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Two receptor tyrosine phosphatases
dictate the depth of axonal stabilizing
layer in the visual system
Satoko Hakeda-Suzuki*, Hiroki Takechi, Hinata Kawamura, Takashi Suzuki*

School of Life Science and Technology, Tokyo Institute of Technology, Yokohama,
Japan

Abstract Formation of a functional neuronal network requires not only precise target

recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little

is known about the molecular mechanisms underlying the stabilization of axonal connections after

reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine

phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize

axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining

loss-of-function and genetic rescue experiments, we found that the depth of the final layer of

stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic

activity, while specific features of their ectodomains contribute to the choice between two synaptic

layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping

downstream but diversified upstream properties of two RPTPs can shape layer-specific wiring.

DOI: https://doi.org/10.7554/eLife.31812.001

Introduction
Receptor protein tyrosine phosphatases (RPTPs) play a pivotal role in the development and function

of the nervous system by regulating the activity, localization, and binding of various molecules. The

extracellular components of RPTPs are diverse and grouped into eight subtypes (Johnson and Van

Vactor, 2003). Type IIA RPTPs contain extracellular immunoglobulin-like (Ig) domains, fibronectin

type III domains (FNIII), and two intracellular phosphatase domains. Three type IIA RPTPs in verte-

brates, LAR, PTP-d, and PTP-s are known to be involved in nerve growth, guidance, regeneration,

and synaptogenesis (Ensslen-Craig and Brady-Kalnay, 2004; Stoker, 2015).

Of six RPTPs found in Drosophila, two phosphatases, LAR and Ptp69D have a similar structure

and are classified as Type IIA RPTPs. These Drosophila phosphatases have been extensively studied

in the nervous system. It has been shown that several RPTPs, including LAR and Ptp69D, have some

overlapping functions in the Drosophila nervous system (Desai et al., 1997; Jeon et al., 2008;

Sun et al., 2000; Sun et al., 2001). For example, Ptp10D and Ptp69D exhibit overlapping function

in CNS axon guidance (Sun et al., 2000). Most ISNb motor axons have normal projections in Ptp69D

or Ptp99A single mutants, but double mutants have severe axonal defects (Desai et al., 1996). Simi-

larly, both LAR and Ptp69D play an important role during axon guidance and target selection in the

embryonic CNS and PNS (Desai et al., 1997; Krueger et al., 1996; Sun et al., 2000) and display

considerable overlapping function (Desai et al., 1997).

The Drosophila visual system has a layered structure, as is commonly observed both in verte-

brates and invertebrates. Each layer is specifically innervated by processes from specific sets of affer-

ent neurons. Moreover, formation of a functional neuronal network requires not only precise target

neuron recognition, but also stabilization of the axonal contacts within their appropriate synaptic

layer during development. Owing to its simple and stereotyped structure with innervations from
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elaborate arrays of distinct photoreceptor axons, the Drosophila visual system is a widely used

model for exploring the molecular mechanisms underlying the wiring of layer-specific connections. In

particular, the medulla, which is the second ganglion of Drosophila optic lobe, has characteristic lam-

inar structure and is divided into ten layers, M1 to M10. The axons from photoreceptors R7 and R8

terminate at the layer M6 and M3, respectively.

RPTPs have been shown to be important for layer-specific targeting. LAR and Ptp69D are

required for R7 axons to create proper connections in medulla layer M6 (Newsome et al., 2000a).

In LAR mutants, R7 axons initially target to the correct layer at early pupal stages, but they later

retract to the R8 axon temporary layer, M3 (Clandinin et al., 2001; Maurel-Zaffran et al., 2001).

The degree of functional redundancy between LAR and Ptp69D in selection of the final targeting

layer (M6 versus M3) has also been assessed previously. Rescue experiments revealed that LAR can

substitute for Ptp69D, but not vice versa (Maurel-Zaffran et al., 2001). In addition, it has been sug-

gested that LAR phosphatase activity is not required for R7 targeting depending on Ptp69D phos-

phatase activity (Hofmeyer and Treisman, 2009). These findings indicate that LAR and Ptp69D have

both highly similar and divergent functions, but their distinct versus overlapping effects on down-

stream signaling pathways governing layer specification of R7 axons remain unclear.

In this study, we show that the R7 axons lacking both LAR and Ptp69D display a striking pheno-

type: termination in the lamina without innervation to the medulla. Thus, building on previous stud-

ies describing roles of LAR and Ptp69D in layer M3 versus M6 determination within the medulla, we

show here that they have a crucial function for multi-layer specification in wider range from lamina to

the medulla. Moreover, characterization of R7 axon extension over pupal development revealed that

the double mutant R7 axons extend normally at the beginning of the pupal stage, but gradually

retract from their correct temporary layer. Genetic manipulations leading to graded expression of

LAR and Ptp69D indicated that R7 axons retract either to the lamina, surface of the medulla

(referred to as M0 as described in [Akin and Zipursky, 2016]), M3, or M6 (as in wild type), according

to the total expression level of each gene. Combining loss-of-function and genetic rescue experi-

ments, we demonstrated that the depth of the final axon termination layer is controlled by (1) the

cumulative amount of the cytoplasmic signaling activity of LAR and Ptp69D, and (2) distinct layer-

specific expression patterns of ligands selective to the ectodomains of either LAR or Ptp69D. These

data demonstrate how the convergence of common downstream signals generated by receptors

with redundant downstream targets but different upstream ligands can shape layer-specific wiring in

the brain.

Results

LAR and Ptp69D have redundant functions in layer-specific targeting of
R7 axons
To determine if LAR and Ptp69D have overlapping functions in layer-specific targeting and stabiliza-

tion of R7 axons, we conceived a strategy to knock them out simultaneously in photoreceptors using

the FLICK system (Hakeda-Suzuki et al., 2011) combined with null alleles of LAR and Ptp69D. We

first applied the FLICK system to generate LAR and Ptp69D single knockout mutants (see Methods)

and confirmed the phenotype of each (Figure 1). As reported previously, 90% of the R7 axons from

the LAR single mutant and 20% of the R7 axons from the Ptp69D single mutant photoreceptors sta-

bilized inappropriately at M3 (Figure 1A–C and H) (Hofmeyer and Treisman, 2009; Maurel-

Zaffran et al., 2001; Newsome et al., 2000a). The lower penetrance of the Ptp69D phenotype here

is probably due to the low efficiency of the FLICK system. Next, we generated double-knockout

FLICK mutants. Surprisingly, more than 80% of the R7 axons of LAR, Ptp69D double mutants failed

to innervate the medulla and terminated inside the lamina (Figure 1D–H, See Materials and methods

for quantification details). To exclude the possibility of R7 cell death, we checked agarose sections

of double mutant retina for the existence of R7 cell bodies, and whether the axons were extending

from those cell bodies (Figure 1E and F). These results indicate that LAR and Ptp69D share a com-

mon function in R7 axons to drive innervation to the medulla.
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Figure 1. Defects of R7 axons in the Lar, Ptp69D double mutant. (A–D) Horizontal image of the adult medulla; WT (A), LAR mutant (B), Ptp69D mutant

(C) and LAR, Ptp69D double mutant (D). Photoreceptor axons were labeled with mAb24B10 (red), R7 photoreceptor axons with Rh4-mCD8GFP (green),

and medulla layers with an antibody to N-Cadherin (blue). Medulla layers are indicated with white lines. In WT, all R7 axons terminated at layer M6 (A).

90% of R7 axons in LAR mutant (B), and 20% of R7 axons in Ptp69D mutant (C, arrows) terminated improperly in layer M3. In Lar, Ptp69D double

Figure 1 continued on next page
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Either LAR or Ptp69D is required for creating stable connections in the
R7 temporary layer
It has been reported that, in LAR mutants, R7 axons target the correct R7 temporary layer at the

early pupal stage, but later retract to the R8 recipient layer (Clandinin et al., 2001, Ting et al.,

2005). To assess the course that R7 axon terminals take to reach their final layer in double mutants,

we observed R7 axons at several stages of pupal development (Figure 2). As the FLICK double

mutation was often developmentally lethal, we were not able to obtain sufficient numbers of pupae

with the correct genotype for these analyses. Therefore, we knocked down LAR and Ptp69D with

eye specific RNAi driven by GMR-Gal4 in the flies with one copy of both genes removed. The R7

axons were marked by R7-specific Flippase (20C11FLP) (Chen et al., 2014) and UAS-FSF-mCD8GFP

which was expressed under the GMR-Gal4 driver.

The adult phenotype of the R7 axons in these flies was similar to the FLICK double mutants

(Figure 2G’). As in the LAR mutants, most of the R7 axon terminals reached their proper layer up to

24 hr after puparium formation (24hrAPF) (Figure 2A–B’). Around 36hrAPF, the shape of the growth

cones was thinner and several axons had started to retract (Figure 2C and C’). At 42hrAPF, we

found most of the axon terminals were collapsed and detached from the R7 temporary layer

(Figure 2D and D’). At 48hrAPF hardly any axons remained inside the medulla (Figure 2E and E’)

and this persisted through adulthood (Figure 2F–G’). These observations suggest that LAR and

Ptp69D have a common role to promote attachment and stabilization of axons in the R7 temporary

layer during the development of the medulla.

We then assessed requirements for LAR and Ptp69D at specific time points in development. To

test the temporally regulated roles of LAR and Ptp69D, we modulated the levels of LAR and Ptp69D

expression at several pupal developmental stages using temperature sensitive Gal80 (Gal80ts). For

this, we drove LAR and Ptp69D RNAi simultaneously in photoreceptors by GMR-Gal4, which resulted

in the termination of R7 axons at the surface of the medulla, M0 (Figure 2—figure supplement 1).

When the LAR and Ptp69D expression level was recovered at 25%APF, R7 axons stabilized in the

proper layer M6. However, when we restored LAR and Ptp69D expression levels at 50%APF and

75%APF, R7 axons, especially in posterior region, mostly terminated in the M0 (Figure 2—figure

supplement 1). In the converse experiment, decreasing the expression level at 12%APF or 25%APF

caused some R7 axons to retract, but this did not occur upon knockdown at 50%APF (Figure 2—fig-

ure supplement 1). These results indicate that LAR and Ptp69D are required between 25%APF and

50%APF to promote axonal attachment and stabilization, which coincides with the period that R7

axons start to retract in the double mutant.

The expression level of LAR and Ptp69D determines the final layer of
axon termination and stabilization
We found that some of the R7 axons in single LAR and Ptp69D mutants stably terminated in M3,

whereas the axons of double mutants retracted to the lamina. These results led us to postulate that

the total level of LAR and Ptp69D phosphatase activity might determine the final depth of R7 axons.

To examine this hypothesis, the expression level of each gene was manipulated simultaneously. (Fig-

ure 3, Figure 3—figure supplement 1). First, to achieve the highest expression of each gene, we

suppressed the expression of double RNAi by temperature sensitive Gal80ts at permissive

Figure 1 continued

mutants, R7 axons did not innervate the medulla and instead terminated inside the lamina (D: arrows). The magnified images of R7 terminals are shown

on the right side. (E, F) Horizontal agar section of WT (E) and Lar, Ptp69D double mutant (F), labeled with Rh4-mCD8GFP (green) and N-Cadherin

(magenta). R7 axons extending from their cell bodies (arrowheads) can be observed in the retina of the double mutant (F). (G) A schematic drawing of

the phenotype of R7 axons in single mutants and double mutant of LAR and Ptp69D. (H) Quantification of the R7 axons terminating in each layer for

each genotype. The number of axons terminating inside the lamina was estimated. See Methods for quantification details. Scale bars: (A) 20 mm (E) 50

mm.

DOI: https://doi.org/10.7554/eLife.31812.002

The following source data is available for figure 1:

Source data 1. Excel file compiling source data for the Figure 1H.

DOI: https://doi.org/10.7554/eLife.31812.003
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Figure 2. Retraction of R7 axons in the LAR, Ptp69D double mutant. (A–G’) The R7 axons of control (A–G) and LAR, Ptp69D double heterozygote with

double RNAi (A’–G’) during the pupal stage were visualized with mCD8GFP (green) and counterstained with mAb24B10 (red) and N-Cadherin (blue).

More than two samples were analyzed for each stage. Higher magnification images are shown on the right side of each panel. In late third instar larvae

(A, A’) and pupae at 24hrAPF (B, B’), R7 axons of double mutant reached the R7 temporary layer correctly. At 36hrAPF (C, C’), R7 axon terminals started

Figure 2 continued on next page
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temperature (23˚C), which resulted in almost normal targeting phenotype. In contrast, to achieve the

lowest expression, the heterozygous mutants of LAR and Ptp69D that also expressed RNAi for each

gene without Gal80ts at 25˚C were used, which displayed as strong a phenotype as homozygous

mutants (Figure 3E and F). Intermediate RNAi expression levels were set by housing flies at a series

of different temperatures (see Materials and methods for details). In this way, we were able to con-

trol the expression level of LAR and Ptp69D in a temperature controllable manner and thereby gen-

erated a series of mutants with graded expression levels of each gene (Figure 3, Figure 3—figure

supplement 1). At the lowest expression level, most of the R7 axons retracted to the lamina, and

the number of R7 axons stabilizing appropriately in the medulla gradually increased as the expres-

sion level of LAR and Ptp69D was increased through temperature control (Figure 3). Two key con-

clusions can be deduced from this experiment. First, the depth of the final axon termination layer is

controlled by the cumulative expression level of LAR and Ptp69D. Second, the final layer of axon ter-

mination and stabilization determined by LAR and Ptp69D levels seems to shift in a step-wise man-

ner, M6 to M3 to M0 to the lamina layer in decreasing order of expression, thus indicating that there

are discontinuous adhesive properties across the layers of the medulla. These results suggest that

LAR and Ptp69D play both redundant and additive roles in stabilizing R7 axons in the medulla and

determining the final layer position.

LAR and Ptp69D cytoplasmic activity correlates with the depth of the
layer of termination
We next asked what region of the LAR and Ptp69D proteins was responsible for determining the

layer of termination: cytoplasmic phosphatase activity or ectodomains? To dissect the functional sim-

ilarity and difference between the domains of LAR and Ptp69D, we tested requirements for their cat-

alytic activity by selectively expressing modified or wild type LAR and/or Ptp69D transgenes in the

photoreceptors of the double mutants (Figure 4, Figure 4—figure supplement 1). LAR has two cat-

alytic domains (D1 and D2) and a catalytically obligatory cysteine was mutated to serine in phospha-

tase-dead LAR transgenes (Krueger et al., 2003). As for Ptp69D, aspartate residues in the catalytic

domain have been shown to be essential. When these residues were changed to alanine, it resulted

in a mutant protein that acts as a substrate trap, which can bind but not efficiently hydrolyze phos-

photyrosine (Garrity et al., 1999).

The projection defects observed in our double mutants were fully rescued by introducing unmodi-

fied full length LAR, with almost all the R7 axons attaching to their correct target, M6 (Figure 4B

and M). This result is consistent with previous findings that R7 mistargeting in a Ptp69D single

mutant can be rescued by full length LAR (Maurel-Zaffran et al., 2001). Next, we examined the abil-

ity of mutated forms of LAR to rescue the phenotype. Deletion of the extracellular LAR FnIII7-9

domains could not rescue the double mutant phenotype, indicating that FnIII domains are essential

to stabilize R7 axons inside the medulla (Figure 4F and M). Not surprisingly, we also found that the

existence of LAR FnIII7-9 was sufficient to rescue the double mutant phenotype (Figure 4G, H and

M); its presence was previously reported to be sufficient for rescuing LAR single mutant

(Hofmeyer and Treisman, 2009). We then tested a series of mutated cytoplasmic domain frag-

ments, which in all cases retained the normal LAR ectodomain (Krueger et al., 2003). Specifically,

we assessed transgenes with the second or both phosphatase domains deleted (Figure 4C and M),

and phosphatase-dead mutations affecting one or both phosphatase domains (Figure 4D, E and

M). R7 axons gradually shifted their final termination layer depending on the strength of the muta-

tion in the cytoplasmic domain (Figure 4M): the stronger the mutation, the shallower the layer of

termination. The double phosphatase-dead (2xCS) construct rescued 40% of the R7 axons projecting

Figure 2 continued

to get thinner. At 42hrAPF (D, D’), growth cones had collapsed and retraction of R7 axons was observed. At 48hrAPF (E, E’), almost all the R7 axons

retracted out of medulla and remained in that location into adulthood (F–G’). Scale bars: 20 mm.

DOI: https://doi.org/10.7554/eLife.31812.004

The following figure supplement is available for figure 2:

Figure supplement 1. Temporal requirement of LAR and Ptp69D.

DOI: https://doi.org/10.7554/eLife.31812.005

Hakeda-Suzuki et al. eLife 2017;6:e31812. DOI: https://doi.org/10.7554/eLife.31812 6 of 25

Research article Developmental Biology and Stem Cells Neuroscience

https://doi.org/10.7554/eLife.31812.004
https://doi.org/10.7554/eLife.31812.005
https://doi.org/10.7554/eLife.31812


to the medulla. DD2 had less capability to rescue the phenotype than 2xCS, despite having a normal

D1 phosphatase domain. Therefore, the ability of LAR to rescue the R7 stabilization phenotype is

not necessarily dependent on phosphatase activity, and also relies on putative downstream interact-

ing domain(s) residing in the proximity of D2.

On the other hand, Ptp69D constructs lacking catalytic activity of the first phosphatase domain

DA1 did rescue the double mutant to the same extent as intact Ptp69D (Figure 4I, K and N)

(Garrity et al., 1999; Sun et al., 2001). However, when both DA1 and DA2 catalytic activities were

lost, Ptp69D did not rescue the R7 phenotype to any extent, as with the case for Ptp69D mutants

Figure 3. Final stabilizing layer determinations by LAR and Ptp69D. (A–E) Genetic manipulation using a temperature sensitive Gal80ts system driving

RNAi expression was employed to manipulate the cumulative expression level of LAR and Ptp69D. (A–C) LAR, Ptp69D RNAi transcripts were expressed

using the eye specific GMR-Gal4 line and RNAi expression level was controlled using Gal80ts (A: 23˚C, B: 25˚C, C: 27˚C). (D, E) LAR, Ptp69D RNAi was

simultaneously expressed using eye specific GMR-Gal4 in the Lar�/+, Ptp69D�/+ background (D: 18˚C E: 25˚C). Photoreceptor axons are labeled with

mAb24B10 (red), R7 photoreceptor axons with Rh4-mCD8GFP (green), and the medulla layers with an antibody to N-Cadherin (blue). The medulla

layers are indicated with white lines. (F) Quantification of the R7 axons terminated in each layer. The depths of the R7 axons depicted in A-E were

quantified and defined according to expression levels of 5 to 1 (A=5, B=4, C=3, D=2, E=1). The number of axons terminating inside the lamina was

estimated as in Figure 1. Scale bar: 20 mm.

DOI: https://doi.org/10.7554/eLife.31812.006

The following source data and figure supplement are available for figure 3:

Source data 1. Excel file compiling source data for the Figure 3F.

DOI: https://doi.org/10.7554/eLife.31812.008

Figure supplement 1. The expression level of LAR and Ptp69D in the fly strain used in Figure 3.

DOI: https://doi.org/10.7554/eLife.31812.007
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Figure 4. Specificity of RPTP signaling in R7 stabilization. (A–L) Horizontal images of the medulla of LAR, Ptp69D adult double mutant that also

harbored the indicated transgene expressed using the GMR-Gal4 driver. Photoreceptor axons are labeled with mAb24B10 (red), R7 photoreceptor

axons with Rh4-mCD8GFP (green), and the medulla layer with an antibody to N-Cadherin (blue). Medulla layers are indicated with white lines. R7 axon

retraction in the Lar, Ptp69D double mutant eye (A) is almost completely rescued with full length Lar (LARFL), (B) but this is not the case if the

Figure 4 continued on next page
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lacking the entire cytoplasmic domain (Figure 4J, L and N). These results are consistent with previ-

ous reports (Garrity et al., 1999; Hofmeyer and Treisman, 2009; Sun et al., 2001) that unlike LAR

intracellular domains, phosphatase activity is essential for Ptp69D signaling. We have assessed the

expression level of the rescuing transgenes using antibody staining against larval eye discs (Fig-

ure 4—figure supplement 1). The transgene expression was monitored to show that they are all

expressed above the endogenous level, in considerably equivalent and sufficient manner. This indi-

cates that the rescuing ability is not correlated with the expression level of the transgenes, but rather

with the protein domains and the mutations. Altogether, we have now successfully demonstrated

that the degree of intracellular signaling plays a key role in layer termination.

Different specificities in the LAR versus Ptp69D ectodomains contribute
to the choice between layer M3 versus M6 stabilization
Despite LAR and Ptp69D functions being highly redundant, we noticed some differences between

their phenotypes in the rescue experiments. Interestingly, in LAR rescue, the R7 axons that remained

inside the medulla mostly stabilized at layer M6 or M0, but very few at layer M3 (Figure 4M), which

stands in sharp contrast with the LAR mutant, where almost all R7 axon terminals stabilized in layer

M3. This suggests that the LAR preferably directs R7 axon stabilization in layer M6, and to some

extent M0.

In contrast, R7 axons in full length unmodified Ptp69D-rescued double mutants stabilized only in

layer M3 (Figure 4N). Moreover, R7 axons were not stabilized in layer M6 even at the highest levels

of Ptp69D expression (Figure 4N: LARM+PtpFL). These results indicate that Ptp69D alone does not

have the ability to stabilize R7 axons to their proper layer M6, but does prevent R7 axons from

retracting back to the lamina through adhesion in layer M3. Given that common domain accounting

for this preference seems to reside in the ectodomains of LAR and Ptp69D (Figure 4M and N), we

asked whether the expression pattern of potential ligands differs between LAR and Ptp69D. To

detect ligand expression profile for each protein, we incubated the sectioned mid-pupal brain with

an alkaline phosphatase (AP)-conjugated ectodomain of LAR and Ptp69D, a technique which is often

used in embryonic nervous systems to detect the anatomical profile of ligand expression (Fox and

Zinn, 2005). If the ectodomain binds to a potential ligand, ligand distribution among the medulla

layers can be visualized through AP staining. Consistent with the genetic experiments, we observed

a difference in ectodomain staining between LAR and Ptp69D: LAR ectodomain staining was mainly

found in layers M0, M3, and M6 layers, while vague staining of the Ptp69D ectodomain was

observed in layer M3 layer with no positive signal in layer M6 (Figure 4—figure supplement 2).

Figure 4 continued

intracellular domain (LARDC) (C) or the extracellular FNIII 7–9 domains are deleted (LARDFn7-9) (F). Lar constructs without activity from either the first

phosphatase domain (LARD1CS) (D) or both phosphatase domains (LAR2XCS) (E) conveyed partial rescue. LAR constructs without extracellular Ig1-3

domains fully rescued R7 phenotype (G), and presence of extracellular FNIII 7–9 (LARDIg1-3DFn1-6) was sufficient to rescue the double mutant

phenotype (H). Notably, the constructs without Ig domains caused some R7 axons to overextend beyond M6 layer (arrowheads in G and H). Expressing

either full length Ptp69D (PTP69D FL) (I) and Ptp69D lacking the first phosphatase domain (Ptp69D DA1) (K) rescued R7 retraction in Lar, Ptp69D double

mutant axons to the Lar single mutant levels, but with termination in layer M3. Expression of Ptp69D lacking the intracellular domain (Ptp69DDintra) (J)

or both phosphatase activity (Ptp69D DA1DA2) (L) did not rescue the double mutant phenotype at all. (M, N) Quantification of R7 terminations in each

layer for each of the indicated LAR (M) or Ptp69D (N) rescue transgenes. Abbreviations: DM stands for Lar, Ptp69D double mutant, PtpM for Ptp69D

mutant, and LARM for Lar mutant. The transgenes of Ptp69D are abbreviated as ‘Ptp’. On the right side of the graph, composition of the intracellular

phosphatase domains and ectodomain are indicated. ‘E’ stands for endogenous protein and ‘+’ represents overexpression by GMR-Gal4. The number

of axons terminating inside the lamina was estimated as in Figure 1. Scale bar: 20 mm.

DOI: https://doi.org/10.7554/eLife.31812.009

The following source data and figure supplements are available for figure 4:

Source data 1. Excel file compiling source data for the Figure 4M and N.

DOI: https://doi.org/10.7554/eLife.31812.012

Figure supplement 1. The expression level of LAR and Ptp69D transgenes used in Figure 4.

DOI: https://doi.org/10.7554/eLife.31812.010

Figure supplement 2. Layer-specific binding of LAR and Ptp69D extracellular domain.

DOI: https://doi.org/10.7554/eLife.31812.011
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Taken together, these results demonstrate that LAR has a preference for directing R7 axons stabi-

lization to layer M6, whereas Ptp69D selectively drives stabilization to M3. Both findings can be at

least in part explained by differences in the localization pattern of putative LAR versus Ptp69D

ligands.

LAR and Ptp69D can determine the stabilizing layer of R8 axons
We next sought to determine if LAR and/or Ptp69D can also direct R8 axon stabilization in layer M3

(Figure 5, Figure 5—figure supplement 1). In LAR, Ptp69D double mutants, R8 axons terminated

at the medulla surface M0 or between layers M1 and M3 (Figure 5B and G). We found that either

LAR or Ptp69D expression in the double mutant restored R8 axon targeting (Figure 5C, E and G).

We further found that LAR phosphatase activity was dispensable, whereas that of Ptp69D was essen-

tial for proper M3 targeting of R8 axons (Figure 5D, F and G). Furthermore, the overexpression of

LAR in the double mutants resulted in some R8 axons extending past layer M3, and instead stabiliz-

ing in M6. The ratio of R8 axons terminating in layer M6 correlated with LAR cytoplasmic activity

(Figure 5C, D and G). However, the mere overexpression of LAR did not cause overextension, likely

due to M3 adhesive properties driven by Ptp69D (Figure 5—figure supplement 1). Based on these

observations, we conclude that R8 axons follow similar rules as R7 axons in achieving their proper

position. In each case, LAR stabilizes axons in layer M6, while Ptp69D stabilizes axons in layer M3.

The LAR ectodomain can signal through the Ptp69D cytoplasmic
domain
If activity of LAR and Ptp69D is driven by upstream ligands, it suggests that cytoplasmic deletions

may behave as dominant negatives in some circumstances. This hypothesis led us to test whether

LAR and Ptp69D lacking their intracellular domains (LARDC and Ptp69DDintra, respectively) seques-

trate their putative ligand(s), thereby acting as dominant negatives (Figure 6). The overexpression of

LARDC or Ptp69DDintra, as well as full length LAR and Ptp69D in the wild type background, did not

show any dominant effects (Figure 6G, Figure 6—figure supplement 1). However, we found that

LARDC rescued the LAR mutant phenotype to some extent, as approximately half of R7 axons were

targeted correctly to layer M6 (Figure 6B and G). In contrast, LARDC enhanced the Ptp69D mutant

phenotype with half of the R7 axons terminating in shallower layers (Figure 6E and G). When we

expressed Ptp69DDintra, both the LAR and Ptp69D mutant phenotypes were strongly enhanced

(Figure 6C, F and G). In particular, the LAR mutant expressing Ptp69DDintra showed as strong a

phenotype as the double mutant (Figure 6C and G). These observations suggest that although

LARDC acts as a dominant negative, it can transduce signals directing R7 axons to layer M6, proba-

bly through Ptp69D activity as has been indicated previously (Hofmeyer and Treisman, 2009;

Maurel-Zaffran et al., 2001). On the other hand, Ptp69DDintra inhibited LAR function, indicating

there is a common ligand for layer M6 targeting. We assume that Ptp69D can bind to this common

ligand only when LAR is present. In addition, LAR must have the ligand that binds to R7 axons in M0

as well. Finally, our results indicate that Ptp69D binds to a selective ligand when R7 axons retract

from layer M6 and that terminals stabilize in the temporary M3 layer in the absence of LAR.

Redundant function of LAR and Ptp69D is cell-autonomous
To further elucidate the LAR and Ptp69D overlapping function, we used the GMR-FLP MARCM sys-

tem (Lee et al., 2001; Lee and Luo, 1999) combined with RNAi (see Methods) to create single R7

axons of double-mutants (Figure 7A–C). In the control animals, we observed 57 R7 axons in 265 mm

depth innervating the medulla and 95% of them terminated at the correct layer M6. As we could not

directly count the R7 axons terminating inside the lamina, because some of R1 and R6 axons that

normally target lamina were also labeled, we counted the R7 axons innervating medulla and com-

pared it with the control animal. In the control animal, 21.5 R7 axons per 100 mm stack innervated

the medulla, whereas only 7.4 axons did so with the double mutant clones, suggesting the cell-

autonomous function of the RPTPs (Figure 7C). As we applied the cMARCM system (Tomasi et al.,

2008), the WT axons were labeled with GMR-mCD8-Kusabira Orange (GMR-mCD8KO). Thus, the

lack of KO signal indicates that the axon is a GFP positive clone. We thereby quantified the gaps in

M6 terminating axons of GMR-mCD8KO (arrowheads in Figure 7A and B) and confirmed that the

number of the double mutant R7 clones was comparable with the control (control: 22.3/100 mm,
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Figure 5. Specificity of RPTP signaling in R8 axons. (A–F) Horizontal images of adult medulla of LAR, Ptp69D double mutants also harboring the

indicated transgene expressed under the GMR-Gal4 driver. Photoreceptor axons were labeled with mAb24B10 (red), R8 photoreceptor axons with Rh6-

mCD8GFP (green), and the medulla layer with antibodies to N-Cadherin (blue). Medulla layers are indicated with white lines. The R8 axons in control

flies terminated in M3 layer (A). In Lar, Ptp69D double mutant, more than half of the R8 axons terminated at the surface of the medulla M0 or the

Figure 5 continued on next page
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DM: 27.4/100 mm). It is likely that higher frequency of medulla innervation in GMR-FLP clone com-

pared to the whole eye clone was due to the late timing of generation of the clones, thereby result-

ing in longer perdurance of the protein.

To test their cell-autonomy in complementary conditions, we also expressed the LAR transgene

only in R7 or R8 cells using the specific Gal4 driver (Figure 7—figure supplement 1) in the double

mutant to rescue the phenotype in cell-specific manner (Figure 7D–I). The R7 expression of LAR in

double mutants showed that 77% of the R7 axons innervated the medulla (Figure 7D–F), and in the

R8-specific rescue, 80% of R8 axons terminated at correct layer M3 (Figure 7G–I).

Taken together, these results indicate that overlapping function of LAR and Ptp69D in the photo-

receptor neurons for axonal stabilization is cell autonomous.

Abl and Trio operate downstream of LAR and Ptp69D in R7 axon
stabilization
Genes including Trio, Abl, and Ena have been reported in previous work to be downstream targets

of LAR and/or Ptp69D (Newsome et al., 2000a; Wills et al., 1999). However, as these studies

focused only on the choice of R7 axons to stabilize at layer M3 versus M6, we sought to determine if

these downstream components also function in preventing lamina retraction. To investigate what

molecules act downstream of LAR and Ptp69D in R7 axons, we genetically tested the effects of Trio,

Abl, and Ena upon the LAR, Ptp69D double mutant phenotypes (Figure 8, Figure 8—figure supple-

ment 1). We first generated mutants with double LAR, Ptp69D RNAi knockdown genes under the

control of GMR-Gal4. After RNAi knockdown, 35% of the R7 axons stopped at M0 and only 2% tar-

geted deeper layers (Figure 8A and G). In this background, we then modulated the dosage of Abl,

Ena, and Trio. After reducing Abl expression by RNAi, the ratio of R7 axons extending past layer M0

increased to ~13%, suggesting that Abl antagonizes the function of LAR and Ptp69D (Figure 8B and

G). Contrastingly, Trio RNAi enhanced the phenotype, as the ratio of R7 axons stopping at M0

decreased to 10% (Figure 8E and G). Ena RNAi alone did not have an effect in the double LAR,

Ptp69D RNAi-knockdown background (Figure 8D and G). When the dosage of these three mole-

cules was increased using UAS transgenes, the opposite effects with respect to the RNAi-knockdown

phenotypes were observed. Overexpression of Abl enhanced the LAR, Ptp69D double RNAi pheno-

type with only 7% of R7 axons innervating the medulla (Figure 8C and G), while expression of Trio

suppressed the phenotype and more than 60% of axons innervated the medulla, reaching layers M3

or M6 (Figure 8F and G). As a control, we confirmed that overexpression of these genes in a wild

type background did not have any effect (Figure 8—figure supplement 1). Taken together, our

results indicate that Abl and Trio interact with the LAR and Ptp69D intracellular domains, acting as

key components of a common downstream pathway directing the stabilization of R7 axons. Thus,

the unique properties of LAR versus Ptp69D are conveyed by properties of their extracellular

domains. In other words, in the determination of the final stabilizing layers, the activation signals in

each of the layers utilize the same downstream pathway, but ligand expression and binding appears

to be different (Figure 9).

Figure 5 continued

lamina (B). The R8 axon defects in double mutant were rescued with full length Lar (LARFL) with some axons overextending to layer M6 (arrows) (C). Lar

constructs lacking phosphatase activity (LAR2XCS) rescued the double mutant phenotype, but do not cause axon overextension as the LARFL construct

did (D). Full length Ptp69D (PTP69DFL) almost completely rescues the double mutant phenotype (E), but Ptp69D lacking phosphatase activity (Ptp69D

DA1DA2) was incapable of rescue (F). (G) Quantification of R8 termination in each layer for the indicated LAR or Ptp69D rescue transgenes. Genotype

descriptions are the same as in Figure 4. The number of axons terminating inside the lamina was estimated. Scale bar: 20 mm.

DOI: https://doi.org/10.7554/eLife.31812.013

The following source data and figure supplement are available for figure 5:

Source data 1. Excel file compiling source data for the Figure 5G.

DOI: https://doi.org/10.7554/eLife.31812.015

Figure supplement 1. Overexpression of LAR and Ptp69D has no effect on R8 axons.

DOI: https://doi.org/10.7554/eLife.31812.014
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Figure 6. Specificity of RPTP ectodomains in R7 axons. (A–F) Horizontal images of adult medulla of LAR (A–C) or Ptp69D (D–F) single mutants carrying

the indicated transgene expressed by the GMR-Gal4. Photoreceptor axons are labeled with mAb24B10 (red), R7 photoreceptor axons with Rh4-

mCD8GFP (green), and the medulla layer with an antibody to N-Cadherin (blue). Medulla layers are indicated with white lines. A total of 90% of the R7

axons terminated in layer M3 in the LAR mutant eye (A). Half of the R7 axons terminated at proper M6 layer when the LAR mutant was rescued with LAR

Figure 6 continued on next page
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Discussion

Two principles of axon stabilization regulated by RPTPs
Here, we show that R7 axons lacking the RPTPs LAR and Ptp69D failed to innervate the medulla and

instead terminated inside the lamina (Figure 1). By observing axon extension in the medulla at sev-

eral developmental stages, we revealed that the double mutant R7 axons extended normally at the

beginning of the pupal stage, but then gradually retracted from their correct temporary layer and

terminated in the wrong layer (Figure 2). These data demonstrate that LAR and Ptp69D play a com-

mon role in the stabilization of R7 axons inside the medulla. The simultaneous manipulation of the

expression levels of each gene revealed two principles explaining their shared and common func-

tions in axon guidance and stabilization. First, determination of the final termination layer of R7

axons primarily relied on the cumulative expression level of both LAR and Ptp69D (Figure 3). The

amount of the cytoplasmic transduction was proportional to the depth of the final termination layer,

regardless of the specific RPTP (LAR versus Ptp69D). Second, although LAR and Ptp69D share a

common cytoplasmic pathway, thus explaining the high redundancy of the two molecules, unique

properties in their ectodomains were responsible for the choice between layers M3 and M6 of the

medulla (Figure 9). Together, these principles can explain the difference between the LAR versus

Ptp69D single mutant phenotypes, and also explain why LAR can rescue Ptp69D function, but not

vice versa.

However, an alternative explanation of the proportional relationship between cumulative LAR and

Ptp69D expression levels and the depth of the stabilizing layer is that LAR and Ptp69D cytoplasmic

activity is only required to stabilize the axon whenever the ligand of these receptors is bound. The

LAR ectodomain exhibits preferential expression in layers M0 and M6, whereas the Ptp69D ectodo-

main attaches to layer M3 (Figure 4—figure supplement 2), where their respective ligands are pre-

sumably expressed (Figure 9B). This model is supported by the double mutant rescue experiment,

in which ectopic expression of LAR variants with different cytoplasmic activity level in the double

knockout background led to extensive axon termination at layers M6 or M0, but very rare termina-

tion in M3. On the other hand, double mutant R7 axons rescued by Ptp69D variants mostly termi-

nated in layer M3 (Figure 4). Even a high-dosage overexpression of Ptp69D was insufficient to

stabilize R7 axons in layer M6 in the absence of LAR (Figure 6G), indicating that the Ptp69D ectodo-

main is able to stabilize R7 axons only at layer M3, rather than in layer M6. Consistent with the find-

ings for R7 axons, about half of R8 axons displayed ectopic extension and stabilization to layer M6

layer instead of layer M3 when LAR was overexpressed in the absence of Ptp69D, whereas Ptp69D

overexpression did not generate a prominent phenotype (Figure 5). However, even in this latter sce-

nario, some degree of correlation between layer-depth and RPTP activity must exist, as R7 axons

require less LAR cytoplasmic activity for stabilization in layer M0 than in layer M6.

Two models of axonal stabilization regulated by RPTPs
How mechanistically can less LAR and Ptp69D activity be required to stabilize an axon when it

retracts back and becomes shorter? Our data are consistent with the notion that LAR and Ptp69D

likely bind and activate adhesion molecules to stabilize the growth cone to the target site in a

Figure 6 continued

transgene lacking intracellular domain (LARDC) (B), while Ptp69D transgene lacking intracellular domain (Ptp69DDintra) enhances the phenotype and

almost all the R7 axons terminated in the lamina (C). A total of 20% of the R7 axons terminated in layer M3 in the Ptp69D mutant eye (D). Both LAR

transgene lacking intracellular domain (LARDC) (E) and Ptp69D transgene lacking intracellular domain (Ptp69DDintra) (F) enhanced the phenotype of

Ptp69D mutant. (G) Quantification of R7 terminations in each in the indicated mutants rescued with LAR or Ptp69D transgenes. Note that neither

LARDC nor Ptp69DDintra had a dominant effect. Genotype descriptions are the same as in Figure 4. The number of axons terminating inside lamina

was estimated as in Figure 1. Scale bar: 20 mm.

DOI: https://doi.org/10.7554/eLife.31812.016

The following source data and figure supplement are available for figure 6:

Source data 1. Excel file compiling source data for the Figure 6G.

DOI: https://doi.org/10.7554/eLife.31812.018

Figure supplement 1. Overexpression of LAR and Ptp69D.

DOI: https://doi.org/10.7554/eLife.31812.017
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Figure 7. Cell-autonomous function of LAR and Ptp69D. (A–C) Single R7 clones of LAR, Ptp69D double mutant. Ptp69D mutation was introduced by

creating the clone with MARCM system using GMR-FLP, whereas LAR expression was down-regulated by combining LAR heterozygous mutation with

LAR-RNAi expressed only in the clones by GMR-Gal4. The detailed genotypes are the following: (A: control) GMR-FLP, UAS-mCD8GFP/+; GMR-Gal4/+;

FRT80/tub-Gal80, GMR-mCD8KO, FRT80, (B: double mutant) GMR-FLP, UAS-mCD8GFP/+; LAR[2127], GMR-Gal4/UAS-LARRNAi; Ptp69D[D1689]

FRT80/ tub-Gal80, GMR-mCD8KO, FRT80. (A, B) Horizontal images of adult medulla; mCD8GFP was used to label mutant R7 axons (green), whereas

Figure 7 continued on next page
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contact mediated manner. One scenario might be that the ligands form a gradient that is higher

along the proximal part of the photoreceptor axons. Thus, a lower amount of receptor protein can

still generate a sufficient amount of stabilizing signal. This scenario is unlikely, however, because the

ligand has to be expressed in higher doses where normally it is not functionally required. The sec-

ond, and a more likely scenario is that the lower amounts of RPTP signaling are required when the

axon is shorter and the growth cone is closer to the cell body. It is important to note that the RPTP

stabilization signal seems to be required in mature axons but not young growing axons. In this sce-

nario, layer-enriched expression of RPTP ligands would ensure that axons that had grown into the

medulla would notice a stabilizing ligand at their maximum length. This mechanism would serve as a

regulatory check on axons that failed to stabilize at a certain target layer by allowing them to stabi-

lize at more proximal layers. This process offers both a universal and economical model by which

striped expression of a limited number of ligands can shape a relay of neuronal connections com-

prised of constant length axons connected from the surface to the inner region of the brain. In addi-

tion, the system requires only a few guidance molecules to guide axons in a certain direction, rather

than an array of specific molecules to each targeting layer and stabilizing specific class of neurons.

Biphasic properties of axonal growth
Given the observation that double mutant photoreceptors extend their axons normally until

24hrAPF, and then suddenly started to retract them around 40hrAPF, there seems to be a biphasic

pattern to axonal growth. First, R7 axons grow by default, and seem to neither require nor recognize

stabilizing RPTP signaling. In the later stage of pupal development, R7 axons retract by default, and

require RPTP signaling for stabilization. The difference between these two phases might be attribut-

able to changes in molecular properties inside axons, in particular the dynamics of the actin polymer-

ization and microtubule organization. One of the triggers that can cause axon maturation and

terminal targeting can be the formation of synapses, and/or firing of action potentials. To test

whether double mutant R7 retraction can be rescued by neuronal activity, we expressed TrpA1 chan-

nel and elevated the temperature to activate the firing of R7 neurons. However, they still retracted

back to the lamina, suggesting that activity is not sufficient for suppressing axon retraction at least

in RPTP mutant backgrounds (Figure 9—figure supplement 1).

Formation of complexes between LAR and Ptp69D
Previous studies from Jessica Treisman’s research group have provided ample evidence that LAR

and Ptp69D form complexes with each other. Treisman and colleagues analyzed R7 axons in LAR

mutants and found that LAR phosphatase activity is dispensable for stabilization in layer M6 because

Figure 7 continued

mCD8-Kusabira Orange (red) to complementarily label wild type photoreceptor cells. The medulla layer was visualized with an antibody to N-Cadherin

(blue). In the control animals, single R7 axons labeled in green extending to M6 layer were observed (arrowhead in A). However, when double mutant

clones were generated, some axon terminals in M6 layer were absent (arrowheads in B) indicating that double mutant R7 axons failed to innervate the

medulla. (C) Quantification of R7 termination in each layer. The estimation of total number of R7 axons was made from the control medulla. 65% of the

double mutant R7 axons terminated inside the lamina. (D, E) Horizontal images of the adult medulla of LAR, ptp69D double mutants carrying the

LARFL transgene expressed by the R7-specific PM181-Gal4. Photoreceptor axons were labeled with mAb24B10 (red), R7 photoreceptor axons with Rh4-

mCD8GFP (green), and the medulla layer with an antibody to N-Cadherin (blue). With R7-specific LAR expression in LAR, ptp69D double mutants,

about half of the R7 axons terminated at the proper layer (M6) and 77% innervated the medulla (E). (F) Quantification of the R7 axons terminating in

each layer. (G, H) Horizontal images of the adult medulla of LAR, ptp69D double mutants carrying the LARFL transgene expressed by the R8-specific 2–

80–Gal4. Photoreceptor axons were labeled with mAb24B10 (red), R8 photoreceptor axons with Rh6-mCD8GFP (green), and the medulla layer with an

antibody to N-Cadherin (blue). With R8-specific LAR expression in LAR, ptp69D double mutants, about 80% of the R8 axons terminated at the proper

layer (M3) and 17% overextended to the M6 layer. (I) Quantification of the R8 axons terminating in each layer. The number of axons terminating inside

the lamina was estimated. Scale bars: 20 mm.

DOI: https://doi.org/10.7554/eLife.31812.019

The following source data and figure supplement are available for figure 7:

Source data 1. Excel file compiling source data for the Figure 7C and F and 7I.

DOI: https://doi.org/10.7554/eLife.31812.021

Figure supplement 1. Specificity of the PM181-Gal4 and 2–80 Gal4.

DOI: https://doi.org/10.7554/eLife.31812.020
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of the catalytic activity of Ptp69D, and determined that LAR phosphatase activity is required only in

the absence of Ptp69D (Hofmeyer and Treisman, 2009).

In our study, we labeled R7 axons specifically and aimed to dissect the function of the ectodo-

main and cytoplasmic domain of LAR and Ptp69D. We found that LAR lacking phosphatase activity

still stabilized R7 axons inside the medulla to some extent, even without Ptp69D (Figure 4E and M).

When LAR lacks the entire cytoplasmic domain (LARDC), it could not rescue the double mutant at all

Figure 8. Genetic interactions between LAR, Ptp69D and Abl, Ena, and Trio in R7 targeting. (A–F) The expression of Abl, Ena, and Trio was

downregulated using RNAi or upregulated by overexpression of transgenes in LAR, Ptp69D double RNAi background. All the RNAi and transgenes

were expressed under the GMR-Gal4 driver. Photoreceptor axons are labeled with mAb24B10 (red), R7 photoreceptor axons with Rh4-mCD8GFP

(green), and the medulla layers with an antibody to N-Cadherin (blue). The medulla layers are indicated with white lines. Around 60% of R7 axons

expressing the LAR, Ptp69D double RNAi terminated inside the lamina. The phenotype is suppressed by downregulation of Abl (B) or upregulation of

Trio (F) with some R7 axons terminating in layer M3 (arrowheads). By contrast, upregulation of Abl (C) or downregulation of Trio (E) enhanced the

phenotype with most R7 axons terminating in the lamina (arrows). Ena had no significant effect on the phenotype (p=0.06) upon both downregulation

(D) and upregulation (not shown). (G) Quantification of R7 terminations in each layer in the control LAR, Ptp69D double RNAi line with and without each

indicated RNAi or overexpression transgene of Abl, Ena, and Trio. RNAi_1 and RNAi_2 refer to the two different RNAi lines used for each gene. ’**’

indicates statistical significance at the p<0.01 level using chi-square test. The number of axons terminating inside the lamina was estimated. Scale bar:

20 mm.

DOI: https://doi.org/10.7554/eLife.31812.022

The following source data and figure supplement are available for figure 8:

Source data 1. Excel file compiling source data for the Figure 8G.

DOI: https://doi.org/10.7554/eLife.31812.024

Figure supplement 1. RNAi and overexpression of Abl, Ena and Trio.

DOI: https://doi.org/10.7554/eLife.31812.023
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and R7 axons retracted to the lamina (Figure 4C and M). On the contrary, when LARDC is combined

with full length Ptp69D, more than half of the R7 axons terminated at the proper layer M6

(Figure 6B and G), although Ptp69D alone could only stabilize R7 axons in layer M3 (Figure 4I and

N). A previous study showed similar results concluding that LAR has non-autonomous functions in R8

axons, serving as a ligand for an unknown receptor in R7 axons to promote targeting to layer M6

(Maurel-Zaffran et al., 2001). Based on our results, this seems unlikely because LARDC enhanced

the Ptp69D null mutant phenotype (Figure 6E and G) and had no function in the double mutant

(Figure 4C and M). Our data instead support the idea that LAR and Ptp69D create a complex, and

that upon binding of LAR to its ligand in layer M6 signals for stabilization are transduced through

the phosphatase domains of Ptp69D even in the absence of LAR cytoplasmic domains. In contrast,

when the intracellular domain of Ptp69D is deleted (Ptp69DDintra) and then expressed in the

Ptp69D mutant, the Ptp69D ectodomain alone was sufficient to prevent LAR effects and most R7

axons retracted to the lamina. Similarly, Ptp69DDintra also suppressed Ptp69D function in LAR

mutants. Based on these rescue experiment data, Ptp69D probably creates a complex with LAR that

binds to unknown LAR ligand in layer M6. When they are in the complex, the stabilizing signal in

layer M6 is likely transduced through the Ptp69D intracellular domain.

Although Sdc and Dlp are thought to be ligands of LAR that promote synapse formation in the

neuromuscular system (Fox and Zinn, 2005; Johnson et al., 2006), it is unlikely that they serve as

ligands in the visual system. Some defects were observed in photoreceptor axon pathfinding in both

sdc and dlp mutants, but R7 axons did not show any significant retraction at 40hrAPF

(Rawson et al., 2005). Moreover, Sdc and Dlp bind to the extracellular Ig domains of LAR

Figure 9. A model for common and distinct functions of LAR and Ptp69D in R7Axons. (A) Both LAR and Ptp69D are expressed in R7 axon terminals.

Their ectodomains bind to distinct ligands whereas intracellular domains share a common downstream pathway. (B) Around 24hrAPF, R7 axons reach

the R7 temporary layer, which becomes M6. When they fail to detect Lar ligands, however, they start to retract. While retracting, the terminals of R7

axons pass by the M3 layer. If they detect Ptp69D ligands, they stabilize at M3, but if unbound by ligands they keep retracting. The next layer is M0

where LAR ligands appear to also be present. Here, lower signaling levels, even without phosphatase activity, can stabilize axons. If axon stabilization

fails across M0, M3, and M6, R7 axons retract to the lamina.

DOI: https://doi.org/10.7554/eLife.31812.025

The following figure supplement is available for figure 9:

Figure supplement 1. R7 axon stabilization is not dependent on neuronal activity.

DOI: https://doi.org/10.7554/eLife.31812.026
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(Johnson et al., 2006), but the transgene lacking three Ig domains can rescue R7 targeting in the

LAR mutant (Hofmeyer and Treisman, 2009) as well as in the double mutant (Figure 4G and M),

and FnIII domains of LAR are essential to stabilize R7 axons inside the medulla (Figure 4F, H and

M).

Then what is the ligand of LAR? We consider N-Cadherin (CadN) to be one of the candidates.

The phenotype of R7 axons lacking CadN resembles the LAR mutant with axon termination in layer

M3. CadN is required to reach and remain in the R7 temporary layer at the early stage of pupal for-

mation, whereas the retraction of R7 axons in LAR mutant starts at a later stage (Ting et al., 2005).

Detailed analysis of photoreceptor filopodial dynamics by the live imaging revealed that CadN defi-

cient R7 axons initially reached the correct target layer but failed to stabilize there. This observation

suggests that CadN is not a guidance cue but a stabilization factor (Özel et al., 2015). In addition to

their similar functions in R7 axon stabilization, Drosophila CadN and LAR physically interact in vitro

(Prakash et al., 2009). It was also reported that the mammalian N-Cadherin is an in vivo substrate of

the mammalian protein tyrosine phosphatase sigma (PTPs), which is an orthologue of Drosophila

LAR. Dephosphorylation of N-Cadherin by PTPs increase adhesiveness and inhibits axon growth

(Siu et al., 2007). It is thus highly conceivable that CadN in R7 axons and their target layers interact

with the extracellular domain of the LAR-PTP69D complex and that phosphorylation status of CadN

affects the adhesiveness between the R7 axon growth cone and the proper target layer, eventually

resulting in axonal stabilization in the Drosophila visual system.

Materials and methods

Key resource table

Reagent type
(species) or
resource Designation Source or reference Identifiers

gene (Drosophila) LAR NA

Ptp69D NA

strain, strain
background
(Drosophila)

D. melanogaster: ey-FLP2 (Newsome et al., 2000a) BDRC5580

D. melanogaster: Ptp69D[D1689] (Newsome et al., 2000a) DGRC109897

D. melanogaster: LAR[2127] (Maurel-Zaffran et al., 2001) BDRC63796

D. melanogaster: UAS-LAR (Maurel-Zaffran et al., 2001) N/A

D. melanogaster: UAS-LARDC (Maurel-Zaffran et al., 2001) N/A

D. melanogaster:
UAS-LARDIg1-3DFn1-6

(Hofmeyer and Treisman, 2009) N/A

D. melanogaster: Rh4-mCD8GFP (Berger et al., 2001) N/A

D. melanogaster: Rh6-mCD8GFP (Berger et al., 2001) N/A

D. melanogaster: 20C11-FLP (Chen et al., 2014) BDRC63796

D. melanogaster: UAS-Trio (Newsome et al., 2000b) N/A

D. melanogaster: UAS-Abl (Fogerty et al., 1999) N/A

D. melanogaster: UAS-Ena (Wills et al., 1999) N/A

D. melanogaster:
UAS-FRT-stop-FRT-mcd8GFP

Bloomington Drosophila
Stock Center

BDRC30032

D. melanogaster: tub-Gal80[ts] Bloomington Drosophila
Stock Center

BDRC7108

D. melanogaster: UAS-Lar.DIg123 Bloomington Drosophila
Stock Center

BDRC8586

D. melanogaster: UAS-Lar.DFn123 Bloomington Drosophila
Stock Center

BDRC8587

D. melanogaster: UAS-Lar.DFn456 Bloomington Drosophila
Stock Center

BDRC8588

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

D. melanogaster: UAS-Lar.DFn789 Bloomington Drosophila
Stock Center

BDRC8589

D. melanogaster: UAS-Lar.DPTP-D2 Bloomington Drosophila
Stock Center

BDRC8590

D. melanogaster: UAS-Lar.C1638S Bloomington Drosophila
Stock Center

BDRC8591

D. melanogaster: UAS-Lar.C1929S Bloomington Drosophila
Stock Center

BDRC8592

D. melanogaster: UAS-Lar.CSX2 Bloomington Drosophila
Stock Center

BDRC8593

D. melanogaster:
UAS-Ptp69D Dintra

KYOTO Stock Center DGRC109088

D. melanogaster:
UAS-Ptp69D DA1

KYOTO Stock Center DGRC109089

D. melanogaster:
UAS- Ptp69D DA3(DA1DA2)

KYOTO Stock Center DGRC109090

D. melanogaster: UAS-Ptp69D KYOTO Stock Center DGRC109091

D. melanogaster: UAS-LAR RNAi Vienna Drosophila
Resource Center

VDRC36269

D. melanogaster:
UAS-ptp69D RNAi

Vienna Drosophila
Resource Center

VDRC27090

D. melanogaster: UAS-abl RNAi Bloomington Drosophila
Stock Center

BDRC28325, 35327

D. melanogaster: UAS-ena RNAi Bloomington Drosophila
Stock Center

BDRC31582, 39034

D. melanogaster: UAS-trio RNAi Bloomington Drosophila
Stock Center

BDRC27732, 43549

D. melanogaster:<LAR < This paper Harvard Exelixis collection; e04149, e00822

D. melanogaster:<Ptp69D< This paper Harvard Exelixis collection; f03442, e00274

antibody mAb24B10 Developmental Studies
Hybridoma Bank

24B10

rat antibody to CadN(N-Cad) Developmental Studies
Hybridoma Bank

DN-Ex #8

rat antibody to elav Developmental Studies
Hybridoma Bank

7E8A10

mouse antibody to LAR Developmental Studies
Hybridoma Bank

9D8

mouse antibody to Ptp69D Developmental Studies
Hybridoma Bank

3 F11

GFP Tag Polyclonal Antibody,
Alexa Fluor 488

Life technologies Cat #A-21311

Goat anti-Mouse IgG (H + L)
Highly Cross-Adsorbed
Secondary Antibody,
Alexa Fluor 568

Life technologies Cat #A-11011

Goat anti-Rat IgG (H + L)
Cross-Adsorbed Secondary
Antibody, Alexa Fluor 633

Life technologies Cat #A-21094

Anti-Placental alkaline
phosphatase (PLAP)

Abcam Cat #ab118856

Continued on next page

Hakeda-Suzuki et al. eLife 2017;6:e31812. DOI: https://doi.org/10.7554/eLife.31812 20 of 25

Research article Developmental Biology and Stem Cells Neuroscience

https://doi.org/10.7554/eLife.31812


Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Goat Anti-Rabbit IgG H&L
(Alexa Fluor 488)
preabsorbed

Abcam Cat #ab150085

rabbit antibody to HA Abcam Cat #ab9110

chemical
compound,
drug

Paraformaldehyde 16% Nisshin EM Cat#15710

Agar powder (gelling
temperature 30–31˚C)

Nacalai tesque Cat#01059–85

Vectashield mouting medium Vector Laboratories Funakoshi #H-1000

software,
algorithm

NIS-Elements AR Nikon

Adobe Photoshop CS6 Adobe

Fly strains and genetics
Flies were kept in standard Drosophila media at 25˚C, except for the experiment of experiment for

manipulating expression level (27˚C, 25˚C, 23˚C and 18˚C) and temporal expression level shift (27˚C
and 18˚C). To manipulate the expression level of two RPTPs simultaneously, LAR, ptp69D double

RNAi was expressed by eye-specific GMR-Gal4 and RNAi expression was controlled using tempera-

ture sensitive Gal80ts at 23˚C, 25˚C, and 27˚C. To achieve lower expression level, we also expressed

LAR, ptp69D double RNAi in the back ground of LAR-/+, ptp69D-/+ and utilize the temperature

dependency of Gal4 strength (25˚C and 18˚C). To perform temporal control of the expression level,

LAR and ptp69D RNAi were expressed in photoreceptors by GMR-Gal4 controlled by temperature

sensitive Gal80ts as above, and temperature was shifted from 27˚C to 18˚C or from 18˚C to 27˚C at

indicated time point. The stages after puparium formation are determined according to (Ash-

burner, 1989). For the FLICK technique, two FRT lines flanking a gene to be knocked out were

recombined onto the same chromosome. These FRT lines were obtained from Exelixis collection:

LAR; e04149, e00822, ptp69D; f03442, e00274 (Thibault et al., 2004). A more detailed explanation

about FLICK is provided in (Hakeda-Suzuki et al., 2011). LAR and Ptp69D FLICK flies are referred to

as <LAR< and <Ptp69D< respectively. To create the double mutant R7 single clone, Ptp69D muta-

tion was introduced by creating the clone with MARCM system using GMR-FLP (Lee et al., 2001;

Lee and Luo, 1999), whereas LAR expression was down-regulated by combining LAR heterozygous

mutation with LAR-RNAi expressed only in the clones by GMR-Gal4. The following fly stocks and

mutant alleles were used: yw, eyFLP2, Ptp69D[D1689] (Newsome et al., 2000a), LAR[2127], UAS-

LARFL, UAS-LARDC, PM181-Gal4 (Maurel-Zaffran et al., 2001), UAS-LARDIg1-3DFn1-6

(Hofmeyer and Treisman, 2009), Rh4-mCD8GFP, Rh6-mCD8GFP (Berger et al., 2001), 20C11-FLP

(Chen et al., 2014), UAS-Trio (Newsome et al., 2000b), UAS-Abl (Fogerty et al., 1999), UAS-Ena

(Wills et al., 1999), UAS-FRT-stop-FRT-mCD8GFP, tub-Gal80[ts], GMR-myrRFP, UAS-LAR* (#8589-

#8593) transgenic lines were obtained from Bloomington stock center. UAS-ptp69D* (#109088-

#109091) transgenic lines were obtained from Kyoto stock center. LAR RNAi (v36269) and ptp69D

RNAi (v27090) are from Vienna stock center, Abl RNAi (#28325, #35327), Ena RNAi (#31582,

#39034), Trio RNAi (#27732, #43549) lines are from Bloomington stock center. R8-specific driver 2–

80 Gal4 is a Gal4 enhancer trap line on the X chromosome kindly provided by Tory Herman. R8- spe-

cific expression persists until mid-pupal stage. The specific genotypes utilized in this study are listed

in Supplementary file 1.

Immunohistochemistry and imaging
The experimental procedures for adult brain dissection, fixation and immunostaining as well as aga-

rose section were as described previously (Hakeda-Suzuki et al., 2011). Larval eye-brain complexes

were dissected in PBS and fixed in 4% paraformaldehyde in PBS for 30 min. The staining was per-

formed in PBS with 0.1% Saponin for LAR antibody and with 0.1% Triton for Ptp69D antibody. The
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following primary antibodies were used: mAb24B10 (1:50, DSHB), rat antibody to CadN (Ex#8, 1:50,

DSHB), rat antibody to elav (7E8A10, 1:100 DSHB), mouse antibody to LAR (9D8, 1:20 DSHB), mouse

antibody to Ptp69D (3F11, 1:20 DSBH), rabbit antibody to HA (Ab9110, 1:1000 Abcam) and rabbit

antibody to GFP conjugated with Alexa488 (1:200, Life technologies). The secondary antibodies

were Alexa488, Alexa568 or Alexa633-conjugated (1:400, Life technologies). Images were obtained

with Nikon C2+ confocal microscopes and processed with NIS-elements AR and Adobe Photoshop.

Binding experiments
White pupae of w- flies were collected and kept at 25˚C. The Eye-brain complexes were dissected at

40 hr APF in PBS and fixed in 2% paraformaldehyde (PFA) in PBS for 20 min. After the fixation, the

samples were washed in PBS for 30 min with several exchange of the buffer and embedded in the

diluted agar (5% low melting point agar in pure water). The temperature of the agar was 40–45

degree. Wait until it gets solid for 30 min-1 h. Samples were sliced using LinearSlicer (Dousaka EM)

with 90–100 mm thickness (FREQUENCY 85–87 Hz, AMPLITUDE 1–1.2 mm, speed 1 mm/min). The

swimming slices were picked up with brush and incubated with 100 ml PTP69D or LAR-PLAP fusion

protein (kindly provided by Dr. Kai Zinn) supernatant for 1.5 hr at room temperature. Then, the sam-

ples were postfixed with 5% PFA in PBS without prewashing for 1 hr at room temperature. After

washing the fixative with PBS (three changes) for 15 min and with 0.05% PBT (PBS+0.05% Triton

X-100, three changes) for 15 min, the slices were incubated with anti-PLAP (1:500, abcam) and

24B10 (1:50, DSHB) in 0.05% PBT overnight at 4˚C. After washing with 0.05% PBT (three changes)

for 15 min, the brains are incubated for 3 hr at room temperature in secondary antibodies (1:400,

Life technologies). The brains were washed again with 0.05% PBT (three changes) and with PBS

(three changes) for 15 min, then soaked in Vectashield (Vector Laboratories) overnight at 4˚C. The
slices were mounted just before imaging.

Assessment of photoreceptor axonal phenotypes
R7 photoreceptor axons were visualized with Rh4-mCD8GFP in confocal-stack images of whole-

mount brains. (Figures 1, 3, 4, 6, 7B and 8, Figure 2—figure supplement 1, Figure 6—figure sup-

plement 1, Figure 8—figure supplement 1, Figure 9—figure supplement 1) the number of axons

terminating each layer was counted manually using NIS-elements AR and the ratio of the axons ter-

minating each layer was calculated. Although the terminals of R7 axons were clearly visible in lamina

(see arrows in Figure 1D), a precise quantification was hampered by the overlapping nature of R7

photoreceptor axons inside the lamina. Therefore, we compared the number of R7 photoreceptor

axon innervating medulla between the wild-type and the mutant flies. In the wild type, there are

21.7 Rh4-mCD8GFP positive R7 photoreceptor axons per 10 mm stack (466 mm in total thickness).

We then calculate the expected number of R7 axons which should innervate medulla according to

total thickness of scanned images. If the number of R7 axons innervating medulla in mutant flies is

less than 90% of the expected number from the calculation above, we considered that the deficit is

caused by the axons terminated in the lamina. Then we subtracted the number of R7 axons innervat-

ing medulla from the expected number and regarded the difference as the number of R7 axons ter-

minated in the lamina. For example, the total number of the R7 axons innervating medulla in LAR,

ptp69D double mutant was 102 (376mm in total thickness). The expected number of axons was cal-

culated to be 21.7 � 376/10 = 815.92. As 102 is less than 90% of expected axons number (815.92 �

0.9 = 734.328), we consider the difference (815.92–102 = 713.92) is the R7 axons in double mutant

terminating in the lamina (87.5%). For R8 axons, the axons were visualized with Rh6- mCD8GFP and

the ratio of the axons terminating each layer was calculated in the same manner as R7 (Figures 5

and 7C, Figure 5—figure supplement 1). In the wild type, there are 18.6 Rh6-mCD8GFP positive

R8 photoreceptor axons per 10 mm stack (318 mm in total thickness).
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