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Background: Measurements are not exact, so that if a measurement is repeated, one would get a different 
value each time. The spread of these values is the measurement uncertainty. Understanding measurement 
uncertainty of pulmonary nodules is important for proper interpretation of size and growth measurements. 
Larger amounts of measurement uncertainty may require longer follow-up intervals to be confident that any 
observed growth is due to actual growth rather than measurement uncertainty. We examined the influence of 
nodule features and software algorithm on measurement uncertainty of small, solid pulmonary nodules.
Methods: Volumes of 107 nodules were measured on 4–6 repeated computed tomography (CT) scans 
(Siemens Somatom AS, 100 kVp, 120 mA, 1.0 mm slice thickness reconstruction) prospectively obtained 
during CT-guided fine needle aspiration biopsy between 2015–2021 at Department of Diagnostic, 
Molecular, and Interventional Radiology in Icahn School of Medicine at Mount Sinai, using two different 
automated volumetric algorithms. For each, the coefficient of variation (standard deviation divided by the 
mean) of nodule volume measurements was determined. The following features were considered: diameter, 
location, vessel and pleural attachments, nodule surface area, and extent of the nodule in the three acquisition 
dimensions of the scanner. 
Results: Median volume of 107 nodules was 515.23 and 535.53 mm3 for algorithm #1 and #2, respectively 
with excellent agreement (intraclass correlation coefficient =0.98). Median coefficient of variation of nodule 
volume was low for the two algorithms, but significantly different (4.6% vs. 8.7%, P<0.001). Both algorithms 
had a trend of decreasing coefficient of variation of nodule volume with increasing nodule diameter, though 
only significant for algorithm #2. Coefficient of variation of nodule volume was significantly associated 
with nodule volume (P=0.02), attachment to blood vessels (P=0.02), and nodule surface area (P=0.001) for 
algorithm #2 using a multiple linear regression model. Correlation between the coefficient of variation (CoV) 
of nodule volume and the CoV of the x, y, z measurements for algorithm #1 were 0.29 (P=0.0021), 0.25 
(P=0.009), and 0.80 (P<0.001) respectively, and for algorithm #2, 0.46 (P<0.001), 0.52 (P<0.001), and 0.58 
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Introduction 

Pulmonary nodules are increasingly being detected due to 
ever-improving resolution of computed tomography (CT) 
scanners, increased uptake of low-dose CT screening for 
lung cancer, and the expanded eligibility criteria for the 
screening (1). Pulmonary nodule size and growth assessment 
are cornerstones of nodule management protocols. These 
management protocols typically set minimum nodule size 
thresholds for initiating growth assessment, with variations 
in timing for follow-up CTs based on nodule size. 

While it is implicitly understood that optimizing 
management protocols for growth assessment represents 
a tradeoff between waiting long enough to overcome 
measurement uncertainty versus waiting so long that 
prognosis is substantially impacted, there is no empirical 
evidence for estimating these time intervals. Assessment 
of change in nodule size is impacted by both real change 
in nodule size and measurement uncertainty (2). Nodule 
size (3-5), shape (6), margin characteristics (7,8), patient 
motion (5), and scanner protocols (9) have been reported 
to contribute to measurement uncertainty, although often 
with conflicting results (3-5,10-14). Better understanding 
of factors associated with nodule measurement uncertainty 
would allow for a data-driven personalized choice for timing 
of the follow-up CT.

Previous studies used either nodule phantoms (13,14), 
clinically stable nodules (3,4,10), three scans with two close 
in time and one at a much longer interval (12), or two scans 
of patients in a short interval (coffee-break scans) (5,11) 
to assess measurement uncertainty. Criticisms of these 
studies were that phantoms did not accurately reflect the 
appearance of in-vivo nodules, and studies using real in-vivo  
nodules with only two time points were not statistically 
robust. Our goal was to assess features associated with 
measurement uncertainty of pulmonary nodules, 20 mm or 

less, and the extent of their impact. We present this article 
in accordance with the GRRAS reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1501/rc).

Methods

We reviewed prospectively collected solid nodules with 
repeated CT imaging series of the same nodule in the 
same person obtained within minutes obtained during 
routine fine needle aspiration CT-guided biopsy procedures 
performed between 2015 and 2021. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013) and was considered to be exempt human 
research by the Institutional Review Board of the Icahn 
School of Medicine at Mount Sinai (No. 19-1417) because 
this retrospective study was minimal risk and used de-
identified image data. Individual consent was waived for this 
retrospective study as no identifiable patient information 
was used. Patients were not exposed to radiation other than 
routinely used during the procedure itself. 

The inclusion/exclusion criteria were as follows. Only 
CT scans of patients who underwent fine needle aspiration 
CT-guided biopsy procedures performed between 2015 and 
2021 were considered. These were further refined to only 
include those with CT scans of nodules which were biopsied 
with average diameter 20 mm or less, having at least four 
CT scan series meeting the following quality criteria: 
obtained prior to insertion of the biopsy needle into the 
nodule, slice thickness of ≤1.0 mm, at least 2 images above 
and below the nodule, and without image artifacts within  
5 mm of the nodule. 

Before inserting the biopsy needle, patients practiced 
holding their breath under observation by the radiologist 
performing the procedure (DY, more than 25 years of 
biopsy experience). An initial CT scan was obtained at 

(P<0.001), respectively.
Conclusions: Even in the best-case scenario represented in this study, using the same measurement 
algorithm, scanner, and scanning protocol, considerable measurement uncertainty exists in nodule volume 
measurement for nodules sized 20 mm or less. We found that measurement uncertainty was affected by 
interactions between nodule volume, algorithm, and shape complexity. 
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the beginning of the procedure; subsequent scans were 
localized only to the area around the nodule and needle, in 
accordance with typical clinical protocol. After inserting 
the biopsy needle, a series of CT images were obtained in 
a single breath-hold with each advance of the needle using 
Siemens Somatom AS using 100 kVp, 120 mA, pitch factor 
1.5, reconstructed with slice thickness of 1.0 mm. This 
provides a set of independently acquired repeated CT scans 
from which to assess measurement uncertainty.

Software algorithms for nodule volume measurement

Two algori thms represent ing two fundamental ly 
different approaches to nodule segmentation and volume 
measurement were used to measure three-dimensional 
nodule volume (15,16). Algorithm #1 (15) requires two 
points specified by a single investigator (A.J.) on the CT 
image indicating the longest diameter of the nodule; 
nodules were segmented using automated image filtering, 
thresholding, and morphological techniques (15); volume 
was measured from the segmented image. Algorithm #2 (16) 
used level-set techniques with image features to segment 
the nodule using a single seed point, the midpoint of the 
two points specified for algorithm #1; volume was measured 
using the 3D model of each nodule.

Resulting segmentations were reviewed by a single 
investigator (A.J., 13 years of experience) to identify situations 
with under- or over-segmentation near attached structures. 

Each algorithm k produced volume Vijk for nodule i and 
CT series j. As multiple CT series j (j=1… m) for ith nodule 
(i=1…n) were obtained within minutes, differences in the 
measured volumes of the ith nodule for each different CT 
series using algorithm k, Vijk were due to measurement 
uncertainty not actual nodule change.

Measurement uncertainty

Measurement uncertainty as defined by the Radiological 
Society of  North America,  Quantitat ive Imaging 
Biomarkers Alliance (RSNA-QIBA) (17) is given by the 
CoV of the volume measurements defined as the standard 
deviation of the volume measurements for nodule i using 
Algorithm k, divided by the mean of the same volume 
measurements Eq. [1]:

CoV *100ik
ik

ik

s
V

=
 

[1]

A higher CoVik  indicates greater volume measurement 

variability. The RSNA-QIBA Small Nodule Profile specified 
CoV of nodule volume limits for nodules with longest 
dimension in axial plane between 6 to 12 mm; CoV of 
nodule volume limits were 29% for 6 mm (113.1 mm3), 23% 
for 7 mm (179.6 mm3), 19% for 8 mm (268.1 mm3), 16% 
for 9 mm (381.7 mm3), 14% for 10 mm (523.6 mm3), 12% 
for 11 mm (696.9 mm3), and 11% for 12 mm (904.8 mm3)  
diameter nodules.

The standard deviation of the volume measures, Sik, for 
the ith nodule for Algorithm k is given by: 
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The mean volume for the ith nodule for each algorithm 
(k=1, 2) is the sum of the repeated volumes, Vijk, j=1…m, 
divided by the number of repeated CT series (m) for the ith 
nodule: 

1
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V V
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[3]

Automated measurement algorithms provide nodule 
volumes, but lung screening protocols typically provide 
recommendations based on nodule diameter; nodule 
diameter was estimated for the ith nodule for each algorithm 

k, ikD , as the diameter of a sphere with average volume, ikV  

in equation [3]:

63
ik ikD Vπ=

 
[4]

As algorithm #1 produces a different volume for a 
given nodule than algorithm #2, frequency counts based 
on estimated diameter categories for each of the two 
algorithms may differ. 

Nodule features

(I) Each nodule volume computed by both algorithms.
(II) Nodule location by lobe visually determined as right 

upper lobe (RUL), right middle lobe (RML), right 
lower lobe (RLL), left upper lobe (LUL), or left lower 
lobe (LLL). 

(III) Blood vessel attachment to each nodule visually 
determined by a single observer (A.J.), denoted as 
present or absent. 

(IV) Costal pleural attachment of the nodule visually 
determined by a single observer (A.J.), denoted as 
present or absent.

Nodule surface area calculated from the 3D nodule 
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segmentation (18). A sphere has the smallest surface area for 
a given volume, so any deviation from a sphere for a given 
volume increases the surface area of the nodule. 
(V) Variability of nodule volume was assessed in each of 

the CT scanner three acquisition dimensions (mm): x, 
y, and z. For supine patient position the x dimension 
provides measurements from right to left, y dimension 
from anterior to posterior, and the z dimension from 
superior to inferior.

Statistical analyses of the impact of nodule features on 
measurement uncertainty

Summary statistics of nodule volume and CoV of nodule 
volume by the two algorithms were calculated. Pearson (r) 
and Spearman (p) correlation coefficients and scatterplots 
were used to assess the relationship between CoV of nodule 
volume and nodule diameter. Normality of the data was 
evaluated using a Shapiro-Wilk test and skewed variables 
were logarithmically transformed. A Wilcoxon rank-sum 
test was used to compare the distribution of CoV of nodule 
volume of the two algorithms. Agreement of the volume 
measurements using the two algorithms was evaluated 
using intraclass correlation coefficient (ICC) and Bland-
Altman plots. The mean difference was computed as the 
average of the volume difference for each individual nodule: 

( )107
2 11

107i ii
V V

=
−∑ . Multiple linear regressions were used 

to model the relationship between nodule features and CoV 
of nodule volume for both algorithms. Variance inflation 
factor was used to assess multi-collinearity. P values <0.05 
were considered statistically significant. All statistical 
analyses were performed using R (version 4.1; the R 
Foundation for Statistical Computing) (19) and SAS (version 
9.4; SAS Institute, Cary, NC, USA). 

Results

There were 169 nodules that met the inclusion criteria. 
Of these, 115 (68.0%) were segmented using algorithm 
#1 and 133 (78.7%) were segmented using algorithm #2, 
and 107 (63.3%) by both algorithms (Figure 1). Of the 
169 nodules, 8 were correctly segmented by algorithm #1 
but not algorithm #2, and 26 were correctly segmented 
by algorithm #2 but not algorithm #1. Of the 107 nodules 
in 107 patients, 33 nodules had four repeated CT series,  
68 nodules had five series, and 6 nodules had six series. 
Using Eqs. [1–3] for each algorithm, mean volume, standard 
deviation, and CoV of the nodule volume were calculated 
(Table 1). As volumes differed for each algorithm, frequency 
distributions of estimated diameters differed (Table 1, Figure 2).

Nodule volume measurements from the two algorithms 

2,880 biopsy patients between 2015-2021

387 nodules with 4 or more CT scan series meeting quality criteria

169 nodules met inclusion criteria

107 nodules successfully segmented by algorithm #1 and algorithm #2

115 nodules successfully segmented by algorithm #1 133 nodules successfully segmented by algorithm #2

2,493 patients excluded by scan count or slice thickness criteria

218 nodules excluded by size or other quality criteria

26 nodules not successfully segmented by algorithm #2

36 nodules with segmentation errors

8 nodules not successfully segmented by algorithm #1

54 nodules with segmentation errors

Figure 1 Flowchart of selection of nodules for analysis.



Quantitative Imaging in Medicine and Surgery, Vol 14, No 7 July 2024 5061

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):5057-5071 | https://dx.doi.org/10.21037/qims-23-1501

Table 1 Summary statistics for each algorithm according to nodule volume (estimated diameter) categories

Volume (mm3);  
estimated diameter (mm)

Algorithm #1 Algorithm #2

N Obs
Mean volume 

(mm3)
Std Dev of 

volume* (mm3)
CoV of 

volume** (%)
N Obs

Mean volume 
(mm3)

Std Dev of 
volume* (mm3)

CoV of 
volume** (%)

<113 mm3 (<6.0 mm) 8 78.55 6.24 7.49 1 73.37 7.72 10.53

113–267 mm3 (6.0–7.9 mm) 20 200.85 12.26 6.45 20 197.67 31.98 17.36

268–381 mm3 (8.0–8.9 mm) 23 322.36 18.59 5.83 24 326.28 38.80 12.18

382–523 mm3 (9.0–9.9 mm) 18 436.34 31.89 7.10 23 450.35 52.72 11.70

524–696 mm3 (10.0–10.9 mm) 15 578.97 36.28 6.24 16 608.00 57.26 9.43

697–1,149 mm3 (11.0–12.9 mm) 14 883.09 41.24 4.57 15 892.19 63.07 7.12

≥1,150 mm3 (13.0–20 mm) 9 1,574.25 81.66 5.02 8 1,496.90 79.38 5.20

Diameter was estimated from the measured volume under the assumption of a perfect sphere. *, average of standard deviation of volume 
for each nodule for that particular size category; **, average of CoV of volume for each nodule in that particular size category. N Obs, 
number of observations; Std Dev, standard deviation; CoV, coefficient of variation.

had excellent agreement interclass correlation coefficient 
(ICC) =0.98. The mean volume using algorithm #1 was 
515.23 mm3 and using algorithm #2, 535.53 mm3; mean 
difference in volume between the two algorithms was  
20.3 mm3, with algorithm #2 reporting volumes larger 
than algorithm #1 on average (95% Bland-Altman limits of 
agreement: −140.1 to 180.7 mm3) as shown on the Bland-
Altman plot (Figure 3). Figure 3 showed an overall trend that 
as the mean volume of both algorithms (x-axis) increased, 
the difference in mean volume of the two algorithms (y-axis), 
decreased, although there were outliers at larger volumes. 

Nodule volume measurement uncertainty

The standard deviation of the volume measurements 

( )ikS  increased with increasing nodule volume for both 

algorithms, from 6.24 to 81.66 for algorithm #1 and from 
7.72 to 79.38 (Table 1) for algorithm #2. 

CoVik , the CoV of the ith nodule volume using algorithm 
k, is standardized by mean nodule volume. Thus, unlike the 

standard deviation, ikS , it decreased with increasing nodule 

volume for both algorithms. The trend was more apparent 
for algorithm #2 (Table 2, Figure 4).

For both algorithms, CoV of nodule volume (Table 2) 
were well below the RSNA-QIBA Small Nodule Profile 
limits (17). CoV of nodule volume was significantly lower 
for algorithm #1 than algorithm #2 (median CoV of nodule 
volume of 4.6% vs. 8.7%, P<0.001), both overall and for 
each nodule volume category. 

Effect of nodule characteristics on volume measurement 
uncertainty

Table 3 shows the CoV of nodule volume by nodule features 
for the 107 nodules. Of the 107 nodules, 49 (45.8%) were 
in the upper/middle lobe and 58 (54.2%) were in the lower 
lobe. Blood vessel attachments were seen in 62 (57.9%) 
of the 107 nodules and costal pleural attachments seen in 
9 (8.4%). Median nodule surface area was 450.5mm2 and 
589.7mm2 for algorithm #1 and algorithm #2

For algorithm #1, univariable analyses of CoV of nodule 
volume (Table 4), using the log-transform of CoV of nodule 
volume, showed a negative association with estimated 
nodule volume (β=−0.0002, P=0.35) and log-transform 
of the nodule surface area (β=−0.18, P=0.15), but neither 
was statistically significant. Nodule location as well as 
attachments to blood vessels or pleura were not significantly 
associated with CoV of nodule volume.

For algorithm #2, univariable analyses of CoV of 
nodule volume (Table 4), using the log-transformed CoV 
of nodule volume, was negatively associated with estimated 
nodule volume (β=-0.0007, P=0.001). Nodules without 
attachment to blood vessels (P=0.002) and smaller nodule 
surface area (P<0.001) were significantly associated with 
increasing log-transformed CoV of nodule volume (Table 5).  
As a strong positive association between surface area and 
estimated nodule volume (r=0.98) was identified, two 
separate multivariable regression models were fitted to 
avoid multicollinearity. When nodule characteristics were 
considered together using a multiple linear regression 
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Figure 2 Distribution of all 107 nodules in the database according to (A) volume and (B) diameter. Algorithm #1 is on the left, algorithm #2 
on the right.

Figure 3 Bland-Altman comparison of the two algorithms.
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model, smaller nodule volume (P=0.02) and nodules without 
attachment to blood vessels (P=0.02) remained significantly 
associated with increasing CoV of nodule volume [r2=0.16, 
Akaike information criterion (AIC) =−55.97] (Table 5, 
model 1). When nodule surface area was included as 
an independent variable together with nodule location, 
blood vessels, and pleural attached nodules in a separate 
multivariable model (Table 5, model 2), nodule surface area 
remained as the only significant factor associated with CoV 
of nodule volume (r2=0.20, AIC =−61.58). Using nodule 
surface area instead of nodule volume in the adjusted model 
significantly improved the model fit (r2) from 0.16 to 0.20.

Analyses of CoV for the x, y, and z measurements 
(mm, x: right to left, y: anterior to posterior, z: superior to 
inferior) for all nodules are shown in Table 6 and Table 7  
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Figure 4 Box plot of coefficient of variation of nodule volume by nodule volume category using algorithm #1 (A) and algorithm #2 (B). CoV, 
coefficient of variation.

Table 2 Median and quartile statistics for the coefficient of variation for nodule volume measurements, CoV of nodule volume, for each algorithm 
by nodule volume (estimated diameter) categories 

Volume (mm3);  
estimated diameter (mm)

CoV of volume

Algorithm #1 Algorithm #2

N Obs
CoV of 

volume** (%)
Median 

(%)
Lower 

quartile (%)
Upper 

quartile (%)
N Obs

CoV of 
volume** (%)

Median 
(%)

Lower 
quartile (%)

Upper 
quartile (%)

<113 mm3 (<6.0 mm) 8 7.49 8.21 3.6 10.61 1 10.53 10.53 10.53 10.53

113–267 mm3 (6.0–7.9 mm) 20 6.45 5.67 3.48 9.95 20 17.36 11.48 5.80 27.83

268–381 mm3 (8.0–8.9 mm) 23 5.83 5.11 2.71 7.8 24 12.18 11.41 4.50 14.68

382–523 mm3 (9.0–9.9 mm) 18 7.10 5.25 3.01 10.98 23 11.70 11.26 4.80 15.01

524–696 mm3 (10.0–10.9 mm) 15 6.24 4.92 1.88 11.95 16 9.43 9.24 3.15 14.40

697–1,149 mm3 (11.0–12.9 mm) 14 4.57 2.89 2.32 4.36 15 7.12 7.06 3.84 10.42

≥1,150 mm3 (13.0–20 mm) 9 5.02 4.90 3.92 6.37 8 5.20 4.61 3.10 6.64

Diameter was estimated from the measured volume under the assumption of a perfect sphere. **, average of CoV of volume for each 
nodule in that particular size category. CoV, coefficient of variation; N Obs, number of observations.

for algorithms #1 and #2 respectively. Using algorithm 
#1, median CoV of x, y, z measurements were 2.5% (IQR: 
1.6–3.8%), 2.5% (IQR: 1.6–3.6%), and 4.7% (IQR: 2.7–
7.4%), respectively. Correlation between the CoV of nodule 
volume and the CoV of the x, y, z measurements were 0.29 
(P=0.0021), 0.25 (P=0.009), and 0.80 (P<0.001) (Figure 5A). 
Using algorithm #2, median CoV of x, y, z measurements 
were 3.2% (IQR: 2.0–6.11%), 3.8% (IQR: 2.4–6.1%), and 
5.2% (IQR: 3.5–8.0%), respectively. Correlation between 
the CoV of nodule volume and the CoV of the x, y, z 
measurements was 0.46 (P<0.001), 0.52 (P<0.001), and 
0.58, respectively (P<0.001) (Figure 5B). There was a strong 

relationship between CoV of nodule volume and CoV of 
z measurements in algorithm #1, while it was low for CoV 
of x and y measurements. However, for algorithm #2, the 
relationship between CoV of nodule volume and CoV of 
the x, y, and z measurements was low-moderate. 

Discussion

Current protocols for management of lung nodules utilize 
fixed nodule size and growth thresholds, implicitly designed 
to overcome measurement uncertainty without regard 
to specific characteristics of a patient’s nodule. Our goal 
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Table 3 CoV of nodule volume measurements (CoV of nodule volume) by nodule features and for each algorithm

Nodule feature N

CoV of nodule volume

Algorithm #1 Algorithm #2

Median (%) Lower quartile (%) Upper quartile (%) Median (%) Lower quartile (%) Upper quartile (%) 

Nodule location

LLL 25 5.36 3.14 9.95 12.96 6.84 18.79

LUL 16 4.30 2.99 9.90 9.24 4.67 14.23

RLL 33 4.90 2.97 10.98 10.53 4.14 14.63

RML 12 3.86 3.09 6.54 7.03 3.53 10.06

RUL 21 4.04 2.95 5.68 7.79 4.99 11.5

Upper/middle lobe* 49 4.04 2.95 6.42 7.58 4.95 12.66

Lower lobe** 58 5.23 2.97 10.87 11.24 4.68 15.19

Blood vessel attachment

Yes 62 4.46 2.90 7.28 6.62 3.84 13.32

No 45 4.70 3.05 10.87 10.72 7.06 20.57

Costal pleural attachment

Yes 9 6.37 2.90 11.79 11.37 9.23 13.03

No 98 4.59 2.97 8.12 8.16 4.15 14.48

Surface area 107 450.5 323.7 628.6 589.7 438.4 780.9

*, upper/middle lobe represents the sum of LUL, RML and RUL; **, lower lobe represents the sum of LLL and RLL. CoV, coefficient of 
variation; LLL, left lower lung, LUL, left upper lung, RLL, right lower lung, RML, right middle lung, RUL, right upper lung. 

Table 4 Regression of log-transform coefficient of variation of 
nodule volume by nodule characteristics for algorithm #1

Nodule characteristics
Univariate

Estimate (β) Std. error P value

Volume (mm3) −0.0002 0.0002 0.35

Nodule location    

Upper/middle lobe Ref.

Lower lobe 0.15 0.14 0.28

Blood vessel attachment −0.15 0.14 0.28

Costal pleural attachment 0.29 0.25 0.25

Log (nodule surface area) −0.18 0.13 0.15

Reference category were absent of blood vessel attachment and 
absent of costal pleural attachment. Std., standard.

is to understand the nodule- and patient-specific factors 
that affect measurement uncertainty with a view towards 
personalizing follow-up interval recommendations. 
Using two different automated volume measurement 
algorithms to calculate the CoV of nodule volume of our 
zero-change database of 107 nodules, we provided a best-
case scenario for minimizing variation in size by reducing 
other possible sources of variation—same scanner and 
CT scan parameters, coached breathing, and having the 
patient remain on the table between scans. As a result, the 
measurement uncertainty for both algorithms given by the 
CoV of nodule volume (Table 1) was well below the RSNA-
QIBA Small Nodule Profile limits and lower than the 15% 
reported by Smith et al. (4) and other studies (5,6,10-12). 
Algorithm #1 had a significantly lower median CoV of 
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Table 5 Regression of log-transform coefficient of variation of nodule volume by nodule characteristics for algorithm #2

Nodule characteristics
Univariate Multivariable (Model 1) Multivariable (Model 2)

Estimate (β) Std. error P value Estimate (β) Std. error P value Estimate (β) Std. error P value

Volume (mm3) −0.0007 0.0002 0.0012 −0.0005 0.0002 0.017 – – –

Nodule location

Upper/middle lobe Ref. Ref. Ref.

Lower lobe 0.18 0.16 0.26 0.10 0.15 0.50 0.10 0.15 0.49

Blood vessel attachment −0.48 0.15 0.002 −0.37 0.16 0.02 −0.27 0.16 0.09

Costal pleural attachment 0.34 0.28 0.23 0.25 0.27 0.35 0.34 0.26 0.20

Log (nodule surface area) −0.75 0.17 <0.0001 – – – −0.48 0.14 0.001

Reference category were absent of blood vessel attachment and absent of costal pleural attachment. Std., standard. 

Table 6 Regression of log-transform of CoV for (I) x-, (II) y-, and (III) z-dimensions measurements for algorithm #1

Nodule characteristics
Univariate Multivariable

Estimate (β) Std. error P value Estimate (β) Std. error P value

x-measurement (right to left across patient)

Volume (mm3) −0.0002 0.0001 0.09 −0.0003 0.0001 0.06

Nodule location      

Upper/middle lobe Ref. Ref.

Lower lobe 0.22 0.11 0.06 0.17 0.11 0.13

Blood vessel attachment −0.04 0.12 0.71 0.10 0.12 0.40

Costal pleural attachment 0.72 0.19 0.0003 0.72 0.22 0.001

y-measurement (anterior to posterior)

Volume (mm3) −0.0005 0.0001 <0.001 −0.0005 0.0001 <0.001

Nodule location  

Upper/middle lobe Ref. Ref.

Lower lobe 0.14 0.11 0.23 0.04 0.12 0.73

Blood vessel attachment −0.10 0.12 0.41 0.02 0.12 0.84

Costal pleural attachment 0.09 0.23 0.70 0.18 0.22 0.42

z-measurement (superior to inferior) 

Volume (mm3) −0.0003 0.0002 0.11 −0.0001 0.0002 0.52

Nodule location  

Upper/middle lobe Ref. Ref.

Lower lobe 0.36 0.13 0.01 0.37 0.14 0.01

Blood vessel attachment −0.21 0.13 0.12 −0.20 0.14 0.16

Costal pleural attachment 0.33 0.24 0.16 0.18 0.26 0.49

Reference categories were absent of blood vessel attachment and absent of costal pleural attachment. CoV, coefficient of variation; Std., 
standard. 
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nodule volume than algorithm #2 (4.6% vs. 8.7%, P<0.001) 
(Table 2), which may be explained by the additional 
complexity of algorithm #2, which allowed this algorithm 
to segment a broader range of nodules (133 successfully 
segmented nodules vs. 115 for algorithm #1) at the expense 
of greater measurement uncertainty (Table 1). Additionally, 
algorithm #1 uses morphological filtering operations with 
a spherical kernel to remove attached structures, which has 
the side effect of smoothing the nodule surface, reducing 
variation. The trend of decreasing CoV of nodule volume 
with increasing nodule volume for both algorithms may be 
due to uncertainty in segmenting the nodule surface. The 
link between surface area and uncertainty was described in 
a previous study, which found a “zone of transition” on the 

surface of the nodule that proportionally decreased with 
increasing nodule size (20).

There are several notable findings from this study. First 
is confirmation of the relationship between nodule size 
and extent of uncertainty. Second, substantial differences 
in the performance of the two software programs exist. 
Third, there was evidence for nodule complexity impacting 
the measurement uncertainty. Fourth, we found a more 
significant relationship of measurement uncertainty to 
changes in the z-measurement which suggests spatial 
warping, previously demonstrated for older generations of 
scanners (9), illustrated in Figure 6, but may be due to other 
factors such as cardiac motion. Taken together our findings 
strongly suggest that the extent of measurement uncertainty 

Table 7 Regression of log-transform of CoV of (I) x-, (II) y-, and (II) z-dimensions measurements for algorithm #2

Nodule characteristics
Univariate Multivariable

Estimate (β) Std. error P value Estimate (β) Std. error P value

x-measurement (right to left across patient)

Volume (mm3) −0.001 0.0002 <0.001 0.0009 0.0002 <0.001

Nodule location      

Upper/middle lobe Ref. Ref.

Lower lobe 0.20 0.14 0.14 0.05 0.12 0.68

Blood vessel attachment −0.41 0.13 0.003 −0.24 0.12 0.06

Costal pleural attachment 0.22 0.24 0.38 0.17 0.21 0.41

y-measurement (anterior to posterior)

Volume (mm3) −0.0007 0.0002 <0.001 −0.0007 0.0002 <0.001

Nodule location    

Upper/middle lobe Ref. Ref.

Lower lobe 0.15 0.13 0.25 0.02 0.12 0.84

Blood vessel attachment −0.13 0.13 0.30 0.02 0.13 0.89

Costal pleural attachment 0.04 0.23 0.85 0.07 0.21 0.74

z-measurement (superior to inferior)

Volume (mm3) −0.0004 0.0001 0.0022 −0.0003 0.0002 0.025

Nodule location    

Upper/middle lobe Ref. Ref.

Lower lobe 0.25 0.11 0.02 0.19 0.11 0.08

Blood vessel attachment −0.18 0.11 0.09 −0.12 0.11 0.26

Costal pleural attachment 0.15 0.19 0.44 0.12 0.19 0.52

Reference categories were absent of blood vessel attachment and absent of costal pleural attachment. CoV, coefficient of variation; Std., 
standard. 
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represents a complex interaction between the device used 
to produce the image, the software used to make the 
measurement, and characteristics of the nodule and patient. 

Although this study focused on measurement uncertainty, 
bias, defined as the deviation from the true measurement, 
is an additional component of measurement error. While 
algorithm #1 had lower measurement uncertainty, we do 
not know if it has a lower bias as the true volume of in-vivo 
nodules is unknown; thus, we do not know which algorithm 
is best overall. Previous nodule measurement challenges 
with a variety of different algorithms, one including the 
same algorithms as the ones in this study (21), and another 
study including similar algorithms (22), also showed 

differences between algorithms in both measurement 
uncertainty and bias.

Limitations of our study are that we evaluated a single 
scanning protocol on a single CT machine, and differences 
between scanners and protocols within the same scanner are 
likely to influence these results. We plan to obtain more cases 
from different scanners and with additional reconstruction 
protocols to investigate the impact of these aspects on 
volume measurement uncertainty. In addition, the scanning 
protocol utilized a pitch factor of 1.5, which is higher 
than typically recommended for lung cancer screening 
protocols (23). While a previous study found that lower 
pitch factor reduces uncertainty in synthetic nodules (24),  

Figure 5 Plots examining the relationship between the nodule CoV of the x- (shown in red), y- (in blue), and z- (in green) dimensions 
versus the (left) volume of the nodule along each axis and (right) nodule volume CoV for algorithms #1 (A) and #2 (B). For algorithm #1, 
correlations between the CoV of nodule volume and the CoV of the x, y, z measurements were 0.29 (P=0.0021), 0.25 (P=0.009), and 0.80 
(P<0.001), respectively. For algorithm #2, correlations between the CoV of nodule volume and the CoV of the x, y, z measurements was 0.46 
(P<0.001), 0.52 (P<0.001), and 0.58 (P<0.001), respectively. CoV, coefficient of variation.
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Figure 6 Two scans of a nodule taken only minutes apart illustrating z-dimension warping resulting in the nodule appearing on differing 
number of slices between the scans despite no growth of the nodule; in (A) the nodule is visualized on 8–9 CT image slices, while in (B), the 
nodule is visualized on 10–11 image slices. Both images are using the same window level settings. CT, computed tomography.

A

B

the difference for a thin-slice scan was less than 5%. We 
plan to evaluate additional nodule characteristics, such 
as heterogeneity of density, to determine their impact 
and develop a more comprehensive model; however, we 
evaluated the nodule features we believed to have the 
greatest impact. In addition, this approach is only useful for 

measuring uncertainty and not accuracy; we will need to use 
phantom measurements and various approaches to modeling 
and simulation for additional understanding. We believe 
that, for estimating change assessment for a particular 
software and imaging setting, uncertainty likely will be 
the dominating effect. Finally, we used a single observer 
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to both provide initial seed points for both algorithms and 
to evaluate whether the algorithms successfully segmented 
nodules; another observer may have selected different seed 
points and had different criteria for segmentation success. 
If multiple observers evaluated the segmentations and we 
only selected nodules that all observers agreed had “good” 
segmentations, we would have both reduced the size of the 
dataset and eliminated nodules that the observers disagreed 
on, which would reduce the measurement uncertainty 
further. In addition, as shown in the example nodule in 
Figure 6, irrespective of the segmentation, there is a clear 
difference in the number of slices the nodule appears 
between the two scans.

Conclusions 

The results of this study have important implications on 
nodule management protocols. Recently, an approach to 
quantifying change in prognosis due to time delays that 
typically occur because of typical diagnostic algorithms has 
been reported (25). The primary reason for the requirement 
of any time delay for assessing growth relates to overcoming 
measurement uncertainty. Thus, the necessary components 
for balancing between these two competing elements of for 
determining optimal, and even personalized time delays, are 
only now beginning to emerge. 
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