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Abstract

The human APOBEC3G (A3G) protein is a cellular polynucleotide cytidine deaminase that acts as a host restriction factor of
retroviruses, including HIV-1 and various transposable elements. Recently, three NMR and two crystal structures of the
catalytic deaminase domain of A3G have been reported, but these are in disagreement over the conformation of a terminal
b-strand, b2, as well as the identification of a putative DNA binding site. We here report molecular dynamics simulations
with all of the solved A3G catalytic domain structures, taking into account solubility enhancing mutations that were
introduced during derivation of three out of the five structures. In the course of these simulations, we observed a general
trend towards increased definition of the b2 strand for those structures that have a distorted starting conformation of b2.
Solvent density maps around the protein as calculated from MD simulations indicated that this distortion is dependent on
preferential hydration of residues within the b2 strand. We also demonstrate that the identification of a pre-defined DNA
binding site is prevented by the inherent flexibility of loops that determine access to the deaminase catalytic core. We
discuss the implications of our analyses for the as yet unresolved structure of the full-length A3G protein and its biological
functions with regard to hypermutation of DNA.
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Introduction

The human APOBEC3G protein (A3G) is a cellular polynu-

cleotide cytidine deaminase that can restrict the spread of HIV-1

in the absence of the viral Vif protein [1]. HIV-1 Vif specifically

interacts with A3G and targets it for proteasomal degradation,

thereby lifting the barrier that A3G poses to virus replication [2,3].

In the absence of Vif-mediated down-regulation, A3G is packaged

into assembling virions where it interferes with the elongation of

reverse transcription and catalyses deamination of cytidine to

uridine in nascent reverse transcripts [4–9]. This causes the

progeny viruses that have been exposed to A3G to lose infectivity

by virtue of halted reverse transcription and the loss of genomic

integrity. In addition to its activity as an HIV-1 restriction factor,

A3G as well as other APOBEC proteins can inhibit the spread of

several other viruses and transposable elements [10].

The APOBEC3G protein contains two cytidine deaminase

(CDA) domains, termed the N-terminal and C-terminal CDAs (N-

CDA and C-CDA, respectively). The CDA domains of all

APOBEC3 (A3) proteins are predicted to fold into a mixed five-

stranded b-sheet that exposes on one face two a-helices that

contain the H/C-X-E-X23-28-P-C-X2-C zinc coordination motif

[11]. This zinc-coordination motif is essential for catalysis of the

deamination reaction, yet not all the zinc-coordination motifs

encountered in A3 proteins constitute an active deaminase

catalytic core. In particular, the N-CDA of A3G is catalytically

inactive but is required for virus inhibition by mediating RNA-

dependent oligomerisation and packaging into virions [12–17].

Conversely, cytidine deamination is strictly mediated by the C-

CDA of A3G [10,18–20].

The deamination activity of A3 proteins is also commonly

referred to as DNA editing, in reference to the founding member

of the APOBEC protein family, APOBEC1 (A1), which is an

RNA-editing enzyme [21,22]. Unlike A1, A3G is unable to edit

RNA and its editing activity is tightly restricted to single stranded

DNA substrates. A3G preferentially edits the third cytidine in a 59-

CCC-39 trinucleotide sequence context on single stranded DNA,

whereas it is unable to edit double stranded DNA or DNA/RNA

hybrids [6,23,24]. The selective editing of single stranded DNA is

a shared property of A3 proteins, although differences in target site

preferences do exist. For example, APOBEC3F (A3F), another

member of the A3 family that restricts HIV-1 in the absence of

Vif, preferentially edits in a 59-TTC-39 sequence context [25–27].

Although structural data on the full length A3G protein are

currently lacking, several recent studies have reported high-

resolution structures of truncated A3G constructs containing the
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catalytic C-CDA moiety of A3G (table 1). First, Chen et al.

reported the solution structure of a 187 amino acid fragment by

NMR, encompassing amino acids 198 up to 384 of A3G, which

contained 5 mutations that were introduced to enhance the

solubility of the protein (PDB code 2JYW) [28]. Second, Holden

et al. obtained crystals that diffracted to a resolution of 2.3 Å with

a 184 amino acid fragment, encompassing amino acids 197 up to

380 of A3G with the wild type sequence (PDB codes 3E1U and

3IQS) [29]. Third, Furakawa et al. reported the NMR structure of

a 192 amino acid fragment, encompassing amino acids 193 up to

384 of A3G, also with the wild type sequence (PDB code 2KBO)

[30]. Fourth, Harjes et al. reported an NMR structure of a 194

amino acid fragment encompassing residues 191 up to 384, which

also contained the five solubility enhancing point mutations (PDB

code 2KEM) [31]. Finally, a crystal structure of the 191–384

fragment containing the solubility enhancing mutations at a

resolution of 2.25 Å has been reported most recently (PDB code

3IR2) [32]. For clarity, the original references and accession codes

are shown in table 1, along with the nomenclature we will adopt

from this point on.

Throughout these studies most of the core secondary structure

elements that characterise APOBEC proteins, as first reported in

the crystal structure of human APOBEC2 (A2)[33], were

preserved. However, a number of differences between these

structures are also apparent. Most strikingly, a b-strand at the edge

of the mixed sheet, termed b2, is predominantly disordered and

discontinuous in all NMR structures, regardless of the presence or

absence of the solubility enhancing mutations (Figure 1). The b2-

strand is much more defined through interactions with the b1

strand in the crystal structure with the wild type sequence,

XRAY1, although even in this structure a small distortion from

regular b-sheet geometry is apparent due to the bulging out of a

single amino acid, Q237. The b2-strand from the crystal structure

with mutations, XRAY2-2K3A, is also considerably more defined

than in the NMR structures, but in this case the bulge contains

amino acids N236, Q237, R238 and R239 (Figure 1).

The conformation of the b2 strand has important implications

for the folding of the full length A3G protein [12,34]. The full-

length A3G polypeptide consists of two CDA domains, but it

remains unknown how these domains are positioned relative to

each other. We and others have previously proposed homology

models of A3G in which the N- and C-terminal CDA domains are

aligned via interactions involving b2 to form a continuous b-sheet

as observed in the crystal structure of the closely related A2 protein

[12,16,35]. This continuous sheet would be consistent with the

conformation of b2 as observed in the first crystal structure of the

A3G C-CDA, but the distorted b2 observed in the NMR

structures and the second crystal structure may interfere with this

arrangement (Figure S1).

There is also disagreement with regard to the assignment of

residues within the A3G C-CDA that participate in interactions

with the substrate DNA. To date, no structure of the A3G protein

bound to DNA has been obtained and the identification of

residues that interact with the substrate has therefore relied on

indirect methods. Importantly, DNA-binding grooves proposed on

the basis of the wild-type crystal structure [29] and the first

reported NMR structure with mutations [28] have entirely

different orientations [34]. Furthermore, empirical identification

of amino acids that interact with the DNA by chemical shift

perturbations in response to DNA titrations have yielded

significantly different sets of candidate residues in two NMR

studies [28,30]. Positioning of loops in the vicinity of the catalytic

core also differs significantly in all of these structures (Figure 1),

with the two crystal structures sharing the highest overall similarity

(table 2 and Figure 1F).

We note that the differences between the two crystal structures

appear to be mostly due to different crystal packing interactions. In

the XRAY1 crystal, the C-CDA is clearly observed as monomeric

within the unit cell [29], whereas the unit cells of the XRAY2-

2K3A crystal contain dimers of the C-CDA [32]. Most of the

solubility enhancing mutations present in XRAY2-2K3A are in

close proximity to the multimer interfaces observed in that crystal

(not shown), suggesting that these mutations may have affected the

crystal packing. Although it has been suggested that the A3G C-

CDA has the capacity to oligomerise [36], none of the interfaces

observed in the XRAY2-2K3A crystal have been demonstrated to

be of significance for biological activities [32]. The monomeric

state of the A3G C-CDA as observed in the XRAY1 structure is

furthermore supported by ultracentrifugation analyses that were

performed on the NMR1-2K3A preparation [28].

Molecular dynamics (MD) simulations are a computational

means to probe molecular motions at an atomic scale and provide

the opportunity to monitor dynamical features of protein

structures that are not readily obtainable from crystallography

and NMR data. Here, we report MD simulations of each of the

available high-resolution structures of the A3G C-CDA domain.

The data sets from the MD simulations were specifically analysed

to shed light on the uncertainties regarding the possible

conformations of b2, as well as assignment of the DNA binding

site.

Results

Antiviral and editing properties of A3G with solubility-
enhancing mutations

Because the structures reported by Chen, Harjes and Shandila

all contain five mutations to enhance solubility of the protein

[28,31,32], we first sought to determine whether these mutations

alter the biological properties of A3G. Specifically, the truncated

A3G constructs used in those NMR and crystallography studies

contained the following mutations, which are collectively known

as 2K3A: L234K, C243A, F310K, C321A and C356A (Figure

S2). We assessed the effect of these mutations on antiviral activity

and DNA editing, both individually and in combination. Because

the L234K and C243A mutations are both located within b2 that

appears distorted in these structures, we also constructed a

mutant A3G containing both these mutations. We note that

Harjes et al. already reported normal antiviral activity of full

Table 1. Nomenclature of APOBEC structures used in this
study with references.

Nomenclature PDB code Reference

NMR1-2K3A 2JYW Chen K.M., et al. Nature (2008) 452:116–9

NMR2 2KBO Furukawa A., et al. EMBO J. (2009) 28:440–51

NMR3-2K3A 2KEM Harjes E., et al. J Mol Biol (2009) 389:819–32

XRAY1 3E1U*/3IQS Holden L.G., et al. Nature (2008) 456:121–4

XRAY2-2K3A 3IR2 Shandilya S.M.D. et al. Structure (2010) 18:28–38

A2 2NYT Prochnow C., et al Nature (2007) 445: 447–451

*The crystal structure originally deposited as 3E1U was found to contain an
error with regard to fitting of residue W269 to the electron density. This was
corrected in the structure deposited as 3IQS. The positioning of W269 in 3E1U
and 3IQS does not affect the conformation of b2 or the proposed DNA binding
pocket. MD simulations described here were performed with 3E1U.

doi:10.1371/journal.pone.0011515.t001

MD Simulations of APOBEC3G
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length A3G containing all five mutations (A3G-2K3A) with a C-

terminally GFP-tagged A3G. Because we have previously

observed that a GFP-tag on A3G can reverse the effect of

mutations that cause reduced protein expression (Huthoff,

unpublished results), we performed our mutational analysis with

untagged full-length A3G. Single cycle infectivity experiments

confirmed that inhibition of Vif-deficient HIV-1 by A3G was

maintained in the presence of these mutations and that all

proteins were expressed in similar amounts as determined by

immunoblotting (Figure 2A).

We next assessed the DNA editing properties of the wild type

and mutant A3G using a bacterial mutator assay [37]. Again,

DNA editing by these mutant A3G proteins has previously been

reported in the context of 191–384 and 198–384 truncated

constructs [28,31], but not in the context of the full-length protein.

We observed wild-type levels of DNA editing with all constructs

except the 2K3A-A3G, which displayed DNA editing activity that

was approximately 2-fold higher than the wild type A3G

(Figure 2B). These observations are entirely consistent with the

previously reported studies with tagged or truncated A3G [28,31],

and indicate that A3G containing the solubility enhancing

mutations maintained virus inhibition and DNA editing activities

in the context of the full-length protein.

The b2 region of the A3G C-CDA contains an insert of
two amino acids

The distorted conformation of the b2 that is observed in the

majority of A3G C-CDA structures represents a unique feature

among CDA enzymes, as all other structures of these proteins

show a defined and continuous b2 strand [34]. Indeed, the

structure of the closely related A2 protein also shows an intact b2

region that is continuous with b1 and furthermore supports

oligomerisation via b2-b2 interactions [33]. To determine whether

this difference may be due to divergent primary sequences, we

generated an alignment of the b1-b2 region from A2 and the

human A3 proteins, indicating the b1-b2 interactions observed in

the crystal structures of A2 and the various structures of the A3G

C-CDA (Figure 3). From the alignment, it is apparent that the

sequence of the b1 region contains a strongly conserved L-C-F/Y

Figure 1. Ribbon representation of high-resolution structures of the A3G C-CDA. (A) Structure of NMR1-2K3A shown in green. (B) Structure
of NMR2 shown in red. (C) Structure NMR3-2K3A shown in blue. (D) Structure of XRAY1 shown in purple. (E) Structure of XRAY2-2K3A shown in
yellow. (F) Superimposition of XRAY1 and XRAY2-2K3A. The colour coding is maintained throughout. Details of these structures are described in the
text and the original references as well as the nomenclature adopted here are given in table 1. b-strands are numbered 1 through 5 and a-helices are
numbered a1 through a6.
doi:10.1371/journal.pone.0011515.g001

Table 2. RMSD of Ca atoms for the reported high-resolution
structures of the A3G C-CDA.

NMR1-
2K3A NMR2

NMR3-
2K3A XRAY1

XRAY2-
2K3A

NMR1-2K3A 0

NMR2 2.985 0

NMR3-2K3A 4.689 4.220 0

XRAY1 4.621 4.348 3.017 0

XRAY2-2K3A 4.726 4.228 3.004 1.814 0

doi:10.1371/journal.pone.0011515.t002

MD Simulations of APOBEC3G
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motif, which in the A2 structure interacts with a G-Y-L motif in

the b2 region of A2. The latter motif is partly conserved in the

human A3 proteins, and in A3G corresponds to G-F-L at positions

240 to 242. Importantly, the interaction between these motifs is

evidenced by both crystal structures and is to variable extents also

evident from the NMR data (Figure 3).

Throughout the remainder of the b1-b2 region, significant

differences in the sequence between A2 and the A3 proteins arise,

which in the case of A3A, A3B C-CDA and the A3G C-CDA

includes a two-amino acid insert. It is in the direct vicinity of this

insert, which in A3G corresponds to N236 and Q237, that

differences between the H-bonding in the b1-b2 region of the A3G

C-CDA crystal structures are observed. Importantly, these define

the distortion of the b2 strand in the A3G C-CDA NMR

structures and the crystal structure XRAY2-2K3A. In the XRAY1

structure with the most regular b2 geometry, residues V224, R226

and H228 are H-bonded to R238, Q237, L235 and V233,

respectively (V224 interacting with both R238 and Q237). The

bulged-out conformation of b2 that is observed in the XRAY2-

2K3A structure coincides with H-bonding of residues V224, R226

and H228 to L235, V233 and T231, respectively. Variations on

this latter arrangement are observed in each of the NMR

structures, which are also characterised by a bulged out

conformation of the b2 strand. Thus, multiple registers of H-

bonding with the b2 of the A3G-CDA are possible and can cause

this strand to be more or less structured.

Figure 2. Virus inhibition and DNA editing by A3G with and without solubility-enhancing mutations. (A) Single-cycle infectivity of HIV-
1/Dvif viruses produced in the presence of wild type or mutant A3G measured in b-Galactosidase units (RGU) and presented as percent infectivity
relative to the sample without A3G. Expression of wild type and mutant A3G proteins in 293T producer cells as determined by immunoblotting is
shown beneath the graph. (B) Relative editing activity of wild type and mutant A3G proteins from 12 independent experiments. Immunoblots
beneath the graph show the expression of A3G in equal volumes of bacterial cultures.
doi:10.1371/journal.pone.0011515.g002

MD Simulations of APOBEC3G
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Molecular dynamics Simulations of the A3G C-CDA
structures from NMR and crystallography studies

We next performed 50 ns MD simulations of the A3G C-CDA

high-resolution structures to assess changes from the starting

conformations in a simulated aqueous environment using the

GROMOS force field (see materials and methods). We performed

our analyses on single monomeric C-CDA domains from the

respective studies, which allowed the comparison of the structures

in the absence of crystal packing interactions that may affect the

protein conformations locally. To be able to compare and evaluate

if the solubility-enhancing mutations from the studies by Chen

(NMR1-2K3A), Harjes (NMR3-2K3A) and Shandila (XRAY2-

2K3A) [28,31,32] affected the protein structure during the MD

simulations, we introduced these mutations in silico into the

XRAY1 and NMR2 structures to obtain the XRAY1-2K3A* and

NMR2-2K3A*. Likewise, we restored the wild-type sequence in

NMR1-2K3A, NMR3-2K3A and XRAY2-2K3A, obtaining the

NMR1*, NMR3* and XRAY2* structures (the asterisk indicates

the in silico generated sequences throughout). Simulations were

performed in duplicate, providing a total of 20 A3G C-CDA

structures for subsequent analysis. As duplicate simulations

exhibited equivalent characteristics (Table S1 and Figure S3),

single trajectories for each structure were randomly selected for a

more detailed description. The root mean square deviation

(RMSD) of the Ca atoms of the starting structures over the

simulated time shows that all had reached equilibrium after

approximately 30 ns of the simulation (Figure 4A).

Because of the differences in conformation of b2 in these

structures, the RMSD of the Ca from the residues participating in

the b1-b2 sheet (residues E217-N244) was analysed in more detail

(Figure 4B). Simulations with the crystal structures XRAY1,

XRAY1-2K3A*, XRAY2-2K3A and XRAY2* showed a low

RMSD value of ,1 Å, demonstrating that the starting confor-

mation of the b2-strand remained stable during the simulations.

This indicates that each of the crystal structures represent

energetically stable conformations of b2. In contrast, simulations

with the NMR structures showed much larger RMSD values of up

to , 3.5 Å for the b2 region, indicating substantial conformational

changes for this part of the molecule. This is furthermore reflected

in an analysis of the root mean square fluctuation (RMSF) of the

residues forming the b1-b2 sheet (Figure 4C), which shows that

NMR1-2K3A, NMR1* and NMR3* have particularly large

fluctuations at residues N236 to F241 that make up the b2 strand.

Together, these results demonstrate that a substantial rearrange-

ment of the residues within b2 occurred during the simulations of

the NMR structures, which have the least structured conforma-

tions of the b2 strand. We note that the structures with the largest

RMSD in the b2 region coincide with those simulations that have

the largest overall RMSD for the whole C-CDA domain

(figures 4A and 4B), suggesting that rearrangement of b2

contributed to the high RMSD values observed.

Secondary structure of the b2 strand during molecular
dynamics simulations

To determine in more detail the conformational changes of the

b2 strand, the stability of the secondary structure elements during

each of the simulations was examined. We did this by plotting

elements of defined secondary structure for each amino acid

against the simulated time (Figure 5, Figure S3 and Figure S4).

This confirmed that the starting conformation of the b2 strand

from the crystal structures remained predominantly stable

throughout the simulations, although temporal closing and

opening of the bulge in the simulations XRAY2-2K3A and

XRAY2* was observed. Simulations with the NMR structures

showed a more dynamical behaviour in the sense that folding of

the b2 strand was generally improved, and in some instances was

periodically disrupted and reformed (Figure 5 and Figure S3). In

particular, the NMR2-2K3A* and NMR3-2K3A simulations

showed the most dramatic stabilization and ordering of the b2-

strand, and NMR2 and NMR3* showed appreciable partial

increases in formation of b2. For NMR1* and NMR1-2K3A we

observed minor increases in formation of b2. These changes in the

b2 region do not appear to influence other secondary structure

elements (Figure S4), indicating that conformational changes

leading to the formation of a more ordered b2-strand are

compatible with the rest of the A3G C-CDA structure.

In order to provide a more quantitative measure for changes in

secondary structure, we calculated the percentage of secondary

structure content for each structure at the beginning and end of

the simulation (table S1). Equivalent proportions of secondary

structure were maintained during the simulations of the crystal

structures. Importantly, all simulations of the NMR structures

showed an increase in b-sheet content with the largest values

observed for NMR2-2K3A* and NMR3-2K3A, in accordance

Figure 3. Alignment of the b1-b2 region from A2 and A3
proteins. Amino acid sequence alignment of the b1-b2 region from
the human A2 and A3 proteins as generated with T-coffee, with the
most conserved residues indicated by grey shading. The positions of b1
and b2 as present in the A2 crystal structure are indicated by arrows
above the alignment. H-bonds between back-bone atoms in the b1-b2
sheet of A2 are indicated with red lines. Purple lines indicate H-bonds
shared by the two crystal structures of the A3G C-CDA domain. The
following H-bonds indicated by purple lines are also present in the NMR
structures: L220-L242 in NMR1-2K3A and NMR3-2K3A; Y222-G240 in all
NMR structures. Green lines indicate H-bonds unique to XRAY1 and
blue lines indicate H-bonds observed in XRAY2-2K3A. Except for the
absence of H-bonds between Y225-L235 in NMR2 and H228-T231 in
NMR3-2K3A, H-bonds indicated by blue lines are also present in the
NMR structures.
doi:10.1371/journal.pone.0011515.g003

MD Simulations of APOBEC3G
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with the results shown in Figure 4. This increase in b-strand

content is mostly attributable to the regularization of b2 of these

NMR structures, as b1, b3, b4 and b5 remained remarkably stable

throughout the simulations (Figure S4).

Hydrogen bonding between b1 and b2
Since the formation of a b-sheet is dependent on the formation

of H-bonds between the two b-strands, we also analysed the

number of H-bonds between the main-chain atoms of the b1-b2

sheet during the simulations (Figure 6). This analysis confirmed

that XRAY1 and XRAY1-2K3A* structures maintain a b1-b2

sheet with a predominantly regular geometry and a minimum of

eight H-bonds that remained stable throughout the simulation

(Figure 6B). Hydrogen bonding also remained stable during the

simulations of XRAY2* and XRAY2-2K3A, and during these

simulations the bulged conformation of b2 was maintained.

Increases in the number of b1-b2 H-bonds from the starting

structure were observed with the NMR1*, NMR2, NMR2-

2K3A*, NMR3* and NMR3-2K3A structures (Figure 6A). Of

these, NMR1* showed the weakest stabilisation of the b1-b2 sheet

by 1 to 2 H-bonds. For the NMR1-2K3A structure there was an

initial loss of H-bonds during the simulation, but in the final stages

this recovered to the same number of H-bonds as present in the

starting structure. Interestingly, during this simulation a different

part of b2 gained in definition at the expense of the defined part of

the b-sheet present in the starting structure (Figure 6C). Together,

these results demonstrate that the A3G C-CDA NMR structures

with a poorly defined b2-strand showed a general tendency

towards the formation of a more stable b1-b2 sheet and this was

observed both in the absence and presence of the five solubility-

enhancing mutations (Figure 6). We note, however, that the most

dramatic stabilisation of b2 was observed with NMR2-2K3A* and

NMR3-2K3A that both contain the solubility enhancing muta-

tions.

We next sought to compare the networks of H-bonds in the

b1-b2 sheet between the different structures. For this purpose

we generated schematic representations of the b1-b2 sheet on

which the most persistent H-bonds observed during the

simulations are indicated (Figure S5). Comparison of the

starting structures with the MD data revealed that the identity

Figure 4. RMSD and RMSF of the A3G C-CDA Ca atoms from initial coordinates during MD simulations. (A) RMSD of the Ca atoms as
function of time for the whole C-CDA domain and (B) for the b1-b2 region only. Colour code: NMR1* in light green; NMR1-2K3A in pink; NMR2 light
bue; NMR2-2K3A* in orange, NMR3* in cyan; NMR3-2K3A in black; XRAY1 in purple; XRAY1-2K3A* in dark green; XRAY2* in yellow and XRAY2-2K3A
dark blue. (C) RMSF of residues 217–247 with respect to their average position over the entire simulated time; the colour code is the same used (A)
and (B).
doi:10.1371/journal.pone.0011515.g004

MD Simulations of APOBEC3G
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of H-bonds in the b1-b2 sheet of the crystal structures was

maintained during the simulation, regardless of the presence or

absence of mutations (Figure S5D and E). There was, however,

a tendency to disrupt the H-bonds between T218 and N244 of

the crystal structure XRAY1, which represent the closing H-

bonds of the b1-b2 sheet. Formation of an H-bond between

V224 and R238 was observed in the simulations with XRAY2*

and XRAY2-2K3A, leading to a more closed conformation of

the bulge (Figure S5E). During the simulations of the NMR

structures, the H-bonding pattern was much more dynamic and,

as described above, was generally characterised by an increase

in interactions. This included the formation of novel H-bonds

that were not present in the starting structures of either the

crystal or NMR structures. Interestingly, the simulations with

NMR2 and NMR3* presented stable formation of H-bonds

between residues T218 to Y222 with G240 to N244, which are

also present in both crystal structures (Figure S5B and C). In

fact, the newly formed L220-L242 interaction from NMR2 and

the T218-N244 interaction from NMR3* were among the most

stable throughout the simulations.

Figure 5. Time evolution of the secondary structure elements during MD simulations. Positions of secondary structure elements a1, b1
and b2 are indicated on the y-axis and the simulation time in nanoseconds is indicated on the x-axis. Simulations labelled with an asterisk contain in
silico created mutations. Colours indicate secondary structure elements at a given time point as determined by DSSP classification; a-helices in blue;
b-sheets in red; turns in yellow; bends in green.
doi:10.1371/journal.pone.0011515.g005
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An interesting convergence towards the H-bonding register

present in the crystal structure XRAY1 was observed during the

simulation with NMR3-2K3A (Figure S5C). In this case, H-

bonds between residues V224, R226 and H228 were formed with

Q237, L235 and V233, respectively, at the expense of the H-

bonds with T231 and V233 that were present in the starting

structure. This rearrangement of H-bonds coincided with

regularisation of the bulge. The simulation with NMR2-2K3A*

demonstrated an alternative regularisation of b2 that was

achieved while maintaining the H-bonding partners of V224,

R226 and H228 (Figure S5B). Thus, our analyses show that the

MD simulations of the NMR structures lead to a better defined

b2 strand, and that there are multiple ways in which this can be

achieved.

Hydration sites in the b1-b2 sheet
We next set out to investigate interactions of the b1-b2 sheet

with the solvent during the A3G C-CDA simulations by means of

MD solvent density analysis [38]. In particular, we analysed the

persistence of water molecules at the b1-b2 region by generating

MD hydration maps (MDHS) for the XRAY1, XRAY2-2K3A,

NMR1-2K3A, NMR2 and NMR3-2K3A structures (Figure 7). In

this type of simulation, the protein structure is restrained to remain

rigid, while allowing the water molecules to reach equilibrium

solvation around the protein [38]. In this manner, sites within the

protein structure that are particularly prone to interact with water

can be identified. Because the protein structure is restrained to

remain rigid, we did not include structures with in silico generated

sequences in this analysis.

Extraction of the MDHS maps from the simulations revealed

that in the NMR structures one to three water molecules are

coordinated within the b1-b2 sheet by the large bulges that are

present in these structures (Figure 7A, B and C). In particular, the

two NMR structures with the largest bulge (NMR1-2K3A and

NMR2, Figure 7A and B) both showed coordination of three

water molecules by the same amino acid residues: Y222, V224 of

the b1-strand and Q237, R238 and G240 of the b2-strand. In the

NMR3-2K3A structure with a smaller b2 bulge, only one water

molecule was observed and this bridges amino acids V224, L235

and Q237 (Figure 7C). In contrast, we did not observe preferential

hydration sites between the two b-strands of the crystal structure

XRAY1 with the continuous b2 strand (Figure 7D), although one

water molecule from the bulk solvent remained in the proximity of

V224 and Q237. Finally, the MDHS analysis performed on

simulations of the XRAY2-2K3A structure predicted the presence

of two persistent water molecules between residues V224 and

L235 (Figure 7E). Importantly, inspection of the electron density

map of the XRAY2-2K3A crystal structure revealed the presence

of two water molecules at precisely this position, thereby validating

our approach (Figure 7F). Together, these results demonstrate that

the presence of a bulged conformation of the b2 strand is driven by

hydration of residues V224, L235 and Q237, and that formation

of an ordered conformation of b2 coincides with the exclusion of

water molecules from the b1-b2 interface.

Figure 6. Structure of the b1-b2 sheet during MD simulations. Number of H-bonds between main-chain atoms of b1 and b2 during the
simulated time. For clarity, data for simulations with NMR and crystal structures are shown in separate plots. Colour coding: (A) NMR1* in light green;
NMR1-2K3A in pink; NMR2 light bue; NMR2-2K3A* in orange, NMR3* in cyan; NMR3-2K3A in black; (B) XRAY1 in purple; XRAY1-2K3A* in dark green;
XRAY2* in yellow and XRAY2-2K3A dark blue. (C) Comparison of the b1-b2 sheet from the starting structures with the most representative structures
derived clustering analysis of the MD simulations for NMR1-2K3A, (D) NMR2 and (E) NMR3-2K3A (F) XRAY1 and (G) XRAY2-2K3A.
doi:10.1371/journal.pone.0011515.g006
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Comparison of proposed DNA binding sites in the A3G C-
CDA

We next analysed the structures of the C-CDA domain of A3G

to determine whether a DNA binding site near the deaminase

catalytic core could be identified. We already indicated that the

positioning of putative DNA binding grooves and the identifica-

tion of residues that interact with the DNA substrate differs widely

between the crystallography and NMR studies. In particular,

entirely different putative DNA binding grooves were proposed

based on the A3G C-CDA NMR1-2K3A structure and the

XRAY1 crystal structure [34](see the initial structures in Figure 8A

and 8D, respectively). Curiously, the XRAY2-2K3A and NMR3-

2K3A show a surface area with grooves that is similar to XRAY1,

whereas NMR2 most closely resembles the groove proposed for

the NMR1-2K3A structure (Figure 8). Furthermore, the charge

distribution over the surface of the protein is different in each of

the reported structures.

In an attempt to provide some clarity on this important subject,

we sought to assess the integrity of the proposed DNA binding

grooves and the charge distribution over the protein surface during

the MD simulations. For this purpose, we performed a clustering

analysis on each of the MD trajectories to identify the most

populated cluster from which a representative structure could be

derived to compare with the starting structure. Upon selection of

this representative structure, the electrostatic charge distribution

was analysed (Figure 8). We also calculated the solvent accessible

surface areas (SASA) of the protein surface for each of the initial

and representative MD structures to highlight the presence of

grooves or pockets (Figure S6). Together, these sets of data

demonstrate that (1) the putative DNA binding grooves from the

XRAY1, XRAY2-2K3A and NMR1-2K3A structures were not

maintained during the MD simulations, and (2) a wide variety of

possible different pockets or grooves on the surface of the A3G C-

CDA, as well as a diverse charge distribution, were displayed

throughout the MD simulations.

To investigate in some detail the source of these differences, we

generated ribbon models of the C-CDA on which residues R215,

E259 and D316 are indicated (Figure S7). These represent the

three amino acids that were commonly identified as mediating

interactions with the DNA substrate by three different studies

[28–30]. This representation of the intitial and representative MD

structures highlights that there is considerable variability in the

positioning of loops and side chains, which underlies the

aforementioned divergence in exposed surface area and charge

distribution. Indeed, the variable positioning of loops AC1, AC3

and AC7 that largely determine the accessibility of the catalytic

core is evident from a comparison of the starting structures from

the crystallography and NMR studies (Figure 9). These loops

consistently emerged as being the most flexible parts of the A3G

C-CDA throughout our set of MD simulations, as identified by a

principal component analysis (PCA) (Figure 9). The considerable

flexibility of these loops will also have contributed to the relatively

Figure 7. Water binding sites in the b1-b2 sheet as determined by MD solvent density analysis. Water molecules that bridge the
backbone of the b1-b2 sheet are indicated in red and their interactions with amino acid residues are indicated with black dotted lines. The water-
mediated interactions between the backbone of the residues V224 and Y222 in b1 and L235, Q237 and R238 in b2 are shown for: (A) NMR1-2K3A; (B)
NMR2; (C) NMR3-2K3A; (D) XRAY1 and (E) XRAY2-2K3A. (F) Representation of the water molecules observed in the electron density map of the crystal
structure XRAY2-2K3A.
doi:10.1371/journal.pone.0011515.g007
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high RMSD values of the structures during the simulations

(Figure 4A). As we did not observe the formation of a common

stable conformation of loops near the catalytic core during MD

simulations, we conclude that there is no evidence to support the

structure of any of the previously proposed DNA binding sites

within the A3G C-CDA domain. This would suggest that DNA

binding to the C-CDA of A3G may instead occur by an induced fit

mechanism. The interaction of A3G with DNA is known to be

dynamic and most likely short-lived as there is ample evidence to

support that A3G can translocate along the DNA to edit multiple

target sites on a single DNA substrate [24,39,40]. This dynamical

behaviour may also underlie the current absence of high resolution

structures of A3G bound to DNA.

Discussion

We have performed a MD study of high-resolution structures of

the A3G C-CDA domain that was prompted by considerable

differences in the integrity of the b2 strand as well as the

organisation and location of a putative nucleic acid binding site. As

three of these structures contained five solubility enhancing

mutations, simulations were performed with and without these

mutations. We confirmed empirically that A3G maintains DNA

editing and virus inhibition activities in the presence of these

mutations.

The b2 strand appears relatively ordered in the crystal structure

XRAY1 but adopts a variety of bulged out conformations in the

NMR structures as well as the second crystal structure XRAY2-

2K3A. Simulations with the crystal structures demonstrated that

the starting conformation of the b2 strand remained stable,

regardless of the presence or absence a bulge interrupting the

strand. On the other hand, a common behaviour for simulations

with NMR structures was observed in the spontaneous formation

of a better ordered and stable b2 strand, as measured in terms of

secondary structure and number of H-bonds involved in the b1-b2

sheet (Figures 5 and 6). We observed a wide range of possible H-

bonding registers within the b1-b2 sheet, which was not limited to

the H-bonds present in the starting structures. Indeed, stabilisation

of the b2 strand was achieved by a variety of H-bonding patterns.

The b2 strand was not universally stabilised in our set of

simulations, and we demonstrated that this is due to differences in

the hydration of residues in the b1-b2 sheet. The presence of a

bulged b2 seems due to a particularly stable hydration site around

residues Y222, V224 of b1 and L235, Q237 and R238 of b2. In

the NMR structures with a bulged b2 strand, these residues

coordinate a different number of water molecules that is

dependent on the extent of the bulge. For instance, the NMR1-

2K3A structure has the most severely disordered b2 strand that

can coordinate three water molecules and showed the least

stabilisation of b2 during the simulations. On the other hand,

simulations with the XRAY1 structure in which the b2 strand

adopts an ordered conformation, we observed that water

molecules were excluded from the b1-b2 sheet.

The conformation of the b2 strand in the A3G C-CDA is of

particular interest because an ordered b2 would allow the

juxtaposition of b-sheets in the N- and C-CDAs of A3G as is

observed in the multimeric crystal structure of the closely related

A2 protein [33]. The formation of an extended b-sheet through

b2-b2 interactions in APOBEC proteins appears to be an

evolutionary conserved feature of these proteins as, in addition

to the A2 crystal structure, there is evidence to suggest that the

AID and A3C proteins are assembled in a similar manner [33,41].

In this regard, it was surprising that several of the A3G C-CDA

structures contained a distorted conformation of b2 that would

disallow the assembly of an elongated b-sheet consisting of the N-

and C-CDA domains. As all available structures of the A3G C-

CDA to date were obtained with constructs from which the N-

CDA was deleted, an exposed b2 strand at the edge of the

structure may not necessarily reflect its presentation or integrity

Figure 8. Charge distribution over the A3G C-CDA surface.
Comparison of the electrostatic surface of the starting structures with
the representative structures from the clustering analysis of the MD
simulations. The potential is ranged from 210kT (red) to +10kT (blue).
(A) NMR1-2K3A; (B) NMR2; (C) NMR3-2K3A; (D) XRAY1 and (E) XRAY2-
2K3A. Dotted lines in (A) and (D) indicate the proposed orientation of
DNA binding grooves.
doi:10.1371/journal.pone.0011515.g008
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within the full length molecule. Indeed, it is possible that this may

have been the cause of the different conformations of b2 observed

in the various structures.

The presence of a predominantly ordered b2 in the XRAY1

crystal structure, as well as the improved definition of b2 during

simulations of the NMR structures, would be consistent with the

assembly of the N- and C-CDA domains into an elongated b-

sheet. However, we recognise that the minimal distortion of b2 as

observed in the crystal structure XRAY1 would still introduce

some deviation from the neatly ordered sheet that is observed in

the structure of A2. This would imply that if the folding of the full-

length A3G protein does proceed by b2-b2 interactions, the

resulting b-sheet may not be as ordered as was previously

predicted based on homology modelling using A2 as a template

[12,16,35](Figure S1). Alternatively, given the diverse array of H-

bond networks within the b1-b2 sheet observed in the starting

structures and during the simulations, it remains possible that the

proximity of the b2 from the N-CDA may induce a specific H-

bonding register. In other words, assembly of the N- and C-CDA

domains via b2-b2 interactions could favour one of the more

ordered conformations of b2, such as those observed in

simulations with NMR2-2K3A* or NMR3-2K3A, over the bulged

conformation. This would also be consistent with our observation

that the bulge is stabilised by bound water molecules, rather than a

stable conformation of the protein backbone itself.

It has been suggested that assembly of a full-length A3G model

through b2-b2 interactions would additionally be prevented by the

inability to link the a6 of the N-CDA to the a1 of the C-CDA

through the residues E191-P199, based on the positioning of a1 in

the NMR3-2K3A structure [31]. In general, definition of a1 in the

NMR studies has not been as good as in the two crystal structures,

which both show that a1 is closely packed against the b-sheet of

the A3G C-CDA (Figure 1) and in a position that would not

restrict the linkage with a6 of the N-CDA (not shown). Together

with our analyses of the structure of the A3G C-CDA domain and

its interactions with the solvent during the molecular dynamics

trajectories this indicates that the possibility of folding the full-

length A3G protein via b2-b2 interactions should not be ruled out.

A definitive positioning of a single stranded DNA binding site

within the A3G C-CDA has also been much debated [28,29,34].

Our analysis of the exposed surfaces for the resolved structures and

the MD simulations thereof further demonstrated the ambiguity in

attempting to identify a pre-defined DNA binding site within the

A3G C-CDA. In addition, we demonstrated that in the absence of

a bound DNA substrate the charged residues involved in the DNA

binding are distributed dynamically over the protein surface. We

showed that differences in positioning of loops AC1, AC3 and

AC7 at present preclude the assignment of a clearly defined DNA

binding pocket within the A3G C-CDA. Loops AC1, AC3 and

AC7 are all in close proximity to the deaminase catalytic core and

contain many of the residues that are thought to contribute to

DNA substrate binding [28–30,42,43]. In particular, these loops

proved the most flexible regions of the molecule during the

simulations (Figure 9). We note that the conformational ambiguity

of b2 may have contributed to confounding the identification of a

DNA binding site. In the primary sequence of the A3G C-CDA,

Figure 9. Conformation of loops near the CDA catalytic core
and their dynamics during the simulations. Ribbon representa-
tions of the A3G C-CDA starting structures (left had column) and
structures after PCA analysis (right hand column) with loops near the
catalytic core highlighted in colour: (A) NMR1-2K3A in green; (B) NMR2
in magenta; (C) NMR3-2K3A in blue; (D) XRAY1 in pink and (E) XRAY2-
2K3A in yellow. Each Ca atom has a cone attached pointing in the

direction of the motion described for the first eigenvector for that atom,
with the size of the cone proportional to the amplitude of motion.
Cones for residues in loops near the catalytic core are shown in blue; all
others are shown in orange. Zinc ions are indicated by grey spheres. In
the XRAY2-2K3A structure a second zinc ion that is remote from the
catalytic core was observed. Plots for simulations with in silico-
generated sequences are not shown.
doi:10.1371/journal.pone.0011515.g009
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b2 is directly followed by loop AC3 and the nature of H-bonding

between b1 and b2 would thus affect the size and orientation of

this loop.

Binding of DNA at the C-CDA of A3G is known to be

influenced by the N-CDA. In particular, the inclusion of this

domain imparts a higher affinity for the DNA substrate to A3G

than the isolated C-CDA by lowering the dissociation constant

from approximately 400 mM to approximately 50 nM [23,24,28].

In addition, the 39 to 59 directional bias of deamination is only

observed upon inclusion of the N-CDA [15]. It is currently

unknown whether this is due to direct contribution of the N-CDA

to DNA binding or indirectly through structural effects that may

determine the conformations of b2, AC1, AC3 and AC7 of the C-

CDA. The former may potentially be reflected in the inhibitory

effect of RNA binding to A3G on DNA editing [23,39,39], as the

association of A3G with RNA has consistently been attributed to

the N-CDA domain [12,14,16,44]. Thus, fully resolving the

controversy surrounding the interaction of A3G with its substrate

DNA is likely to depend on the inclusion of the N-CDA. In the

absence of such data, our current MD analyses point to

considerable flexibility of loops in the proximity of the catalytic

core, which is most readily reconciled with an induced-fit

mechanism for the binding of single stranded DNA substrate to

the A3G C-CDA.

In this study, we have set out to investigate the differences

between various high-resolution structures of the A3G C-CDA

domain, which are primarily defined by differences in conforma-

tion of the b2 strand and access to the catalytic core. Importantly,

we have shown that ordered conformations of b2 emerged during

MD simulations of the NMR structures that had a disordered

starting conformation of b2. An ordered b2 in the A3G C-CDA

would in turn allow the assembly of the N- and C-CDA domains

into an elongated b-sheet, as is observed in the closely related A2

protein. We have furthermore shown that conflicting reports

concerning the identification of a DNA binding site within the

A3G C-CDA are due to differential positioning and the inherent

flexibility of loops near the deaminase catalytic core. Thus, our

analyses have provided some insight into these much debated

facets of A3G and may inform the unravelling of the interactions

of A3G with its nucleic acid substrates. For example, the precise

mechanism behind the differential target site recognition of

different A3 proteins on DNA substrates and the identity of

specific RNAs that bind to A3 proteins remain poorly understood.

In the absence of an A3G structure bound to substrate, or indeed

the structure of the full-length protein, modelling efforts such as

those presented here provide an alternative method for further

addressing these issues.

Materials and Methods

Molecular Dynamics Simulations
MD simulations were performed with the following structures

from the PDB: 2JYW, 2KBO, 2KEM, 3E1U and 3IR2. The

nomenclature adopted here as well as the original references are

given in table 1. For simulations of structures derived from NMR

studies, the top ranked structure from the deposited bundle,

representing the lowest energy structure, was selected. We also

performed MD simulations of mutant version of these structures,

which were generated in silico using PyMOL (www.pymol.org).

Calculations were performed with the GROMACS package, [45]

using the GROMOS96 force field [46]. Simulations were

performed at pH = 7 and the protonation states of pH-sensitive

residues were as follows: Arg and Lys were positively charged, Asp

and Glu were negatively charged, and His was neutral. The net

charge of the protein was neutralized by the addition of Cl2 and

Na+ ions. The systems were solvated in a box of

80 Å680 Å680 Å and SPC water molecules (approximately

16000) were added [47], in a solution of 50 mM NaCl. Periodic

boundary conditions were applied and the Berendsen’s algorithm

[48] for temperature and pressure coupling was adopted (300 K

and 1 atm, respectively). After a first steepest descent energy

minimization with positional restraints on the solute, the LINCS

algorithm was used to constrain the bonds [49] and to carry out an

initial 200 ps simulation with the positions of the solute atoms

restrained by a force constant of 3000 kJ/(mol nm2) to let the

water diffuse around the molecule and for equilibration. The

particle mesh Ewald method (PME) [50] was used for the

calculation of electrostatic contribution to non bonded interactions

(grid spacing of 0.12 nm) with a cut-off of 1.4 nm and a time step

of 2 fs. The GROMACS package and self-written programs have

been used for the analysis of the data. SASA values were calculated

with the POPS program [51].The MD solvent distribution was

calculated as described previously [38]. The Dynamite Server

(www.biop.ox.ac.uk) was used to produce PCA analysis of the MD

trajectories. Secondary structure analysis was performed with

DSSP [52]. Images were generated with visual molecular

dynamics (VMD 1.8.5.) [53].

Plasmids and cloning
Wild type and mutant A3G expression plasmids for infectivity

studies and the bacterial editing assay were generated as described

previously [12,54].

Single-cycle infectivity assays
Stocks of HIV-1/Dvif [55] were prepared by cotransfection of

35-mm diameter monolayers of 293T cells with 0.5 mg of pA3G

expression vector and 1.0 mg of pIIIB/Dvif using polyethylenimine

(PEI). After 24 hr, the supernatants were harvested and volumes

corresponding to 5 ng p24Gag used to infect 105 TZM-bl indicator

cells. The producer cells were lysed in SDS-containing loading dye

for the analysis of protein expression. The induced expression of b-

galactosidase in whole cell lysates was measured 24 hr after the

initiation of infection using the Galacto-Star system (Applied

Biosystems).

Analysis of protein expression by immunoblotting
Whole cell lysates prepared from virus producing cells were

resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE,

11% gel) and analysed by immunoblotting using primary

antibodies specific for A3G [18] and Hsp90 (sc7947: Santa

Cruz). Blots were resolved using fluorescent secondary antibodies

and the LI-COR infrared imaging technology (LI-COR UK

LTD).

E. coli mutation assay
The KL16 strain of E. coli was transformed with pTrc99A-

based, IPTG-inducible A3G expression vectors or the empty

vector [37]. Individual colonies were picked and grown to

saturation in LB medium containing 100 mg/ml ampicillin and

1 mM IPTG. Appropriate dilutions were spread onto agar plates

containing either 100 mg/ml ampicillin or 100 mg/ml rifampicin

and incubated overnight at 37uC. Mutation frequencies were

recorded as the number of rifampicin-resistant colonies per 109

viable cells, which were enumerated using the ampicillin-

containing plates. Colony counts were recorded in this manner

on 12 rifampicin- and 12 ampicilin-containing plates for each

construct, in sets of 4 of each at one time. To average the repeat
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experiments, the average colony count for wild type A3G was set

at 100 and all other scores were normalized to this value.

Supporting Information

Figure S1 Implications of the conformation of b2 for the folding

of full-length A3G. View of the extended b-sheet that connects the

N- and C-CDA in a homology model of full-length A3G as a

dimer [12]. Monomer subunits are shown in magenta and green.

The inner N-CDA domains mediate dimerisation of A3G and the

catalytically active C-CDA domains are on the outer part of the

model. In the left-hand monomer subunit of the full-length A3G

homology model (shown in magenta), the structure of the XRAY1

C-CDA is superimposed (shown in blue). (B) Close up of the

proposed b2-b2 interaction in the model of full-length A3G

showing the b1-b2 sheets from the N- and C-CDA in magenta. (C)

The distorted b2 sheet observed in NMR-2K3A is shown in blue

and impedes interaction with b2 of N-CDA model. (D) The

ordered conformation of b2 observed in XRAY1 is shown in blue

and would be consistent with connecting the N- and C-CDA

domains through b2-b2 interactions.

Found at: doi:10.1371/journal.pone.0011515.s001 (1.67 MB

PDF)

Figure S2 Positions of solubility enhancing mutations in A3G-

2K3A. (A) A ribbon model of the NMR1-2K3A structure (PDB

code 2JYW) is shown with the positions of the five solubility

enhancing mutations shown in magenta. The same structure is

shown in (B) after rotation by 180u.
Found at: doi:10.1371/journal.pone.0011515.s002 (0.40 MB

PDF)

Figure S3 Time evolution of the b1-b2 sheet during duplicate

MD simulations. Positions of secondary structure elements a1, b1,

b2 and a2 are indicated on the y-axis and the simulation time in

nanoseconds is indicated on the x-axis. Simulations labelled with

an asterisk contain in silico created mutations. Colours indicate

secondary structure elements at a given time point as determined

by DSSP classification; a-helices in blue; b-sheets in red; turns in

yellow; bends in green. Duplicate simulations are indicated as

MD1 and MD2. Simulations described in detail in the text

correspond to the data from MD1.

Found at: doi:10.1371/journal.pone.0011515.s003 (6.49 MB

PDF)

Figure S4 Time evolution of the secondary structure elements

during MD simulations. Positions of secondary structure elements

a-helices 1 through 6 and, b-strands 1 through 5 are indicated on

the y-axis and the simulation time in nanoseconds is indicated on

the x-axis. Simulations labelled with an asterisk contain in silico

created mutations. Colour indicate secondary structure elements

at a given time point as determined by DSSP classification; a-

helices in blue; b-sheets in red; turns in yellow; bends in green.

Found at: doi:10.1371/journal.pone.0011515.s004 (4.07 MB

PDF)

Figure S5 H-bonding between b1 and b2 in A3G initial

structures and during simulations. Schematic representations of

the b1-b2 sheet with H-bonds between the main-chain atoms

indicated by dotted lines. H-bonds present in the initial structures

are indicated in black. H-bonds observed during the simulations

are colour coded to indicate the life time as a percentage of the

total simulation time: 20%–60% in green, 61% to 80% in blue and

81% to 100% in red. The left column shows the b1–b2 sheet for

the initial structures, the middle column for simulations with the

wild-type sequence and the right column for simulations with the

2K3A mutations. Mutated residues are indicated in red. (A)

NMR1-2K3A, (B) NMR2, (C) NMR3-2K3A, (D) XRAY1 and (E)

XRAY2-2K3A.

Found at: doi:10.1371/journal.pone.0011515.s005 (1.21 MB

PDF)

Figure S6 Exposed surface area of the A3G C-CDA. Compar-

ison of the exposed surface area of starting structures with the

representative structures from the clustering analysis of MD

simulations. Residues indicated in purple have a SASA value

greater than 90 Å2 and those indicated in green have a SASA

value lower than 40 Å2. SASA values were calculated with the

POPS program. (A) NMR1-2K3A; (B) NMR2; (C) NMR3-2K3A;

(D) XRAY1 and (E) XRAY2-2K3A.

Found at: doi:10.1371/journal.pone.0011515.s006 (4.89 MB

PDF)

Figure S7 Positioning of amino acids that mediate interactions

of the A3G C-CDA with the DNA substrate. Comparison starting

structures with the most representative structure extracted by

clustering analysis from the MD simulations as ribbon represen-

tations. Amino acid residues R215, E259 and D316 are shown in

stick representations and are indicated with the letters R, E and D,

respectively. These three amino acids represent the agreement

between three independent studies reporting residues within the

A3G C-CDA that mediated interactions with the DNA substrate

[28–30]. The zinc ion at each catalytic core is shown as a grey

sphere. (A) NMR1-2K3A; (B) NMR2; (C) NMR3-2K3A; (D)

XRAY1 and (E) XRAY2-2K3A.

Found at: doi:10.1371/journal.pone.0011515.s007 (3.63 MB

PDF)

Table S1 Percentage of secondary structure in the A3G C-CDA

domain before and after simulations. Secondary structure was

calculated with the DSSP algorithm for the initial and represen-

tative structures from clustering analysis. We performed duplicate

simulations with each structure, which are marked as MD1 and

MD2 in the table. Simulations described in detail in the text

correspond to the data from MD1.

Found at: doi:10.1371/journal.pone.0011515.s008 (0.15 MB

DOC)
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