
 International Journal of 

Molecular Sciences

Review

The Anticancer Properties of Cordycepin and Their
Underlying Mechanisms

So Young Yoon 1, Soo Jung Park 2 and Yoon Jung Park 1,*
1 Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea;

syyoon0504@gmail.com
2 Department of Sasang Constitutional Medicine, Woosuk University, Jeollabuk-do 55338, Korea;

soojungpark@woosuk.ac.kr
* Correspondence: park.yoonjung@ewha.ac.kr; Tel.: +82-2-3277-6533

Received: 17 September 2018; Accepted: 1 October 2018; Published: 4 October 2018
����������
�������

Abstract: Cordyceps is a genus of ascomycete fungi that has been used for traditional herbal
remedies. It contains various bioactive ingredients including cordycepin. Cordycepin, also known
as 3-deoxyadenosine, is a major compound and has been suggested to have anticancer potential.
The treatment of various cancer cells with cordycepin in effectively induces cell death and
retards their cancerous properties. However, the underlying mechanism is not fully understood.
Recent evidence has shed light on the molecular pathways involving cysteine-aspartic proteases
(caspases), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase 3 beta
(GSK-3β). Furthermore, the pathways are mediated by putative receptors, such as adenosine receptors
(ADORAs), death receptors (DRs), and the epidermal growth factor receptor (EGFR). This review
provides the molecular mechanisms by which cordycepin functions as a singular or combinational
anticancer therapeutic agent.
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1. Introduction

Cancer is the uncontrolled growth of abnormal cells with the potential to metastasize.
The treatments given to cancer patients are designed to either directly remove the cancer cells or
exert a controlled death of the cancer cells by anti-proliferative and cytotoxic chemicals via cell
cycle arrest and apoptotic induction. Systemic therapy using antitumor drugs, besides surgical and
radiation therapies, is one of the primary approaches against cancer. The disadvantages of systemic
treatment include side-effects on normal tissues and the acquisition of drug resistance, underscoring
the importance of combinational treatments [1]. Recently, complementary therapies have been under
much study to evaluate their potential benefits in cancer therapies as a part of combinational treatments.
The treatments are now provided in clinics internationally, with the use of complementary medicine
no longer limited to uneducated, underground practitioners [2]. Herbal remedies are a large part
of complementary therapies. Among various herbal compounds, Cordyceps is emerging as one of
the herbals in cancer therapies due to its anticancer properties. Cordyceps contains cordycepin as a
major component. Cordycepin is one of the cytotoxic nucleoside analogues that were first tried as
chemotherapeutic agents [3,4]. This review focuses on cordycepin as a potential anticancer drug that
has complementary therapeutic activities in pro-apoptosis, anti-proliferation, and anti-metastasis in
cancer cells.
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2. Cordyceps: A Medicinal Herb

Cordyceps is a genus of parasitic fungi that parasitizes on the larvae of arthropods for its
reproductive and survival purposes. The fungus was first recorded as Ben-Cao-Bei-Yao in 1694 and is
usually called ‘Dong-Chong-Xia-Cao’ in China. This fungus has been used as a health supplement
in Asian countries for over 300 years for suboptimal health status patients [5]. Cordyceps has
approximately 400 species that are distributed in places where the climate is humid and subtropical.
To date, Cordyceps sinensis and Cordyceps militaris have been the most broadly researched species
of the fungus. Both Cordyceps species contain similar bioactive ingredients, including cordycepin
as a major component and others such as adenosine, cordycepic acid, erogosterol, and D-mannitol.
Recent studies have reported that chemical constituents extracted from Cordyceps, especially cordycepin,
exhibit potential therapeutic characteristics for cancer [5–8]. Although the extraction yield from
Cordyceps varies depending on the volume ratio of solvent to sample, extraction time, and ethanol
concentration, in that order, the peak extraction yield of cordycepin and its derivative cordycepic acid
has been reported as about 7 mg/g from Cordyceps militaris and 7–29% of extracted components from
Cordyceps sinensis [5,9,10].

3. An Active Constituent of Cordyceps, Cordycepin, as an Anticancer Agent

Cordycepin, also known as 3-deoxyadenosine, has a similar structure to adenosine but lacks the
3′-hydroxyl group of the ribose moiety [3]. Adenosine is a signaling molecule that affects various types
of cells, tissues, and organ systems, via both intracellular and extracellular signaling pathways [11].
It exerts its effects through cell surface receptors such as adenosine receptors (ADORAs). Cordycepin
is an adenosine derivative that demonstrates multiple physiological functions, such as anti-oxidative
activity, immune system activation [12], sexual performance enhancement [13], anticancer effects [14],
and anti-metastatic effects [13].

The broad putative pharmacological actions of cordycepin have attracted a great attention as
a new therapeutic for chronic diseases including diabetes and dyslipidemia [15] in recent decades.
In particular, cordycepin has been suggested to have anticancer potential (Table 1) due to its structural
similarity to adenosine, as the overexpression of adenosine generating enzymes and ADORAs has
been correlated with tumor progression [16]. For example, it has been shown to induce apoptotic
effects in breast, liver, and leukemia cancer cells by increasing caspase-3 and caspase-9, as listed in
Table 1. In addition to apoptotic induction, effects on anti-proliferation and cell cycle arrest were also
shown in lung cancer and glioblastoma.

Cordycepin has been considered as a nucleoside analogue [4], which is able to be involved in
the actions of DNA and/or RNA polymerases [17]. After entering into the cell, it becomes mono-,
di-, and tri-phosphates of 3-deoxyadenosine [18]. Due to the structural similarity with adenosine
monophosphate, it is possible that cordycepin monophosphate provokes termination of elongation by
incorporating into the site where nucleic acids are supposed to incorporate [19]. This phenomenon
has been shown in yeast [19,20] and mammals [21]. Furthermore, cordycepin monophosphate might
inhibit the activity of phosphoribosyl-pyrophosphate amidotransferase, leading to hindered de novo
purine synthesis [22].

Recently, it was shown that the apoptotic effect of cordycepin was related to dysregulated
polyadenylation [23]. Polyadenylation is critical for mRNA stability and translation initiation [24],
and is created by cleaving pre-mRNA at the poly(A) site and adding a poly(A) tail to the 3′ end of the
cleavage product [23]. Cordycepin reduces poly(A) tails as a polyadenylation inhibitor [25] of sensitive
mRNAs, such as Cdkn1a mRNA, which is a key player in cell apoptosis [26]. The polyadenylate
polymerase (PAP), which is located in both the nucleus and the cytoplasm, is one of the most studied
polyadenylation protein complexes [23]. In human leukemia cells, cordycepin reduced PAP activity
(Figure 1) upon cordycepin treatment in a cell type-specific manner [23]. This phenomenon may be
related to a reduction in polyadenylation, in particular that of apoptotic genes. However, it remains
unclear how cordycepin penetrates cell membranes.
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Figure 1. Cellular apoptotic and proliferative pathways stimulated by cordycepin. Arrows and
bar-headed lines represent signaling activation and inhibition, respectively. Red- and blue-colored
arrows indicate the processes involved in cell apoptosis and proliferation, respectively. Black dotted
lines show processes involved in DNA and/or RNA polymerases activity.

The major anticancer activity of cordycepin is likely to be mediated by cell surface receptors.
Three receptors have been reported as candidates: ADORAs, death receptors (DRs), and the epidermal
growth factor receptor (EGFR) (Table 2). Cordycepin has been suggested to mediate apoptotic signaling
via ADORAs in glioma, melanoma, and lung carcinoma cell lines [27–30], and DRs in colon and prostate
cancer cell lines [31,32]. In addition, when converted to a 5′-triphosphate-bound form [22] in vivo,
it may compete with ATP in a signaling pathway [31]. It is known that ATP stimulates EGFR by a
direct binding. On the contrary, 5′-triphosphate-cordycepin may fit into the binding site, possibly
blocking the phosphorylation of EGFR [33]. However, to our knowledge, there is no evidence showing
5′-triphosphate-cordycepin directly binds to any of the candidate receptors. The molecular mechanisms
underlying its anticancer effects are not fully understood. However, recent studies have uncovered the
putative mechanisms that induce apoptosis and/or block cell proliferation as summarized below.

Table 1. Current evidence for the effects of cordycepin on various tumor types and possible mechanisms.

Tumor Type Effects Major Mediating
Signaling Pathways Results References

Liver cancer

Apoptosis induction Cysteine-aspartic
proteases (caspase)

- Increased caspase-3, caspase-8, caspase-9,
FADD, and Bid

- Decreased Bcl-2
[34]

Apoptosis induction,
Anti-proliferation Phospholipase C (PLC) - Increased PARP cleavage [35,36]

Colon cancer Cell cycle arrest c-Jun N-terminal
kinases (JNK)

- G2/M-phase cell-cycle arrest
- Increased JNK and p21WAF-1 expression [37]

Bladder cancer Cell cycle arrest c-Jun N-terminal
kinases (JNK)

- G2/M cell-cycle arrest
- Increased cJNK [38]
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Table 1. Cont.

Tumor Type Effects Major Mediating
Signaling Pathways Results References

Renal cancer Apoptosis induction ERK/JNK - Increased JNK and caspase-3
- Decreased ERK [39,40]

Lung cancer

Apoptosis induction ERK/JNK

- Increased CAV1, JNK/Foxo3a, BAX,
caspase-3 cleavage, and GSK-3β

- Decreased ERK
[41,42]

Apoptosis induction,
Anti-proliferation,

Anti-metastasis
Caspase - Increased MMP-9 and caspase-3

- Decreased Bcl-2 [43]

Apoptosis induction,
Anti-proliferation NF-kB

- Increased BAX, caspase-3 cleavage
- Decreased NF-kB, Bcl-2,

and p65 nuclear translocation
[44]

Breast cancer
Apoptosis induction Caspase

- Increased caspase-3, caspase-9,
mitochondrial translocation of BAX,
and cytochrome c

[45–47]

Anti-metastasis MAPK - Decreased Bcl-2 [48]

Prostate cancer Apoptosis induction Caspase - Increased JNK and caspase-3
- Decreased ERK [39,40]

Leukemia

Apoptosis induction Caspase

- Increased caspase-3, caspase-8,
and PARP cleavage

- Decreased Bcl-2
[3,49]

Anti-proliferation GSK-3β - Decreased Akt, and β-catenine [50]

Apoptosis induction,
Cell cycle arrest MAPK

- S-phase cell-cycle arrest
- Increased cytochrome c released,

and caspase-9
- Decreased MAPK, p-ERK1/2, and CDK2

expression

[51]

Glioblastoma Apoptosis induction
Anti-proliferation MAPK

- Increased p38 MAPK, caspase-3,8,
PARP cleavage

- Decreased Akt and Bcl-2
[52]

Neuroblastoma Apoptosis induction
Cell cycle arrest Caspase - sub-G1 phase cell-cycle arrest

- Increased caspase-3 and PARP cleavage [53,54]

Table 2. Putative receptors stimulated by cordycepin and their downstream targets.

Receptors Downstream Targets References

Adenosine
receptors

(ADORAs)

ADORA2A Induced apoptosis via ADORA2A receptor-p53-caspase-7-PARP pathway
in C6 glioma cells. [27]

ADORA3

Inhibition of the tumor growth was antagonized by a selective adenosine
A3 receptor agonist, MRS1191 1, in mouse melanoma and lung carcinoma
cells via the radioligand binding assay. The involvement of adenosine A3
receptors was confirmed with the use of MRS1523 2 and MRS1220 3.

[28–30]

Death
receptors (DRs)

DR3 Induced apoptosis of the human colon cancer cell HT-29 via the elevation of
DR3, caspase-8, caspase-1, cleaved caspase-3 and cleaved PARP expression. [31]

DR5 Caused an elevation of the levels of Fas, death receptor 5 (DR5),
proapoptotic BAX, and decreased anti-apoptotic Bcl-2 level. [32]

Epidermal growth
factor receptor (EGFR)

Inhibited cell proliferation and induced apoptosis via the EGFR signaling
pathway in the human lung cancer cell H1975. The caspase-3 and BAX
protein levels were increased, while phosphorylated expression levels of
EGFR, AKT, and ERK1/2 were decreased.

[47,55]

1 T3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate; 2 3-Propyl-6-
ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate; 3 N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo
[1,5-c]quinazolin-5-yl]benzene acetamide.
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4. Major Mechanisms Underlying the Antitumor Effects of Cordycepin

4.1. Caspase-Mediated Apoptotic Induction

One of the major anticancer functions is achieved by apoptotic induction. Apoptosis is a process
of programmed cell death [51]. It is stimulated by intrinsic stress, such as reactive oxygen species
and endoplasmic reticulum stress, in a mitochondria-dependent manner or by extrinsic signaling
in a death receptor-dependent manner [31]. Death domain (DD) proteins have been reported to be
central in the receptor-dependent apoptotic pathway of cancer cells. Fas-associated protein with
death domain (FADD) and tumor necrosis factor receptor type 1-associated death domain protein
(TRADD) are adaptor proteins that mediate the signals from the binding of extrinsic stimuli to DRs.
Upon recruitment to DRs, pro-caspase-8 is cleaved and is activated to initiate a caspase cascade,
by cleaving caspase-3, in human cancer cells [56]. Cordycepin has been shown to be involved in
DR-mediated pathways [31,32] (Figure 1). Cordycepin treatment elevated DR3 expression in the
human colon cancer cell line HT-29 [31] and DR5 expression along with Fas and BAX levels in
human prostate carcinoma [32], leading to induction of cell death [31,32]. Moreover, Cordycepin
treatment of NB-4 cells released cytochrome c from the mitochondria into the cytosol, triggering
intrinsic apoptosis [51]. Mitochondrial translocation levels of the cell death inhibitor BAX increase and
cause the release of cytochrome c in response to induction by tBid, one of the proapoptotic proteins [45].
Although anti-apoptotic Bcl-2 proteins act as gatekeepers of cytochrome c release, Bcl-2 family proteins
are able to bind to apoptotic protease activating factor 1 (APAF1) molecules, facilitating the formation
of an apoptosome, and the apoptosome subsequently cleaves procaspase-9 [51,57]. The effect of
cordycepin on NB-4 cells, which led to release of mitochondrial cytochrome c to the cytosol, resulted
in activation of caspase-9, indicating induction of apoptosis [51]. The results showed that cordycepin
induces both caspase-mediated intrinsic regulation and extrinsic apoptotic regulation. These effects
were confirmed in various cancer types, including liver [34], lung [43], breast [33,45,46], prostate [39,43],
leukemia [3,49], and neuroblastoma [53,54] cancer cells.

4.2. MAPK-Mediated Apoptotic Induction and Anti-Proliferation

The ADORAs, a class of purinergic G protein-coupled receptors with adenosine as an endogenous
ligand, are increasingly recognized as a promising therapeutic targets for cancer [58]. They are classified
into four subtypes in humans: ADORA1, ADORA2A, ADORA2B, and ADORA3 [59,60]. In particular,
ADORA2A and ADORA3 are considered as possible receptors of cordycepin [28–30] (Figure 1).
Over expression of ADORA3 in human bladder cancer cells had similar effects to treatment with
Cordyceps extract, whereas depletion of ADORA3 abrogated the effect of Cordyceps extract containing
cordycepin as a major component [28]. Cordycepin treatment of C6 glioma cells also showed that
cordycepin induced apoptosis via the ADORA2A pathway [27]. In turn, ADORAs can regulate the
activity of PLC through a G protein, as shown in rat basophilic leukemia cells [61,62]. Thus, the results
suggested that cordycepin works on cancer cells through the ADORA-G-protein-PLC pathway to
induce cell apoptosis [11].

Phospholipase C (PLC) is significant in transmembrane signaling [63]. It cleaves the phospholipid
phosphatidylinositol 4,5-biphosphate (PIP2) into inositol 1,4,5-triphosphate (IP3) and diacylglyceride
(DAG), which, together with Ca2+, stimulate protein kinase C (PKC) [64]. Cordycepin elevated
intracellular PLC/PKC and MAPK pathways in MA-10 mouse Leydig tumor cells to induce cell
death [12]. The MAPK pathway is critical for regulation of cell survival [38] and involves various MAPK
families such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38
MAP kinases [38,65]. In general, activation of ERKs stimulates cell proliferation, whereas activation
of JNKs promotes cell apoptosis [40]. Several studies showed that cordycepin induced apoptosis
and decreased proliferation by regulating ERK/JNK signaling or activating p38 MAPK in human
bladder [38], renal [39,40], lung [41,42], leukemia [51], and glioblastoma [52] cancer cells. Joo et al. [41]
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reported that caveolin-1 (CAV1)-mediated phosphorylation of JNK and dephosphorylation of forkhead
transcription factor 3a (Foxo3a) were observed in A549 cell apoptosis after cordycepin treatment.

Cordycepin also leads to cell cycle arrest by regulation of a MAPK-mediated pathway [38,51].
It induced G2/M cell-cycle arrest by activating JNK in human bladder cancer cells [38]. The effect of
cordycepin was attenuated by SP6001259, a JNK-specific inhibitor, indicating that it was mediated by
JNK. Activation of JNK upregulated expression of P21, resulting in cell cycle arrest [38]. Cordycepin
not only caused G2/M-phage arrest, but also caused S-phage arrest in leukemia cells [51] and G1-phage
arrest in neuroblastoma and melanoma cells [54].

4.3. Anti-Proliferation Effect via GSK-3β Pathway

Cordycepin treatment inhibited nuclear translocation of β-catenin in human leukemia cells
by reducing β-catenin stability by inducing proteasome-dependent degradation [50]. Intriguingly,
adenosine treatment had no effect on β-catenin. The cordycepin-specific suppression of β-catenin
was mediated by a reduction in the phosphorylation of GSK-3β and its upstream Akt (Figure 1).
Akt is known to be stimulated by EGFR and phosphoinositide-3 kinase (PI3K) in cancer [66].
In human lung cancer cells, cordycepin treatment reduced the phosphorylation level of EGFR
and Akt [47]. Phosphorylation of GSK-3β is also known to be regulated by ADORA3-activated
G protein signaling [67]. ADORA3-mediated G protein, which is possibly stimulated by cordycepin,
tempers cyclic AMP (cAMP) formation, resulting in the suppression of protein kinase A (PKA) and
subsequently GSK-3β [67]. Mitigation of GSK-3β in cancer cells leads to suppression of cyclin D1 and
c-myc, which inhibits cell proliferation [67].

4.4. Anti-Metastatic Effect Induced by Cordycepin

It is important to acknowledge that cordycepin not only exhibits proapoptotic and
anti-proliferative effects in cancer cells, but also inhibits cell metastasis in tumor cells, demonstrating its
potential as a therapeutic agent in the larger scope of cancer [68]. Upon cordycepin treatment, at least
in vitro, inhibition of platelet aggregation and reduction in the invasiveness of melanoma cancer cells,
by inhibition of the activity of matrix metalloproteinase (MMP)-2 and MMP-9 and stimulation of tissue
inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were shown [13]. Similar effects on the inhibition
of cell invasion by decreased MMP-9 activity were also observed in human lung cancer cells [43] and
breast cancer cells [48].

5. Conclusions

Despite the fact that remarkable advances in cancer treatments have improved the five-year
survival rates for primary tumors, those of tumor metastasis remain below thirty-percent, emphasizing
the need for advanced therapeutic approaches in cancer management [69]. Therefore, it is important
to investigate combinational therapeutic strategies for cancer treatment by inhibiting proliferation
and inducing apoptosis, and by preventing or overcoming metastasis. According to previous studies,
cordycepin is expected to be a potential combinational therapeutic drug for cancer. Further studies are
needed to fully discover the underlying mechanisms of cordycepin-mediated signaling pathways.
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Abbreviations

ADORA Adenosine receptor
APAF1 Apoptotic protease activating factor 1
Caspases Cysteine-aspartic proteases
cAMP Cyclic AMP
CAV-1 Caveolin-1
DAG Diacylglyceride
DD Death domain
DR Death receptor
EGFR Epidermal growth factor receptor
ERK Extracellular signal-regulated kinase
FADD Fas-associated protein with death domain
Foxo3a Forkhead transcription factor
GSK-3β Glycogen synthase kinase 3 beta
IP3 Inositol trisphosphate
JNK c-Jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MMP Matrix metalloproteinase
PAP Polyadenylate polymerase
PIP2 Phosphatidylinositol 4,5-biphosphate
PI3K Phosphoinositide-3 kinase
PKA Protein kinase A
PKC Protein kinase C
PLC Phospholipase C
TIMP Tissue inhibitor of metalloproteinase

TRADD
Tumor necrosis factor receptor type 1-associated
death domain protein
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