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Abstract

The analysis of dental wear, at both the microscopic and macroscopic scale, is one of the

most widely used tools in archeology and anthropology to reconstruct the diet and lifestyle

of past human populations. Biomechanical studies have indicated that tooth wear helps to

dissipate the mechanical load over the crown surface, thus reducing the risk of tooth frac-

ture. To date, there are only a few studies that have examined functional tooth wear varia-

tion in modern humans. Here we propose to study masticatory efficiency through the use of

the Occlusal Fingerprint Analysis method, a well-developed digital approach that allows the

reconstruction of the occlusal dynamics occurring during mastication. The aim of this study

is to provide the first longitudinal quantitative data of molar and premolar macrowear pat-

terns within a functional context. We examined the mixed and permanent dentition of one

Australian Aboriginal child (from ages 8 to 17) from Yuendumu, using high-resolution sur-

face scans of dental casts including both upper and lower arches. Our results suggest that

the occlusal macrowear patterns of this individual did not significantly change through time.

Occlusal contact parameters such as functional area, inclination and direction remain rela-

tively unaltered throughout childhood and adolescence, indicating little change in the masti-

catory function of this individual. The functional tooth wear pattern in this individual did not

change longitudinally indicating the degree of masticatory efficiency has most probably

remained unaltered.

Introduction

One of the primary roles of human teeth is to breakdown food into smaller pieces, providing

an increased surface area for the digestive enzymes to act upon. The size and shape of teeth

reflect the functional demands produced by the selective pressure of the physical properties

of the ingested food [1]. Dental enamel is the hardest tissue in our body, and its main
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function is to protect the teeth from fracture and wear. However, tooth wear is an inevitable

process. When the masticatory cycle starts, the contact of abrasive food particles between

upper and lower tooth surfaces, and attritional wear between opposing teeth, produce the

initial loss of tooth tissue and progression tooth wear. Although wear constantly changes and

remodels the primary tooth morphology over the life of an individual, teeth still remain func-

tional even with dentine exposure [2]. Thus, natural selection should also act on worn teeth,

favouring teeth that wear in a way that keeps them mechanically efficient for processing

foods [3]. Several studies have shown that teeth of primates and other mammals maintain

efficiency for fracturing foods despite loss of dental tissue with age, thus preserving dental

functionality throughout the wear sequence [4–8]. For example, the teeth of great apes main-

tain the ability to efficiently process plant foods throughout their long lifespans, even in

more advanced wear stages [4, 7].

It is less clear, however, if the functional aspect of modern human teeth remains unchanged

with wear. Studies that have evaluated if masticatory efficiency in modern humans changes

with age have yielded wildly conflicting results. For example, some scholars suggest that masti-

catory performance, measured in relation to number of chewing strokes, surface areas, num-

ber of occlusal contacts and bite force, increases from the primary to the mixed dentition, and

from the mixed to the permanent dentition [9–13]. This seems to be mostly associated with an

increase in masticatory muscle thickness and to an enlargement of occlusal areas that are ulti-

mately related to differences in body size. On the other hand, Ingervall [14, 15] has shown that

the number of tooth contacts and the range of mandibular movements in children and adults

are essentially the same, suggesting that adult levels in chewing efficiency are reached at 10

years of age. However, all these studies have been mostly based on the use of different age

groups, and did not evaluate if masticatory efficiency changes within the same individuals over

time. Moreover, while past studies have predominantly focussed on morphological features

and functional aspects of occlusion, very little is known about how efficiency may vary as wear

progresses [16].

In the present study, we propose to use a well-established method, called Occlusal Finger-
print Analysis (OFA) [17], to investigate if masticatory efficiency is maintained through

time, despite the progressive loss of crown surface due to wear. Specifically, we examine

dental functionality through a series of longitudinal dental samples belonging to the same

individual: an Australian Aboriginal child from the Yuendumu collection [18]. Dental func-

tionality has been measured in various ways using several dental topographic approaches,

ranging from Geographic Information System (GIS) techniques [4] to Orientation Patch

Count Rotated (OPCR) [19] and Dirichlet Normal Energy (DNE) [20]. Here, we apply the

OFA method, a sophisticated digital approach that analyses and quantifies occlusal wear on

tooth contacts, ranging from functional surfaces areas to spatial orientation [17]. The OFA

method helps to reconstruct the occlusal mandibular movements responsible for the crea-

tion of wear contacts, and ultimately it provides essential information about masticatory

behaviour of an individual [17]. It has been successfully employed to reconstruct the diet of

historic and prehistoric human populations, and for the identification of unique cultural

habits and oral pathologies [21–25].

By measuring parameters such as surface area, inclination and orientation of occlusal

wear contacts of upper and lower teeth, we are able to detect any functional change occurred

in the dentition over time. This information can help us to better understand how tooth

wear advances, and how occlusal forces are distributed throughout the wear sequence, pro-

viding essential information about the variability of masticatory performance during dental

development.
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Materials and methods

Sample

For this project, we analysed the Yuendumu Aboriginal dental collection housed at the School

of Dentistry at the University of Adelaide (Australia), selecting nine pairs of dental casts (taken

annually from ages 8 to 17), including both upper and lower arches, belonging to the same

individual (Δ549). This individual was selected because it was one of the best-preserved speci-

mens within this collection, with an almost complete set of casts taken annually from 1960

until 1970. Moreover, this individual did not show any oral pathology and was characterized

by clear wear contacts with well-defined margins, that are ideal for OFA.

This collection is one of the most widely studied dental samples in the world (with over

250 scientific publications), created from a unique longitudinal research project, where

anthropologists annually examined the dentition and growth of Aboriginal children and

young adults from Yuendumu in the Northern Territory between 1951 and 1971 [18]. The

Yuendumu collection consists of measurements, radiographs, family data, and more impor-

tantly, 1717 sets of dental casts representing 446 individuals. The casts were made of dental

stone, where a mixture of powder and water was allowed to set in dental impressions. This

indigenous population was at an early stage of transition from a nomadic and hunter-gath-

erer way of life to a more settled existence, with limited contact with Europeans [18]. Their

dentition was mostly characterised by a normal occlusion (or Angle Class I), with little evi-

dence of pathological conditions, such as caries, tooth crowding, malocclusions, molar agen-

esis and periodontal diseases. The rate of tooth wear was extensive, and it was mostly due to

the consumption of a coarse diet and to the vigorous use of the dentition for non-masticatory

purposes (i.e. tool use) [26, 27]. As a result, their wear patterns were dominated by clear and

large wear areas characterised by sharp and steep edges [28]. We selected permanent molars

and premolars, and deciduous molars with a degree of wear comprised between 1 (no den-

tine exposure and small wear areas) and 4 (full cusp removal with several large dentine expo-

sures), according to the scoring system created by Smith [29] (S1 Table in S1 File). The OFA

method requires each individual tooth to be assessed separately due to its unique pattern

(hence the name fingerprint) [17]. The sample includes eight deciduous molars, eight perma-

nent premolars and 12 permanent molars: 28 teeth for nine years for the individual tooth

classes, giving a total number of 130 teeth examined individually (S1 Table in S1 File). The

use of Yuendumu dental casts for this study is covered by the approval from the Human Eth-

ics Research Committee, University of Adelaide (H-27-1990).

Data acquisition

Casts of upper and lower dental arches were digitised using a white-light scanning system

based on structured-light technology with a xy resolution of 45 μm (smartSCAN3D C-5,

Breuckmann, GmbH) (Fig 1).

Collection and alignment of the scan-data was carried out using the integrated scanning

software optoCAT (Breuckmann, GmbH). Different views acquired with the surface scanner

were manually aligned by selecting three homologous points on each image and then

instructing the system to compute a best fit alignment using a maximum point distance of

0.5 mm, until a sub-sampling ratio of 1/1 was reached [25]. The 3D virtual models were fur-

ther post-processed using PolyWorks1 V12 (InnovMetric Software Inc.), a 3D metrology

platform software. The unfinished polygonal model was imported into the IMEdit module

where topology errors, artifacts, and degenerate/duplicate triangles were manually identified

and removed.

PLOS ONE Functional tooth wear in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0254151 July 9, 2021 3 / 15

https://doi.org/10.1371/journal.pone.0254151


3D printing

In addition, we generated high-resolution physical replicas of the digital models via stereo-

lithography, since 3D prints can be more helpful when trying to identify qualitative details,

such as cusp morphology, fissure patterns and wear areas than a two-dimensional photograph

or a 3D model viewed on a screen [30]. Furthermore, we tested the presence of tooth-to-tooth

occlusal contact in the intercuspal position between upper and lower teeth using an 8 μm

Shimstock Foil (Coltene™) [31] that was inserted between 3D prints of upper and lower dental

arches [32].

Occlusal Fingerprint Analysis (OFA)

OFA is a digital approach used to describe and quantify occlusal macrowear patterns through

the analysis of surface area, inclination and spatial orientation of individual wear contact areas

[17]. This method is based on five sequential steps (Fig 2):

1. Model orientation. The polygonal models of upper and lower dental arches are aligned and

oriented using the occlusal plane (defined by three landmarks selected on the lowest surface

point of the most posterior molar and central incisor), which is later translated into the xy
coordinate system [22].

2. Contact areas identification. Wear contact areas are manually identified onto the polygo-

nal model following the labelling system created by Maier and Schneck [33] and later modi-

fied by Kullmer and colleagues [17], who recognised 13 pairs of homologous wear areas in

modern human molars (Fig 2a).

3. Surface area. As larger teeth likely develop larger contact areas than smaller teeth, we use

relative areas to minimise variation in size between the different tooth classes. Relative wear

contact areas (in %) are obtained by dividing the surface area of Buccal, Lingual and Phase

II areas with the total occlusal wear. Surface areas are automatically calculated in mm2 by

Fig 1. Three-dimensional digital models of upper (a) and lower (b) dental arches of a 12-year old Aboriginal child (Δ549). Images not to scale.

https://doi.org/10.1371/journal.pone.0254151.g001
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selecting all the triangles enclosed within a specific wear contact using the area function

available in Polyworks1 V12, (InnovMetric Software Inc.).

4. Inclination. The inclination is simply the angle measured between the contact’s plane and

the reference (occlusal) plane. The contact plane is created by selecting all digital surface

points delimited within the contact area’s perimeter, and by applying the best-fit plane func-

tion of Polyworks1 V12, (InnovMetric Software Inc.).

5. Spatial orientation. The directional data is obtained by creating vectors that are perpen-

dicular to the contact’s plane (Fig 2b), grouping them according to the dental occlusal
concept [34]. The vectors are subsequently projected onto the reference (occlusal) plane.

The three-dimensional occlusal compass is created by translating the vectors (which

are enclosed within a circle) to an arbitrary point (x = 0, y = 0, z = 0) with a standardised

length (Fig 2c).

Statistical analysis

We employed exploratory statistical analyses, such as median, standard deviation and inter-

quartile ranges, to describe the proportions of Buccal, Lingual (phase I) and Phase II areas,

and the wear plane angles. The relative surface areas of wear contacts were visually described

through ternary diagrams, which are triangular coordinate systems that illustrate the ratios of

three variables that sum to 1 or 100% [35]. For the between-group comparisons we used the

one-way PERMANOVA test, a non-parametric test of significant differences between two

or more groups, which is calculated directly from any asymmetric distance or dissimilarity

matrix [36]. Statistical significance was computed with a permutation test of group member-

ship (n = 9999).

Because most statistical methods are not directly applicable to directional data [35], we

have employed circular statistical tools for the analysis of wear contact directions [37], consid-

ering the circular mean angle, the circular standard deviation and the 95% confidence interval.

Furthermore, we tested if our directional data indicated any deviation of the circular distribu-

tion from a perfect circle by measuring the concentration parameter (κ), which explains how

Fig 2. Occlusal fingerprint analysis: Contact areas identification (a), directional vectors (b), and three-dimensional occlusal compass (c). In (a)

macrowear areas of a first lower permanent molar grouped by chewing cycle phases [31]: Buccal phase I areas (in blue; 1, 1.1, 2, 2.1, 3 and 4), Lingual

phase I areas (in green; 5, 5.1, 6, 6.1, 7 and 8), and Phase II areas (in red; 9, 10, 11, 12 and 13). In (b) and (c) wear areas are colour-coded based on the

Dental Occlusal Concept [35], which identifies four major occlusal movements: lateroretrusive (LRT) areas (in blue; 1, 1.1, 5, 5, 5.1 and 8),

lateroprotrusive (LP) areas (in yellow; 2, 2.1, 3, 6, 6.1 and 7), mediotrusive and immediate side shift (MT + ISS) areas (in green; 9, 11 and 12), and

medioprotrusive (MPT) areas (in orange; 10 and 13).

https://doi.org/10.1371/journal.pone.0254151.g002
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concentrated the distribution around the mean is, and by executing the Rayleigh’s and Rao’s

Spacing tests for uniformity [38–40]. The linear statistical analysis and ternary plots were

acquired with the software PAST v.3.22 (PAlaeontological Statistics) [41], while directional sta-

tistic results were obtained using a circular statistic software program (Oriana™ v. 4.00, Kovach

Computing Services).

Results

The macrowear pattern of the individual analysed in this study is mostly dominated by Phase

II areas (40%), followed by Buccal phase I areas (35%), and by Lingual phase I areas (25%)

(Table 1).

Phase II areas show the least degree of variation, while Lingual phase I areas vary the most,

especially in the later ages (16 and 17). There is a general increase in absolute areas from the

mixed dentition to the adult dentition (Fig 3). However, the proportion of shearing, crushing

and grinding wear does not seem to vary during childhood and adolescence. This is further

confirmed by the multivariate statistical analysis (one-way PERMANOVA, Table 2) showing

no significant differences between the various age groups, with the exception of the pairwise

comparison between age 8 and age 12 (p = 0.02).

We also investigated the possible presence of masticatory asymmetry [42], by comparing

the macrowear patterns of the right posterior teeth with those of the left side, and by compar-

ing the occlusal contact areas between antagonist teeth (Fig 4). We did not find any statistically

significant difference between left and right teeth for all the ages considered in this study (one-

way PERMANOVA, p> 0.05). Some statistically significant differences were found between

upper and lower arches at age 8 (p = 0.003), age 9 (p = 0.008) and age 17 (p = 0.040). These dif-

ferences are mostly driven by Buccal phase I areas (S2 Table in S1 File), while Phase II areas of

upper teeth do not statistically differ from the wear areas of lower teeth.

We have also considered wear variation through time by mapping the absolute surface area

of each occlusal contact at each age (S1–S4 Figs in S1 File). These graphs show a general

increase in wear surface areas in older ages. We observed a more prominent increase in Phase

II contacts compared to Phase I wear areas.

For the analysis of the inclination we divided the sample into different wear stage groups (1,

2 and 3) [29], since previous studies have shown that wear plane angles significantly decrease

in more advanced wear stages [21]. We noticed that Phase II areas are generally characterised

by flatter angles, especially in more advanced wear stages (Table 3). Buccal phase I contact

planes are steeper than Lingual phase I areas in wear stages 1 and 3, while the opposite

Table 1. Descriptive statistics of relative wear areas of posterior teeth, including age, sample number (N), median, standard deviation (SD) and interquartile range

(IQR).

Sample N Buccal phase I Lingual phase I Phase II

Median SD IQR Median SD IQR Median SD IQR

Age 8 12 0.33 0.11 0.15 0.32 0.11 0.17 0.36 0.08 0.13

Age 9 10 0.36 0.14 0.21 0.32 0.09 0.15 0.36 0.10 0.19

Age 11 12 0.34 0.11 0.21 0.23 0.14 0.22 0.43 0.16 0.29

Age 12 16 0.35 0.12 0.13 0.20 0.15 0.24 0.45 0.12 0.14

Age 13 16 0.35 0.07 0.07 0.24 0.12 0.17 0.41 0.10 0.14

Age 14 16 0.34 0.09 0.16 0.25 0.12 0.12 0.41 0.11 0.16

Age 15 16 0.35 0.10 0.14 0.25 0.13 0.16 0.39 0.09 0.12

Age 16 16 0.37 0.15 0.18 0.23 0.14 0.22 0.40 0.11 0.22

Age 17 16 0.35 0.14 0.14 0.23 0.15 0.30 0.42 0.11 0.11

https://doi.org/10.1371/journal.pone.0254151.t001
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Fig 3. Three-dimensional digital models of upper and lower arches showing the macrowear patterns. Wear contacts have been

labelled following the numbering system created by Maier & Schneck [30] and grouped by chewing cycle phases [31, 32]: Buccal phase

I (areas 1, 1.1, 2, 2.1, 3 and 4; coloured in blue), Lingual phase I (areas 5, 5.1, 6, 6.1, 7 and 8; coloured in green) and Phase II (areas 10,

11, 12 and 13; coloured in red). CA1 upper (a) and lower (b) arches, age E 8.07 years; CA4 upper (c) and lower (d) arches, age E 12.44

years; CA9 upper (e) and lower (f) arches, age E 17.44 years.

https://doi.org/10.1371/journal.pone.0254151.g003
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situation is found in wear stage 2. No statistical differences have been found between ages in

wear stage 1, except for ages 8 and 9 (one-way PERMANOVA, p = 0.0172). In wear stage 2,

there was no statistically significant difference between any ages, while in wear stage 3, we

found statistically significant difference only between ages 8 and 16 (p = 0.0488).

Finally, we examined whether the vectors described by the dental occlusal concept [34] fol-

low a normal distribution or point toward a preferred direction (Table 4). The circular statisti-

cal analysis shows that all the major occlusal movements considered in this study, for any

given age, fall within a von Mises distribution (the equivalent of a normal distribution for lin-

ear data), displaying preferred directions with significant values for both the Rayleigh’s test

Table 2. Multivariate statistical analysis of differences in relative wear contact areas of the different sets grouped according to chewing cycle phases [31].

Set Age 8 Age 9 Age 11 Age 12 Age 13 Age 14 Age 15 Age 16 Age 17

Age 8 -

Age 9 0.68 -

Age 11 0.15 0.24 -

Age 12 0.02 0.06 0.81 -

Age 13 0.10 0.20 0.91 0.53 -

Age 14 0.12 0.25 0.88 0.53 0.99 -

Age 15 0.24 0.44 0.72 0.31 0.82 0.90 -

Age 16 0.11 0.34 0.68 0.52 0.74 0.79 0.75 -

Age 17 0.12 0.24 0.97 0.79 0.96 0.94 0.76 0.80 -

Note. One-way permutational multivariate analysis of variance test,

Permutation N = 9,999, P (same) = 0.5996.

Significantly p values (< 0.05) are highlighted in bold.

https://doi.org/10.1371/journal.pone.0254151.t002

Fig 4. Ternary diagrams showing the proportions (in %) of relative wear areas comparing left and right (a), and upper and lower teeth (b). The

three variables (Buccal phase I, Lingual phase I and Phase II areas) are positioned in an equilateral triangle. Each base of the triangle represents a ratio of

0% while the vertices correspond to a percentage of 100%.

https://doi.org/10.1371/journal.pone.0254151.g004
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and Rao’s spacing test (p< 0.05). We did not find any statistically significant difference (Wat-

son-Williams F-test) when we compared the directional angles between the different ages (S3

Table in S1 File).

Discussion

Our results show that the occlusal macrowear patterns of this individual did not significantly

change through time. Occlusal contact parameters such as functional area, inclination and

directional angles remain relatively unaltered throughout childhood and adolescence, indicat-

ing little change in the masticatory function during this period of time.

A macrowear pattern dominated by Phase II areas, followed by Buccal phase I areas, is gen-

erally consistent with a highly abrasive diet composed of meat and plant foods that both

require grinding and shearing [43, 44]. Australian Aborigines at Yuendumu Settlement were

at an early stage of transition from a nomadic hunter-gathering lifestyle [18]. They consumed

a wide range of foods, including western foods, that contained flour and sugar, but also coarse

and fibrous native foods that required vigorous and prolonged mastication [18, 26, 27, 45].

Table 3. Descriptive statistical analysis of wear contact inclinations of posterior teeth grouped according to their wear stage [34], including sample number (N),

median, standard deviation (SD) and interquartile range (IQR).

WEAR STAGE 1 Buccal phase I Lingual phase I Phase II

Set N Median SD IQR Median SD IQR Median SD IQR

Age 8 4 31.07 2.93 5.41 30.07 2.77 4.59 35.05 1.73 3.28

Age 9 5 26.23 2.73 4.66 22.77 5.53 10.10 27.41 8.74 10.88

Age 11 10 27.92 9.30 16.36 29.84 6.77 11.84 31.86 6.90 10.41

Age 12 8 26.14 6.90 7.96 30.25 6.77 20.27 30.85 9.30 14.16

Age 13 4 37.90 13.92 26.52 25.8 5.5 10.2 34.77 3.35 5.28

Age 14 4 42.19 17.82 34.13 28.14 4.60 8.47 34.40 5.87 10.84

Age 15 4 42.26 17.62 32.47 29.13 6.22 11.63 31.07 5.32 9.94

Age 16 4 35.43 9.48 18.28 28.43 1.88 3.61 28.98 6.45 11.59

Age 17 - - - - - - - - - -

WEAR STAGE 2

Age 8 2 33.36 1.34 1.42 39.65 4.00 4.24 11.82 0.81 0.86

Age 9 - - - - - - - - - -

Age 11 - - - - - - - - - -

Age 12 3 27.99 5.23 9.44 26.98 7.81 14.60 27.68 2.60 4.73

Age 13 9 31.35 8.09 9.16 30.25 17.61 31.74 25.77 5.92 8.93

Age 14 9 30.22 8.09 10.65 33.83 17.61 20.31 28.13 5.92 13.05

Age 15 6 33.48 13.69 18.01 37.99 12.83 21.57 32.03 7.04 13.65

Age 16 6 33.42 24.44 48.55 35.16 20.92 40.63 22.66 13.47 26.90

Age 17 4 26.57 5.82 10.76 29.38 5.09 9.70 34.26 2.65 4.43

WEAR STAGE 3

Age 8 6 29.87 5.45 8.36 32.67 7.80 12.55 16.84 1.85 3.44

Age 9 4 29.20 8.19 14.94 31.98 7.34 12.62 16.24 4.39 8.32

Age 11 - - - - - - - - - -

Age 12 - - - - - - - - - -

Age 13 - - - - - - - - - -

Age 14 2 36.44 19.37 20.54 27.44 4.89 5.18 18.94 4.80 5.09

Age 15 4 32.16 10.88 18.76 27.62 6.93 12.33 21.06 5.17 9.63

Age 16 4 25.44 11.36 19.20 27.07 11.35 19.05 18.14 7.66 13.02

Age 17 6 32.26 6.51 6.41 26.32 13.31 14.38 20.15 2.95 3.42

https://doi.org/10.1371/journal.pone.0254151.t003
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Their extensive occlusal wear was also caused by grit and dust present in their desert environ-

ment and by the way the food was prepared [18, 46]. For example, many foods were eaten raw

or received minimal cooking either on an open fire or through an earth oven of hot sand and

ashes [47]. Teeth were also used as a vice or a third hand for cutting, holding, and shaping

objects [18]. These cultural habits favoured the occasional ingestion of exogenous and abrasive

material, which in turn may have significantly increased the amount of tooth tissue loss [18,

25, 47].

The absence of significant macrowear differences between the different ages of this individ-

ual suggests the presence of vigorous mastication since childhood. This is consistent with

earlier observations that described extensive occlusal wear in the deciduous dentition of

Aboriginal children before first permanent molars erupted [27, 48]. Although the Aboriginal

children from Yuendumu were breastfed until relative late (between 3 and 5 years), they were

given hard foods that required prolonged chewing from an early age [26]. The increase in

absolute contact wear areas through time is expected and consistent with previous observa-

tions [49]. We observe a general increase in Phase II areas in more advanced wear stages to the

detriment of Buccal wear areas. Similar patterns have been observed in hunter-gatherer popu-

lations with a highly abrasive diet [50].

The dentition of the Aboriginal people from Yuendumu was characterised by symmetric

wear, with one side being almost a mirror image of the other [26]. Our quantitative analysis

confirms these earlier annotations, showing that macrowear patterns of the left side of this

individual are very similar to those of the right counterpart at any age considered in this study.

Table 4. Descriptive circular statistical analysis of wear contact directions, including the circular mean, the circular standard deviation (SD), the concentration

parameter (κ), and the Rayleigh test.

Age LRT LPT

N Mean SD K Rayleigh (P) N Mean SD K Rayleigh (P)

Age 8 6 71.21 6.07 50.49 2E-05 6 136.13 24.18 3.47 0.085

Age 9 5 83.63 9.86 16.86 0.000 5 141.99 25.64 2.73 0.008

Age 11 5 89.90 64.96 0.91 0.263 5 149.37 37.17 1.47 0.028

Age 12 7 84.88 33.33 2.18 0.003 7 148.98 49.70 1.78 0.030

Age 13 8 57.33 34.21 2.24 0.001 8 149.63 51.94 1.66 0.024

Age 14 8 81.26 39.13 1.83 0.003 8 151.52 28.79 2.98 4E-04

Age 15 8 90.09 43.42 1.56 0.007 8 140.71 27.09 3.31 2E-04

Age 16 8 96.02 38.70 1.86 0.003 8 134.26 42.80 1.59 0.006

Age 17 8 100.14 44.56 1.50 0.008 8 140.43 32.02 2.49 8E-04

Age MT/ISS MPT

N Mean SD K Rayleigh (P) N Mean SD K Rayleigh (P)

Age 8 6 294.29 24.78 1.41 0.002 6 267.51 56.92 3.23 0.104

Age 9 5 299.71 52.55 1.38 0.114 5 229.15 21.86 48.29 0.005

Age 11 5 303.39 51.27 28.79 0.103 5 251.66 10.46 1.74 0.002

Age 12 7 289.56 63.15 4.87 0.125 5 260.18 25.82 0.89 0.008

Age 13 8 252.03 70.26 17.43 0.171 8 252.78 29.85 0.97 5E-04

Age 14 8 277.30 73.95 5.59 0.226 6 247.64 29.15 0.71 0.004

Age 15 8 280.87 71.72 3.01 0.192 6 240.40 34.80 0.74 0.009

Age 16 8 275.86 68.16 5.15 0.144 8 266.50 36.53 0.74 0.002

Age 17 8 271.12 57.99 1.68 0.052 7 258.03 51.39 0.74 0.037

� Directions: LRT (lateroretrusion), LPT (lateroprotrusion), MT/ISS (mediotrusion and immediate sideshift) and MPT (medioprotrusion).

Significant values (p < 0.05) are highlighted in bold.

https://doi.org/10.1371/journal.pone.0254151.t004
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Direct observations and analysis of cinematographic records revealed that Yuendumu people

chewed on one side at a time, alternating between right and left sides with striking regularity

[18, 26]. This unilateral interdigitation, typical of the Yuendumu population, was described as

X-occlusion, or alternate intercuspation, and it allowed a much wider range of lateral mastica-

tory movements, which are particularly advantageous when grinding and chewing tough

foods [18, 26, 51]. It has been suggested that a divergent pattern of growth of the maxillary and

mandibular dental arches would lead to alternate intercuspation [51]. Differences in morphol-

ogy of upper and lower teeth, together with disparity between upper and lower dental arch

breadths in Yuendumu people probably explains the difference we found in macrowear pat-

terns of this individual between upper and lower teeth, especially in the youngest ages. Similar

results were found in another study that investigated molar inclination in the Aboriginal peo-

ple from Yuendumu [42]. The wide masticatory movements of this individual remained rela-

tively unaltered throughout childhood and adolescence, confirming the results of a previous

study that examined the range of movement of the mandible in Swedish children, showing

that the distribution of protrusion and lateral movement of 10-year-old children was similar to

those of adults [14].

Although other studies have shown that bite force capacity, occlusal surface area, and num-

ber of occlusal contacts increase with age [9–13], they do not necessarily relate to an improve-

ment in masticatory efficiency. For example, the number of occlusal contacts does not

necessarily provide information about their functional aspects. With the OFA approach we are

able to reconstruct the occlusal movements responsible for the formation of these wear areas,

and therefore we can provide a more accurate picture of the relationship between masticatory

patterns and occlusal wear. Possessing large occlusal surface areas decreases the efficiency

when processing foods with higher toughness and Young’s modulus, as the greater areas

spread out the overall bite force applied to food particles [52]. Maximum bite force undoubt-

edly increases throughout childhood and adolescence. However, the increase in bite force is

proportionally correlated to an increase in body size [53], and alone it may not be a valid indi-

cator of masticatory performance. Interestingly, a study that measured the dimensions of com-

minuted food particles in children of different ages did not find any significant correlation

between masticatory efficiency and body weight [16]. However, we should be careful in com-

paring masticatory efficiency across populations with different diets and different lifestyles.

The amount of tooth wear, occlusal relationships and chewing behaviour differ significantly

between indigenous and industrialized populations [54].

Overall, our study shows that dental functionality and masticatory patterns in this individ-

ual remains relatively unaltered despite wear. The change from a mixed to a permanent

dentition does not seem to have had any significant impact on dental functionality, further

confirming earlier observations on masticatory patterns in the Yuendumu people [18, 26, 47,

51, 55].

Biomechanical studies have shown that tooth wear seems to minimise tensile stresses in the

tooth crown, thus preventing potential fractures in the enamel layer [56–58]. Ultimately, this

helps in maintaining masticatory efficiency throughout the lifetime of an individual. For exam-

ple, it has been suggested that the smoothing of the occlusal surface from the consumption of

tough and pliant food sources in orangutans diminishes the local contact stresses and re-dis-

tributes the tensile stresses to the cervical margins, which inhibits deep cracks but favours mar-

gin fractures [59–61].

Moreover, the lack of dental wear in industrialised societies might be a primary factor lead-

ing to non-carious cervical lesions [56]. This would indicate that tooth wear has probably

played an important role in the evolution of mammalian dentitions, enabling teeth to be

mechanically efficient throughout the lifetime of an individual [57]. Another interesting aspect
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that has not yet been investigated it is how malocclusions affect the occlusal dynamics and

masticatory movements. Previous studies have shown that in altered occlusions there is a

decrease in occlusal contact areas that negatively influences masticatory efficiency and maxi-

mum bite forces [61]. However, dental wear patterns have been little studied in individuals

characterized by different occlusal variations. We have analyzed the dentition of an adult male

gorilla characterized by the presence of a supernumerary upper premolar, showing that the

occlusal contacts could not be associated with a normal chewing behaviour [62]. This gorilla

was probably affected by malocclusions that may have caused discomfort during chewing,

probably leading to attritional tooth grinding.

To further confirm our interpretation of the results of this study, it is necessary to expand

the sample size including individuals with older ages. In addition, it will need to be tested

whether the OFA method can correlate with measures of masticatory function in living indi-

viduals. A previous study analysed the dentition of a 48-year-old female with detailed informa-

tion about nutrition and daily eating behaviour, showing a good correlation between OFA

parameters and masticatory function [17]. However, for a better understanding on how masti-

catory function changes through time it will be necessary to carry out OFA longitudinal exper-

iments using modern humans with different dietary habits.

Although our current study was limited to the analysis of one single individual, and did not

include information about advanced wear stages, it is the first such longitudinal study of tooth

wear to be carried out. Some studies have suggested that dental senescence in certain primate

species compromises the ability to chew effectively through foods, and ultimately affecting

their reproductive success [63]. As such, future studies could investigate if masticatory func-

tion in modern humans is maintained throughout the wear sequence by employing a larger

sample size, ideally from populations with different dietary habits. Furthermore, biomechani-

cal analyses could provide additional information about the effect of age and maturation on

how dental traits respond to stress and strains produced during different masticatory loads.

Supporting information

S1 File.

(DOCX)

S1 Data.

(XLSX)

Acknowledgments

We would like to thank Michelle Quayle and Cody Hollis for technical assistance with the 3D

printing and post-processing of the Yuendumu digital models.

Author Contributions

Conceptualization: Luca Fiorenza.

Data curation: Luca Fiorenza.

Formal analysis: Jinyoung Lee.

Funding acquisition: Luca Fiorenza.

Investigation: Jinyoung Lee.

Methodology: Luca Fiorenza.

PLOS ONE Functional tooth wear in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0254151 July 9, 2021 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254151.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254151.s002
https://doi.org/10.1371/journal.pone.0254151


Project administration: Luca Fiorenza.

Resources: Robin Yong, Sarbin Ranjitkar, John Kaidonis, Luca Fiorenza.

Software: Luca Fiorenza.

Supervision: Luca Fiorenza.

Validation: Luca Fiorenza.

Visualization: Luca Fiorenza.

Writing – original draft: Jinyoung Lee, Luca Fiorenza.

Writing – review & editing: Sarah Fung, Robin Yong, Sarbin Ranjitkar, John Kaidonis, Alis-

tair R. Evans, Luca Fiorenza.

References
1. Lucas PW. Dental Functional Morphology. How Teeth Work. Cambridge: Cambridge University Press;

2004.

2. Kaidonis JA, Ranjitkar S, Lekkas D, Brook AH, Townsend GC. Functional dental occlusion: an anthro-

pological perspective and implications for practice. Aus Dent J. 2014; 59: 162–173.

3. M’Kirera F, Ungar PS. Occlusal relief changes with molar wear in Pan troglodytes troglodytes and

Gorilla gorilla gorilla. Am J Primatol. 2003; 60: 31–41. https://doi.org/10.1002/ajp.10077 PMID:

12784284

4. Ungar PS, M’Kirera FA. A solution to the worn tooth conundrum in primate functional anatomy. Proc

Natl Acad Sci USA. 2003; 100: 3874–3877. https://doi.org/10.1073/pnas.0637016100 PMID: 12634426

5. Evans AR. Connecting morphology, function and tooth wear in microchiropterans. Biol J Linn Soc.

2005; 85: 81–96.

6. Cuozzo F. P., Head B. R., Sauther M. L., Ungar P. S. & O’Mara M. T. Sources of tooth wear variation

early in life among known-aged wild ring-tailed lemurs (Lemur catta) at the BezàMahafaly Special

Reserve, Madagascar. Am. J. Primatol. 2014; 76: 1037–1048. https://doi.org/10.1002/ajp.22291

PMID: 24953664

7. Glowacka H, McFarlin S, Catlett KK, Mudakikwa A, Bromage TG, Cranfield MR, et al. Age-related

changes in molar topography and shearing crest length in a wild population of mountain gorillas from

Volcanoes National Park, Rwanda. Am J Phys Anthropol. 2016; 160: 3–15. https://doi.org/10.1002/

ajpa.22943 PMID: 26853974

8. Pampush JD, Spradley JP, Morse PE, Harrington AR, Allen KL, Boyer DM, et al. Wear and its effects

on dental topography measures in howling monkeys (Alouatta palliata). Am J Phys Anthropol. 2016;

161: 705–721. https://doi.org/10.1002/ajpa.23077 PMID: 27634058

9. Shiere FR, Manly RS. The effect of the changing dentition on masticatory function. J Dent Res. 1952;

31: 625–534. https://doi.org/10.1177/00220345520310040301 PMID: 14946296

10. Julien KC, Bushang PH, Throckmorton GS, Dechow PC. Normal masticatory performance in young

adults and children. Arch Oral Biol. 1996; 41: 69–75. https://doi.org/10.1016/0003-9969(95)00098-4

PMID: 8833593

11. Matsubara T, Ono Y, Takagi Y. A study on developmental changes of masticatory function in children. J

Med Dent Sci. 2006; 53: 141–148.

12. Castelo PM, Pereira LJ, Bonjardim LR, Duarte Gavião MB. Changes in bite force, masticatory muscle

thickness, and facial morphology between primary and mixed dentition in preschool children with normal

occlusion. Ann Anat. 2010; 192: 23–26. https://doi.org/10.1016/j.aanat.2009.10.002 PMID: 19914813

13. Du X, Ogata S, Okazaki Y, Rodis OMM, Matsumura S, Shimono T. The relationship between body bal-

ance function and occlusal function during the mixed dentition period. Pediatr Dent J. 2009; 19: 159–

164.

14. Ingervall B. Range of movement of mandible in children. Scand. J Dent Res. 1970; 78; 311–322.

15. Ingervall B. Tooth contacts on the functional and non-functional side in children and young adults. Arch

Oral Biol. 1972; 17: 191–200. https://doi.org/10.1016/0003-9969(72)90147-1 PMID: 4505575

16. Duarte Gavião MB, Raymundo VG, Sobrinho LC. Masticatory efficiency in children with primary denti-

tion. Pediatr Dent. 2001; 23: 499–505. PMID: 11800451

PLOS ONE Functional tooth wear in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0254151 July 9, 2021 13 / 15

https://doi.org/10.1002/ajp.10077
http://www.ncbi.nlm.nih.gov/pubmed/12784284
https://doi.org/10.1073/pnas.0637016100
http://www.ncbi.nlm.nih.gov/pubmed/12634426
https://doi.org/10.1002/ajp.22291
http://www.ncbi.nlm.nih.gov/pubmed/24953664
https://doi.org/10.1002/ajpa.22943
https://doi.org/10.1002/ajpa.22943
http://www.ncbi.nlm.nih.gov/pubmed/26853974
https://doi.org/10.1002/ajpa.23077
http://www.ncbi.nlm.nih.gov/pubmed/27634058
https://doi.org/10.1177/00220345520310040301
http://www.ncbi.nlm.nih.gov/pubmed/14946296
https://doi.org/10.1016/0003-9969%2895%2900098-4
http://www.ncbi.nlm.nih.gov/pubmed/8833593
https://doi.org/10.1016/j.aanat.2009.10.002
http://www.ncbi.nlm.nih.gov/pubmed/19914813
https://doi.org/10.1016/0003-9969%2872%2990147-1
http://www.ncbi.nlm.nih.gov/pubmed/4505575
http://www.ncbi.nlm.nih.gov/pubmed/11800451
https://doi.org/10.1371/journal.pone.0254151


17. Kullmer O, Benazzi S, Fiorenza L, Schulz D, Bacso S, Winzen O. Technical note: Occlusal fingerprint

analysis: Quantification of tooth wear pattern. Am J Phys Anthropol. 2009; 139: 600–605. https://doi.

org/10.1002/ajpa.21086 PMID: 19425091

18. Brown T, Townsend GC, Pinkerton SK, Rogers JR. Yuendumu: Legacy of a longitudinal growth study in

Central Australia. Adelaide: The University of Adelaide Press; 2011.

19. Evans AR, Wilson GP, Fortelius M, Jernvall J. High-level similarity of dentitions in carnivorans and

rodents. Nature 2007; 445: 78–81. https://doi.org/10.1038/nature05433 PMID: 17167416

20. Bunn JM, Boyer DM, Lipman Y, St. Clair EM, Jernvall J, Daubechies I. Comparing Dirichlet normal sur-

face energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with

previous methods in isolation and in combination. Am J Phys Anthropol. 2011; 145: 247–261. https://

doi.org/10.1002/ajpa.21489 PMID: 21469070

21. Fiorenza L, Benazzi S, Oxilia G, Kullmer O. Functional relationship between dental macrowear and diet

in late Pleistocene and recent modern human populations. Int J Osteoarchaeol. 2018; 28: 153–161.

22. Fiorenza L, Benazzi S, Kullmer O, Mazurier A, Macchiarelli R. Dental macrowear analysis of the Nean-

derthal mandible from Regourdou (Dordogne, southwestern France). J Hum Evol. 2019; 132: 174–

188. https://doi.org/10.1016/j.jhevol.2019.05.005 PMID: 31203846

23. Zanolli C, Kullmer O, Kelley A, Bacon A-M, Demeter F, Dumoncel J, et al. Evidence for increased homi-

nid diversity in the Early-Middle Pleistocene of Java, Indonesia. Nat Ecol Evol. 2019; 3: 755–764.

https://doi.org/10.1038/s41559-019-0860-z PMID: 30962558

24. Fiorenza L, Benazzi S, Estalrrich A, Kullmer O. Diet and cultural diversity in Neanderthals and modern

humans from dental macrowear analyses. In Schmidt C, Watson JT, editors. Dental wear in evolution-

ary and biocultural contexts. London: Academic Press; 2020. pp. 39–72.

25. Fiorenza L, Menter CG, Fung S, Lee J, Kaidonis J, Moggi-Cecchi J, et al. The functional role of the Car-

abelli trait in early and late hominins. J Hum Evol. 2020; 145: https://doi.org/10.1016/j.jhevol.2020.

102816 PMID: 32580080

26. Barrett MJ. Dental observations on Australian Aborigines: continuously changing functional occlusion.

Aust Dent J. 1958; 3: 39–52.

27. Barrett MJ. Masticatory and non-masticatory uses of teeth. In Wrigth RVS, editor. Stone Tools as Cul-

ture Markers: Change, Evolution and Complexity. Canberra: Australian Institute of Aboriginal Studies;

1977. pp. 18–23.

28. Kaidonis J, Richards LC, Townsend GC. Nature and frequency of dental wear facets in an Australian

aboriginal population. J. Oral Rehabil. 1993; 20: 333–340. https://doi.org/10.1111/j.1365-2842.1993.

tb01615.x PMID: 8496739

29. Smith HB. Patterns of molar wear in hunter-gatherers and agriculturalists. Am J Phys Anthropol. 1984;

63: 39–56. https://doi.org/10.1002/ajpa.1330630107 PMID: 6422767

30. Fiorenza L, Yong R, Ranjitkar S, Hughes T, Quayle M, McMenamin PG, et al. Technical note: The use

of 3D printing in dental anthropology. Am J Phys Anthropol. 2018; 167: 400–406. https://doi.org/10.

1002/ajpa.23640 PMID: 30129183

31. Harper KA, Setchell DJ. The use of shimstock to assess occlusal contacts: A laboratory study. Int J

Prosthodont. 2002; 15: 347–352. PMID: 12170848

32. Fung S, Lee J, Yong R, Ranjitkar S, Kaidonis J, Pilbrow V, et al. Brief communications: A functional

analysis of Carabelli trait in Australian aboriginal dentition. Am J Phys Anthropol. 2020; https://doi.org/

10.1002/ajpa.24120 PMID: 32779189

33. Maier W, Schneck G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Prima-

ten. Z Morphol Anthropol. 1981; 72: 127–169.

34. Douglas GD, De Vreugd RT. The dynamics of occlusal relationships. In McNeill C, editor. Science and

practice of occlusion. Illinois: Quintessence Publishing Co.; 1997. pp. 1–8.

35. HammerØ, Harper D. Paleontological Data Analysis. Oxford: Blackwell Publishing; 2006.

36. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;

26: 32–46.

37. Fiorenza L, Kullmer O. Dental wear patterns in early modern humans from Skhul and Qafzeh: A

response to Sarig and Tillier. Homo 2015; 66: 414–419. https://doi.org/10.1016/j.jchb.2015.04.002

PMID: 26048367

38. Batschelet E. Circular statistics in biology. London: Academic Press; 1981.

39. Fisher NI. Statistical analysis of circular data. Cambridge: Cambridge University Press; 1993.

40. Mardia KV, Jupp PE. Directional statistics. Chichester: Wiley; 2000.

41. HammerØ, Harper DAT, Ryan PD. PAST: palaeontological statistics software package for education

and data analysis. Palaeontol Electron. 2001; 4: 9.

PLOS ONE Functional tooth wear in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0254151 July 9, 2021 14 / 15

https://doi.org/10.1002/ajpa.21086
https://doi.org/10.1002/ajpa.21086
http://www.ncbi.nlm.nih.gov/pubmed/19425091
https://doi.org/10.1038/nature05433
http://www.ncbi.nlm.nih.gov/pubmed/17167416
https://doi.org/10.1002/ajpa.21489
https://doi.org/10.1002/ajpa.21489
http://www.ncbi.nlm.nih.gov/pubmed/21469070
https://doi.org/10.1016/j.jhevol.2019.05.005
http://www.ncbi.nlm.nih.gov/pubmed/31203846
https://doi.org/10.1038/s41559-019-0860-z
http://www.ncbi.nlm.nih.gov/pubmed/30962558
https://doi.org/10.1016/j.jhevol.2020.102816
https://doi.org/10.1016/j.jhevol.2020.102816
http://www.ncbi.nlm.nih.gov/pubmed/32580080
https://doi.org/10.1111/j.1365-2842.1993.tb01615.x
https://doi.org/10.1111/j.1365-2842.1993.tb01615.x
http://www.ncbi.nlm.nih.gov/pubmed/8496739
https://doi.org/10.1002/ajpa.1330630107
http://www.ncbi.nlm.nih.gov/pubmed/6422767
https://doi.org/10.1002/ajpa.23640
https://doi.org/10.1002/ajpa.23640
http://www.ncbi.nlm.nih.gov/pubmed/30129183
http://www.ncbi.nlm.nih.gov/pubmed/12170848
https://doi.org/10.1002/ajpa.24120
https://doi.org/10.1002/ajpa.24120
http://www.ncbi.nlm.nih.gov/pubmed/32779189
https://doi.org/10.1016/j.jchb.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/26048367
https://doi.org/10.1371/journal.pone.0254151


42. Oxilia G, Bartolini E, Martini S, Papini A, Boggioni M, Townsend GC, et al. The physiological linkage

between dental arch asymmetry, alveolar inclination and dental macrowear pattern. Am J Phys Anthro-

pol. 2018; 166: 941–951. https://doi.org/10.1002/ajpa.23476 PMID: 29633246

43. Kay RF, Hiiemae KM. Jaw movement and tooth use in recent and fossil primates. Am J Phys Anthropol.

1974; 40: 227–256. https://doi.org/10.1002/ajpa.1330400210 PMID: 4815136

44. Janis CM. The correlation between diet and dental wear in herbivorous mammals, and its relationship to

the determination of diets of extinct species. In Boucot AJ, editor. Evolutionary Paleobiology of behavior

and coevolution. Amsterdam: Elsevier Science; 1990. pp. 241–259.

45. Helm S. Etiology and treatment need of malocclusion. J Can Dent Assoc. 1979; 45: 673–676. PMID:

389398

46. Kaidonis JA. Tooth wear: the view of the anthropologist. Clin Oral Invest. 2008; 12, supp. 1: 21–26.

https://doi.org/10.1007/s00784-007-0154-8 PMID: 17938977

47. Beyron H. Occlusal relations and mastication in Australian Aborigines. Acta Odontol Scand. 1964; 22:

597–678. https://doi.org/10.3109/00016356409058580 PMID: 14280848

48. Campbell TD. Dentition and Palate of the Australian Aboriginal. Adelaide: Hassell Press; 1925.

49. Fiorenza L. Occlusal wear pattern analysis of functional morphology in Neanderthals and early Homo

sapiens dentition (Ph.D. dissertation). Frankfurt: Johann Wolfgang Goethe University; 2009.

50. Fiorenza L, Benazzi S, Tausch J, Kullmer O, Bromage TG, Schrenk F. Molar macrowear reveals Nean-

derthal eco-geographical dietary variation. PLoS One 2011; 6: e14769. https://doi.org/10.1371/journal.

pone.0014769 PMID: 21445243

51. Brown T, Abbott A, Burgess VB. Longitudinal study of dental arch relationships in Australian Aboriginals

with reference to alternate intercuspation. Am J Phys Anthropol. 1987; 72: 49–57. https://doi.org/10.

1002/ajpa.1330720107 PMID: 3826327

52. Laird MF, Vogel ER, Pontzer H. Chewing efficiency and occlusal functional morphology in modern

humans. J Hum Evol. 2016; 93: 1–11. https://doi.org/10.1016/j.jhevol.2015.11.005 PMID: 27086052

53. Linderholm H, Wennström A. Isometric bite force and its relation to muscle forge and body fluid. Acta

Odontol Scand. 1970; 28: 679–689. https://doi.org/10.3109/00016357009058590 PMID: 5275811

54. Kaifu Y, Kasai K, Townsend GC, Richards LC. Tooth wear and the “design” of the human dentition: A

perspective from evolutionary medicine. Yearb Phys Anthropol. 2003; 46: 47–61. https://doi.org/10.

1002/ajpa.10329 PMID: 14666533

55. Corruccini RS, Townsend GC, Brown T. Occlusal variation in Australian Aboriginals. Am J Phys Anthro-

pol. 1990; 82: 257–265. https://doi.org/10.1002/ajpa.1330820304 PMID: 2375378

56. Benazzi S, Nguyen HN, Schulz D, Grosse IR, Gruppioni G, Hublin J-J. The evolutionary paradox of

tooth wear: Simply destruction or inevitable adaptation? Plos One 2013; 8: e62263. https://doi.org/10.

1371/journal.pone.0062263 PMID: 23638020

57. Benazzi S, Nguyen HN, Kullmer O, Hublin J-J. Unravelling the functional biomechanics of dental fea-

tures and tooth wear. Plos One 2013; 8: e69990. https://doi.org/10.1371/journal.pone.0069990 PMID:

23894570

58. Fiorenza L, Nguyen HN, Benazzi S. Stress distribution and molar macrowear in Pongo pygmaeus: A

new approach through finite element and occlusal fingerprint analyses. Hum Evol. 2015; 30: 215–226.

59. Constantino PJ, Lucas PW, Lee JJ-W, Lawn BR. The influence of fallback foods on great ape tooth

enamel. Am J Phys Anthropol. 2009; 140: 599–602. https://doi.org/10.1002/ajpa.20978 PMID:

19890867

60. Qasim T, Ford C, Bush MB, Hu X, Malament KA, Lawn BR. Margin failures in brittle dome structures:

relevance to failure of dental crowns. J Biomed Mater Res Part B Appl Biomater. 2007; 80:78–85.

https://doi.org/10.1002/jbm.b.30571 PMID: 16615075

61. Bakke M. Bite force and occlusion. Semin Orthod. 2006; 12: 120–126.

62. Fiorenza L, Kullmer O. Occlusion in an adult male gorilla with a supernumerary maxillary molar. Int J Pri-

matol. 2016; 37: 762–777.

63. King SJ, Arrigo-Nelson SJ, Pochron ST, Semprebon GM, Godfrey LR, Wright PC, et al. Dental senes-

cence in a long-lived primate links infant survival to rainfall. Proc Natl Acad Sci USA 2005; 102: 16579–

16583. https://doi.org/10.1073/pnas.0508377102 PMID: 16260727

PLOS ONE Functional tooth wear in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0254151 July 9, 2021 15 / 15

https://doi.org/10.1002/ajpa.23476
http://www.ncbi.nlm.nih.gov/pubmed/29633246
https://doi.org/10.1002/ajpa.1330400210
http://www.ncbi.nlm.nih.gov/pubmed/4815136
http://www.ncbi.nlm.nih.gov/pubmed/389398
https://doi.org/10.1007/s00784-007-0154-8
http://www.ncbi.nlm.nih.gov/pubmed/17938977
https://doi.org/10.3109/00016356409058580
http://www.ncbi.nlm.nih.gov/pubmed/14280848
https://doi.org/10.1371/journal.pone.0014769
https://doi.org/10.1371/journal.pone.0014769
http://www.ncbi.nlm.nih.gov/pubmed/21445243
https://doi.org/10.1002/ajpa.1330720107
https://doi.org/10.1002/ajpa.1330720107
http://www.ncbi.nlm.nih.gov/pubmed/3826327
https://doi.org/10.1016/j.jhevol.2015.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27086052
https://doi.org/10.3109/00016357009058590
http://www.ncbi.nlm.nih.gov/pubmed/5275811
https://doi.org/10.1002/ajpa.10329
https://doi.org/10.1002/ajpa.10329
http://www.ncbi.nlm.nih.gov/pubmed/14666533
https://doi.org/10.1002/ajpa.1330820304
http://www.ncbi.nlm.nih.gov/pubmed/2375378
https://doi.org/10.1371/journal.pone.0062263
https://doi.org/10.1371/journal.pone.0062263
http://www.ncbi.nlm.nih.gov/pubmed/23638020
https://doi.org/10.1371/journal.pone.0069990
http://www.ncbi.nlm.nih.gov/pubmed/23894570
https://doi.org/10.1002/ajpa.20978
http://www.ncbi.nlm.nih.gov/pubmed/19890867
https://doi.org/10.1002/jbm.b.30571
http://www.ncbi.nlm.nih.gov/pubmed/16615075
https://doi.org/10.1073/pnas.0508377102
http://www.ncbi.nlm.nih.gov/pubmed/16260727
https://doi.org/10.1371/journal.pone.0254151

