applied ones. LBDD
is known as a fast and simple technique for the identification
of vital chemical functionalities required for biological activity.
However, absence of binding pocket information limits its ability
in incorporating several important factors, such as receptor
flexibility and ligand bioactive conformation, thereby restricting
the discovery of candidate leads to only the ligand classes
used in model development (Saxena et al., 2017). But due to
the prolonged absence of GPCR structures, researchers relied
heavily on ligand-based methods for drug discovery and lead
optimization, leading to copious ligand structural information
for these targets. Following the crystallization of bRho in 2000
(Palczewski et al., 2000) and β2AR in 2007 (Rasmussen et al.,
2007), a striking increase in GPCR structural information have
been observed in the last several years.While the current available
structures are unable to cover the structural diversity of GPCR
protein family members, there is enough that can be used as
templates for homology modeling to perform SBDD. In contrast
to ligand-based techniques, SBDD can be used to predict ligand
bioactive conformation, thus providing a better understanding
of receptor-ligand interactions and allowing the discovery of
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NCEs. Furthermore, recent researches underpin the significance
of emerging integrated approaches in GPCR drug design and
discovery. Assimilating LBDD and SBDDmethods, as well as the
use of integrated approaches, has proven to increase the success
rate of finding promising leads, especially for well-studied targets
such as GPCRs. All the cheminformatics approaches discussed in
this review are focused toward the identification of novel ligands
for GPCR targets based on the structural and ligand data, where
several case studies signify the importance of VS. The evolution
of cheminformatics techniques and their synergy in GPCR drug
discovery pipeline is the driving force that will facilitate cost-
effective and prolific outcomes in the exploration of uncharted
GPCR ligand space. Yet, an expert human touch is entailed to
authenticate and tame the computer-generated outcome.
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