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Abstract

Dorsal–ventral specification in the amphibian embryo is controlled by b-catenin, whose activation in all dorsal cells is
dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to b-
catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural
tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the
dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed,
causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions
through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain
Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this
disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt
and TGF-b, in opposite ways and is essential for early neuroectoderm specification.
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Introduction

Dorsal–ventral axis specification is one of the earliest patterning

events in the embryo. In vertebrates, early dorsal ectoderm gives

rise to the neural plate, which in turn develops into the central

nervous system (CNS). Previous studies have found that dorsal axis

formation in amphibians is initiated during cortical rotation after

fertilization. Current evidence strongly suggests that the canonical

Wnt signaling pathway, operating at blastula stages, plays a critical

role in dorsal specification [1]. For example, Wnt signaling was

discovered to induce secondary axes when ectopically activated in

the ventral cells of early embryos. Loss-of-function studies indicate

that the Wnt/b-catenin signaling pathway is also essential for

dorsal specification [2–4]. More recently, Heasman and colleagues

provided strong evidence that vegetally localized maternal Wnt11

cooperates with Wnt5A to activate the canonical Wnt pathway

and is required for dorsal axis formation [5–7]. However, despite

extensive studies on dorsal specification, some observations cannot

be fully explained. For example, although the cortex is rotated

only 30u toward the dorsal side, activated nuclear b-catenin is

observed in all dorsal cells, including dorsal cells near the animal

pole [8]. Previous studies suggested that Wnt pathway components

may be transferred beyond 30u to the dorsal animal region [8,9].

However, it remains unknown whether such movements can fully

account for Wnt activation in dorsal animal cells, and it is also

unclear how these movements precisely regulate the earliest steps

of neuroectoderm formation in the blastula.

In addition to canonical Wnt signaling, the BMP pathway has

also been implicated in neuroectoderm specification and pattern-

ing. During early gastrulation, Noggin, Chordin, and Follistatin

expressed in the Spemann organizer bind to BMPs in the

extracellular space and antagonize their epidermal-promoting

effects [10–12]. These results support a ‘‘default model’’ for neural

induction in which ectoderm cells are predisposed to become

neurons if they receive no BMP signals [13,14]. Genetic screens in

Drosophila and zebrafish have yielded mutants that affect dorsal–

ventral patterning. Interestingly, most of these mutants show

defects in the BMP signaling pathway, indicating that BMP

signaling has a conserved role in dorsal–ventral patterning [1].

On the other hand, dorsal animal cells in the Xenopus blastula

can develop into dorsal and neural tissues cell-autonomously when

cultured in a saline solution [15,16]. De Robertis and colleagues

found that a subset of the dorsal ectoderm cells in the late blastula

expressed Chordin, Noggin, Siamois, and Xnr3 prior to Spemann

PLoS Biology | www.plosbiology.org 1 March 2012 | Volume 10 | Issue 3 | e1001286



organizer functioning and referred to these cells as the blastula

Chordin- and Noggin-expressing center (BCNE center) [16]. Early

Chordin and Noggin transcription is activated by maternal b-catenin,

but the precise mechanism underlying this activation remains to be

uncovered [16].

We report here that maternal Xenopus Norrin (xNorrin) is

required for b-catenin activation in dorsal animal cells in the

Xenopus blastula and in early neuroectoderm development. Norrin

is a non-Wnt ligand that was previously shown to activate b-

catenin through LRP5 and Frizzled4 or TSPAN12 during retina

vascular development [17–19]. In humans, mutations in Norrin

cause Norrie disease [20]. We further show that xNorrin can

directly antagonize TGF-b/BMP signaling. Our results not only

identify an endogenous maternal factor required for early

neuroectoderm specification, but may also add TGF-b inhibition

to the increasingly complex regulatory activities of Norrin in

retinal vascular development [17,19].

Results

xNorrin Promotes Dorsal and Anterior Neural Formation
We sought to identify additional secreted molecules that are

involved in neuroectoderm formation. Neuroectoderm is derived

from dorsal animal regions in early Xenopus embryos. Therefore,

we used early neural markers to search for molecules that may be

responsible for early neural specification. In Xenopus, ultraviolet

(UV) irradiation of the vegetal pole in embryos causes severe

dorsal axis development defects [21] (Figure 1A–1F) in otherwise

normal embryos (Figure 1A). We selected a set of candidate genes

Author Summary

A key step during early embryogenesis is the generation of
neural precursors, which later form the central nervous
system. In vertebrates, this process requires proper dorsal–
ventral axis specification, and we know that the canonical
Wnt and BMP signaling pathways help pattern the dorsal
ectoderm. In this study, we examine other factors that are
involved in neuroectoderm development in the frog
species Xenopus laevis. We find that maternal Xenopus
Norrin (xNorrin) is required for canonical Wnt signaling in
the dorsal ectoderm, functions upstream of neural
inducers, and is required for neural formation. We also
find that xNorrin not only activates Wnt signaling, but also
inhibits BMP/Nodal-related signaling. In humans, muta-
tions in Norrin cause Norrie disease. Using Norrin mutants
identified in patients with Norrie disease, we find that
some Norrin mutants fail to inhibit BMP/Nodal-related
signaling (specifically, TGF-b) but retain the ability to
activate the Wnt pathway, suggesting that loss of TGF-b
inhibition may contribute to Norrie disease development.

Figure 1. xNorrin induces anterior CNS formation in ventralized embryos. (A–D) xNorrin mRNA induces anterior neural tissues, while Wnt11
mRNA restores only a partial dorsal axis (without anterior structures) in UV-irradiated embryos. (A) A wild-type embryo (stage 33); (B) an embryo UV-
irradiated (50 mJ) at the vegetal pole; (C) a UV-irradiated embryo injected with Wnt11 mRNA (500 pg) into one cell at the four-cell stage (arrowhead:
partial dorsal axis); (D) a UV-irradiated embryo injected with xNorrin mRNA (500 pg) as in (C) (arrow: head). (E) Summary of (A–D). Fraction of the
population within each group is indicated. (F) Histological analysis of stage 40 embryos. Arrowhead: muscle; arrows: brain and eye. (G–J) Whole-
mount in situ hybridizations to Sox3. (G) A wild-type (WT) embryo (100%, n = 65); (H) a UV-treated embryo (4% Sox3 positive, n = 70); (I) a UV+Wnt11
(500 pg) rescued embryo (45% Sox3 positive, n = 77); (J) a UV+xNorrin (500 pg) rescued embryo (83% Sox3 positive, n = 69). All embryos are shown
with the anterior pole to the left. Arrowhead: posterior neural structure; arrow: anterior neural structure. (K) Neural marker expression detected by RT-
PCR. xNorrin induced expression of anterior neural and pan-neural markers (En2, otx2, Xpax6, NCAM, and Sox2) in UV-irradiated embryos. Wnt11
induced only the hindbrain marker Krox20 in UV-irradiated embryos.
doi:10.1371/journal.pbio.1001286.g001

xNorrin Controls Early Neuroectoderm Specification
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that were previously shown to activate Wnt/b-catenin pathways

and tested their ability to reorganize the dorsal axis or anterior

neural tissues by injecting them individually into UV-irradiated

embryos. Among the maternally expressed Wnt genes (Wnt5a,

Wnt8b, and Wnt11) tested, Wnt11 and Wnt8b were able to induce

some dorsal axis structures (Figure 1C and data not shown)

[22,23]. However, none of these molecules triggered the formation

of anterior neural tissues (data not shown).

We also cloned X. laevis xNorrin (GenBank accession number:

EU528658) from unfertilized eggs. This gene encodes a homolog

of human Norrin that can activate b-catenin [18]. The injection of

xNorrin mRNA into UV-ventralized embryos produced a well-

defined head-like structure (Figure 1), including cement gland, eye,

and brain-like tissues (85%, n = 97). In contrast, only 5% of UV-

ventralized embryos (n = 76) developed any dorsal axial structures

(such as notochord and neural tube), and 49% of Wnt11-injected,

UV-irradiated embryos (n = 81) developed dorsal ridges without

notochords and neural tubes (Figure 1C and 1F). Gene expression

analysis showed that xNorrin induced not only pan-neural markers,

such as Sox3, Sox2, and NCAM, but also anterior neural markers,

such as otx2, Xpax6, and En2, in stage 20 embryos (Figure 1J and

1K). In contrast, Wnt11 induced the expression of the rhombo-

mere marker Krox20 (Figure 1K) and only weakly induced the

expression of the pan-neural marker Sox3 (Figure 1I). These results

indicate that xNorrin can promote anterior neural tissue formation

in an otherwise non-neural background. The neural formation

triggered by xNorrin expression in UV-ventralized embryos may

perhaps be attributable to early neuroectoderm induction by the

injected xNorrin.

We reasoned that for maternal xNorrin to act in specifying the

neuroectoderm in a cell-autonomous fashion, it should meet two

criteria. First, it should be expressed in the dorsal ectoderm of the

blastula [16,24]. Second, it should be able to activate canonical

Wnt signaling [16,25]. Indeed, we confirmed that xNorrin mRNA is

expressed in the animal pole of stage 6 oocytes and early cleavage

embryos (Figures 2A, 2C, and S2A). In addition, much more

xNorrin mRNA was detected in dorsal blastomeres than in ventral

blastomeres in 16-cell-stage embryos (Figure 2B).

Norrin proteins are highly conserved among vertebrates (Figure

S1A and S1B). xNorrin, like its mouse ortholog, can activate Wnt-

responsive reporters (data not shown) and induce LRP6

phosphorylation in HEK293T cells (Figure S2C). Next, we

examined whether xNorrin could activate early Wnt target gene

expression in vivo. The injection of xNorrin into UV-irradiated

embryos robustly induced the expression of the known Wnt targets

Chordin, Noggin, Xnr3, and Siamois (Figure 2D). Further, animal caps

injected with xNorrin plus Xenopus Frizzled4 plus human Lrp5

mRNA (NFL) also expressed Xnr3 and Siamois, but not Xbra (Figure

S2B). We noted that xNorrin injection alone did not induce Xnr3 or

Siamois expression in animal caps (Figure S2B), suggesting that

some components of the xNorrin pathway may not be expressed in

the caps (see Discussion). However, the injection of xNorrin into

dorsal animal cells enhanced Chordin expression during the late

blastula and early gastrula stages (Figure 2E). These results suggest

that maternal xNorrin may promote neuroectoderm specification

by activating canonical Wnt signaling.

xNorrin Is Required for Neuroectoderm Specification
To address whether maternal xNorrin is required for neuroec-

toderm specification and hence anterior CNS formation at a later

stage, we used an xNorrin antisense morpholino (MO) oligonucle-

otide (xNor-MO) to inhibit xNorrin translation (Figure 3A). The

inhibition of xNorrin mRNA translation by xNor-MO was both

specific and dose-dependent (Figure 3B). We injected xNor-MO

into the animal region of the two dorsal blastomeres in the four- to

eight-cell embryo stage to suppress endogenous xNorrin translation.

The majority of xNor-MO-injected embryos (61%, n = 64)

displayed anterior head truncations, and another 15% of the

embryos lacked morphological eye structures and other anterior

neural structures at tadpole stages (Figure 3D). The injection of a

mismatched MO (misMO), xNor-misMO, that failed to block

xNorrin-Myc translation (data not shown) produced no discernible

phenotype compared to uninjected controls (Figure 3C and 3E).

The specificity of xNor-MO was further tested by the co-injection

of a wild-type xNorrin mRNA lacking the xNor-MO target

sequence. The injection of 25 pg of xNorrin mRNA significantly

rescued the anterior neural development defects in xNor-MO-

injected embryos (Figure 3F) (n = 81, 77% rescued). Furthermore,

the injection of xNor-MO into one dorsal animal cell in eight-cell-

stage embryos, while leaving the other side intact, resulted in

severe defects in eye development at later stages (compare

Figure 3G and 3H). Because xNorrin is also expressed zygotically

at later stages, we designed a splicing MO (spMO) to specifically

block its splicing (Figure S3A and S3B). While xNor-MO inhibited

anterior development, xNor-spMO had almost no effect on axis

development (Figure S3C–S3G). We further confirmed that xNor-

Figure 2. Maternal xNorrin activates the canonical Wnt
signaling pathway. (A) RT-PCR analysis of mRNAs from equatorially
bisected oocytes (Egg). xNorrin mRNA is present in the animal half (Ani)
of fully grown oocytes, while Xcat-2 mRNA is present in the vegetal half
(Veg). –RT: no reverse transcription. (B) Both xNorrin mRNA and Wnt11
mRNA are enriched in the dorsal cells of 16-cell embryos. Embryos are
evenly bisected into dorsal and ventral halves. D, dorsal half; V, ventral
half; WE, whole embryo. (C) Spatial and temporal expression patterns of
xNorrin mRNA from fertilized eggs to the late blastula stage (stage 9)
revealed by whole-mount in situ hybridization. (D) xNorrin mRNA
(500 pg) injection into the animal region of UV-ventralized embryos at
one-cell stage reactivates the expression of Siamois, Chordin, Noggin,
and Xnr3 at the late blastula stage. (E) xNorrin injection enhanced
Chordin expression (detected by in situ hybridization) at stage 9 (81%,
n = 36) and stage 10 (80%, n = 35) compared to wild-type embryos. UV,
UV-irradiated embryos; WT, wild-type embryos; xNorrin, wild-type
embryos injected with xNorrin (500 pg) into the dorsal-animal region
at the four- to eight-cell stage.
doi:10.1371/journal.pbio.1001286.g002
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MO preferentially inhibited XBF-1 (an anterior neural marker

[26]) expression in the injected side, while xNor-spMO had a

much weaker effect (Figure S3H). Neither MO had a significant

role in regulating the expression of HoxB9 (a posterior marker [27])

(Figure S3H). These results suggest that maternal xNorrin signaling

is required for anterior CNS formation.

The loss of anterior head development may be an indirect effect

due to a lack of early neuroectoderm specification. Thus, we tried

to address whether b-catenin activation in the ectoderm, which is

indispensable for full dorsal axis formation [3], depends on

xNorrin activity. First, we used a SuperTopFlash Wnt reporter,

which can be activated by injection into the dorsal animal

blastomeres of eight-cell-stage embryos [5] (Figure 3I). The co-

injection of xNor-MO with the reporter plasmid largely blocked

reporter activity compared to co-injection with xNor-misMO

(Figure 3I). In a separate assay, we examined whether maternal

xNorrin was required for the expression of Chordin, Noggin, Xnr3,

and Siamois in dorsal animal cells, which is one of the earliest

indications of b-catenin activation [16]. We found that xNor-MO

reduced the expression of these genes in late blastula embryos

(Figures 3J, S4A, and S4B) but did not interfere with the

expression of gsc or Xnr1 (Figure S4A and S4B) at the early

Figure 3. Maternal xNorrin is required for dorsal ectoderm specification. (A) The xNor-MO target sequence (green line) in xNorrin mRNA. (B)
xNor-MO dose-dependently suppresses xNorrin-Myc (1.5 ng) mRNA translation in Xenopus embryos. xNorrin-Myc was detected using an anti-c-Myc
monoclonal antibody. Uni, no xNorrin-Myc injected. (C–F) xNorrin is required for head formation. (C) A wild-type (WT) stage 35 tadpole. (D) xNor-MO
(20 ng) caused anterior truncation (61%, n = 64) when injected into the animal regions of two dorsal cells in four- to eight-cell-stage embryos. (E)
xNor-misMO-injected embryos are generally normal (88%, n = 66). (F) The anterior defects caused by NorMO were rescued by xNorrin (25 pg) mRNA
(77%, n = 81). (G) Dorsal view of a wild-type tadpole at stage 45. (H) Anterior defects on only one side (arrow) were generated by injecting xNor-MO
(10 ng) into one dorsal cell at the four- to eight-cell stage (63% of injected embryos showed defects in the injected side, n = 30). The other side shows
normal morphology. The anterior end is to the left. (I) xNor-MO inhibits Wnt signaling in dorsal animal cells. xNor-MO and SuperTopFlash (STF)
reporter plasmids were co-injected into the dorsal animal cells of eight-cell embryos. F/R luciferase: ratio of firefly luciferase reading to renilla
luciferase reading. (J) Whole-mount in situ hybridization shows that Chordin expression is reduced at stage 9 (53% of injected embryos, n = 80) and
stage 10 (61% of injected embryos, n = 79) in xNor-MO-injected embryos, compared to xNor-misMO-injected embryos or uninjected embryos. (K–N)
Whole-mount in situ hybridization for Chordin in bisected xNor-MO-injected embryos (stage 9.5) showing that xNor-MO inhibits Chordin expression in
neuroectoderm precursors (arrow) (reduction in 66% of injected embryos, n = 104) (L) compared to wild-type embryos (K) and embryos with xNor-
misMO injected into dorsal animal cells at the eight- to 16-cell stage (reduction in 13% of injected embryos, n = 78) (M). Note that xNorrin mRNA
(100 pg) rescues Chordin expression in the dorsal ectoderm (80% of co-injected embryos showed expression comparable to wild-type embryos,
n = 50) (N). Embryos are oriented such that their dorsal side is on the right. Dotted lines indicate the boundaries between the deep mesoderm and the
superficial ectoderm.
doi:10.1371/journal.pbio.1001286.g003
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gastrula stage. The reductions in the expression of these genes in

xNor-MO embryos can be rescued by the co-expression of

xNorrin (Figure S4B). In late blastula xNor-MO embryos (stage

9.5), the reduction of Chordin expression was mostly restricted to

the ectoderm, while deep dorsal mesoderm cells retained weak

expression (Figure 3L). The ectoderm expression of Chordin in the

later blastula was fully restored by the co-injection of wild-type

xNorrin mRNA lacking the MO target sequence (Figure 3N). In the

blastula ectoderm, Chordin expression is controlled by maternal b-

catenin [16,28]. Thus, the control of early Chordin expression by

xNorrin should partially reflect how xNorrin functions in

neuroectoderm precursors. Together, these results indicate that,

besides vegetally localized Wnt11 activity, maternal xNorrin is

required to activate the canonical Wnt pathway in the dorsal

ectoderm and is essential for the proper expression of early zygotic

neural inducers before gastrulation.

xNorrin-Activated Wnt Signaling Fails to Dorsalize Ventral
Mesoderm

Mouse Norrin is a secreted protein that is tightly associated with

the extracellular matrix [29]. However, we found that xNorrin was

secreted into culture medium when expressed in HEK293 cells

and Xenopus embryo explants (data not shown). The secretion of

xNorrin in the culture cells and its potent activity in early embryos

prompted us to speculate that other mechanisms may be required

to restrict xNorrin activity in early embryos.

We first tested whether xNorrin was active when expressed

ectopically in embryos. Previous studies indicated that the ectopic

activation of the canonical Wnt pathway in the ventral side of

early embryos is sufficient for secondary dorsal axis formation

[30–32]. In addition, the co-expression of NFL was shown to

activate canonical Wnt signaling in tissue culture cells and in

animal cap explants (Figure S2B and S2C). Thus, we examined

whether NFL could mimic canonical Wnt proteins and induce

secondary axes in early embryos. Surprisingly, when injected into

the ventral vegetal cells of early embryos, NFL failed to generate

any complete secondary axes (Figure 4C), while Wnt8 was able to

generate secondary axes, as shown previously [31,32] (Figure 4B).

However, NFL was able to weakly induce partial secondary axes in

which the neural marker Sox3 was detected (Figure 4F). NFL-

injected embryos had neural tubes but not notochords in their

secondary axes (Figure 4I, 4L, and 4L’), while Wnt8-injected

embryos had complete secondary axes containing both neural

tubes and notochords (Figure 4E, H, K, and K’) [31,32].

The failure of NFL-injected embryos to form complete

secondary axes was not due to a lack of activation of Wnt

signaling by NFL, because Chordin, Siamois, and Xnr3 expression

could be detected in the ventral side of the early gastrula (stage 10)

(Figure S4C and S4D). However, Chordin expression was mostly

induced in the superficial layer and not in the deep ventral

mesoderm (Figure 4O). The much lower expression of Chordin in

the deep layer was considered unlikely to be a staining artifact

because strong Chordin signal was readily detected in the dorsal

mesoderm (Figure 4O). Embryos injected ventrally with Wnt8

strongly induced Chordin expression in both germ layers, as

expected (Figure 4N and 4Q). Similarly, the injection of NFL into

ventral animal cells induced Chordin transcription only in the

ventral ectoderm and not in the mesoderm (Figure 4R).

These results suggest that an intrinsic mechanism may exist to

restrict endogenous xNorrin activity to the prospective neuroec-

toderm. Alternatively, injected NFL may alter the cell fate of

endomesoderm, making it incompetent to form dorsal endome-

soderm, even in the presence of canonical Wnt signaling.

xNorrin Inhibits Activin/Nodal-Related Induced
Mesoderm Formation

Because NFL injection failed to activate Wnt target genes in the

endomesoderm (Figure 4O and 4R), we initially proposed that an

xNorrin-specific inhibitor might exist in the endomesoderm.

However, after extensive investigation, we were not able to

identify any molecule that could fulfill the proposed criteria for the

inhibitor, i.e., that it should be expressed specifically in the

endomesoderm and exert its antagonizing activity on xNorrin but

not Wnt8. We thus turned to an alternative possibility, that NFL

may influence the fate of endomesoderm precursor cells, making

the germ layer incapable of conversion into dorsal endomesoderm.

Previously, TGF-b family members, such as Xnr1, -2, -4, -5, and -

6 and derriere were shown to be essential for mesoderm induction

in Xenopus embryos [33]. Zygotic transcription of Xnr genes is

activated by maternal transcription factor VegT and b-catenin.

The Nodal-related molecules form a dorsal–ventral gradient that

induces dose-dependent endomesoderm formation. Higher con-

centration of Nodal-related molecules results in dorsal specifica-

tion [34,35]. In a mesoderm induction assay, we used Activin, in

lieu of Nodal-related molecules, to induce strong axial mesoderm

and convergent extension in animal cap cells (Figure 5A–5C)

[33,36]. When co-expressed in animal cap cells, xNorrin

completely blocked the Activin-induced elongation of animal cap

explants (Figure 5D; compare to Figure 5B and 5C). The

inhibition of mesoderm formation was confirmed by the lack of

expression of the mesoderm markers Xbra, Xwnt8, MyoD, and m-

actin in the co-expressing explants (Figure 5E). In whole embryos,

xNorrin injection into the vegetal pole also blocked Xbra

expression (Figure S5A–S5D). These results suggest that xNorrin

may negatively regulate mesoderm induction in vivo. Next, we

tested whether Xnr1 and xNorrin could be directly associated

extracellularly. We combined and incubated conditioned medium

from Xnr1-transfected HEK293 cells and from xNorrin-transfected

cells and used the medium for immunoprecipitation. Indeed, we

detected an association between Xnr1 and xNorrin (Figure S6B),

suggesting that maternal xNorrin may restrict Nodal-related

activity from extending into the animal pole.

Reciprocal Inhibition between xNorrin and BMP4
Because xNorrin can inhibit Activin/Nodal-related activity, we

hypothesized that it may also antagonize other members of the

TGF-b superfamily. Indeed, we found that xNorrin also strongly

inhibited the activity of a BMP4 reporter (BRE-Luc) (Figure 5F).

As expected, xNorrin also inhibited Smad1 phosphorylation

induced by BMP4 (Figure 5G). One possible mechanism for

inhibition between proteins is through direct binding. We

examined this possibility between BMP4 and xNorrin. To this

end, we injected differently tagged BMP4 and xNorrin mRNAs into

adjacent blastomeres in advanced four-cell-stage embryos to allow

secretion of the respective proteins into the extracellular space. At

late gastrula, protein extract was immunoprecipitated with one tag

antibody and blotted with the other tag antibody. Results showed

that BMP4 was indeed associated with xNorrin extracellularly.

Thus, the inhibition by xNorrin is likely through direct binding to

BMP4 (Figure 5I).

The direct interactions between xNorrin and BMP4 led us to

investigate whether xNorrin activity was regulated by BMP4. We

showed that xNorrin induced neural marker expression in animal

caps (Figure 5H). In an animal cap assay, BMP4 significantly

inhibited the otx2, Xpax6, and NCAM expression induced by

xNorrin (Figure 5H). Thus, reciprocal inhibition between xNorrin

and BMP4 may also be implicated in dorsal–ventral ectoderm

development.

xNorrin Controls Early Neuroectoderm Specification
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Previous studies indicated that the dorsally expressed BMP4

inhibitors Chordin, Noggin, and Follistatin could induce neural

formation through direct binding [10–12]. Because xNorrin can

also inhibit BMP4, we investigated xNorrin neural induction

activity. Indeed, we found that xNorrin alone can induce the

expression of neural-specific genes in animal cap cells in a dose-

dependent manner (Figures 6A and S5A). The neural promoting

activity of xNorrin in ectodermal cells was confirmed by the Sox3

(a neural marker) expression in xNorrin-injected animal caps

(Figure 6B). Further, xNorrin, like the truncated BMP receptor

DBMPR, can induce ectopic Sox3 and XAG1 (an anterior marker)

expression when injected into one ventral blastomere of 32-cell

embryos (Figure 6C). More importantly, neural induction was

observed when a b-catenin-specific MO was co-injected, indicat-

ing that canonical Wnt pathway activation is not required for

neural formation in this setting (Figure 6A, compare the two b-

catenin-MO-injected lanes). Furthermore, we did not observe

activation of Xnr3 or Siamois in xNorrin-injected animal caps,

confirming the lack of canonical Wnt activation (Figure S2B). We

conclude that xNorrin and BMP4 are reciprocally inhibited and

that xNorrin may promote neural development independent of

Wnt signaling activation.

Loss of TGF-b Inhibition in a Subset of Norrin Mutants
Norrin mutations are responsible for both X-linked familial

exudative vitreoretinopathy (FEVR) and Norrie disease (Online

Mendelian Inheritance of Man MIM#310620) in humans

[37,38]. The finding that Norrin can inhibit BMP/TGF-b activity

prompted us to test whether this regulation is involved in the

disease development. We noticed that some previously identified

Norrin mutants isolated from human patients did not significantly

affect Wnt pathway activation [18,39]. We hypothesized that these

human Norrin mutants might instead be compromised in their

ability to antagonize BMP/TGF-b activities in vivo.

The ectopic expression of xNorrin or mouse Norrin in the vegetal

cells of whole embryos potently inhibited the expression of the

mesoderm-specific marker Xbra, which is dependent on Nodal-

related activity in vivo (Figure 7D compared to 7B and 7C; Figure

S5B–S5D). We thus used this assay to examine the activity of

various xNorrin mutants on Xbra expression. We constructed three

xNorrin point mutants (R40K, L60P, and K57N) based on

mutations identified from human patients. Compared to wild-type

xNorrin, the xNorrin R40K and L60P mutants showed decreased

Xnr3, Siamois, and Chordin expression when co-expressed with Lrp5

and Frizzled4 in animal caps, while xNorrin K57N strongly

Figure 4. xNorrin activity is restricted to the ectoderm. (A–F)
Injection of NFL into ventral vegetal cells at the eight-cell stage induced
partial secondary axes. Wild-type (WT) embryos (stage 28) (A and D).
Injection of Wnt8 mRNA (10 pg) into ventral vegetal cells in eight-cell
embryos induces complete secondary axis formation (stage 28) (69% of
injected embryos showed secondary axes, n = 85) (B and E). NFL mRNA
(600 pg total; 200 pg each) co-injection of ventral vegetal cells in eight-
cell embryos induces partial secondary axis formation (stage 28) (45% of
co-injected embryos showed secondary axes, n = 105) (C and F). Whole-
mount in situ hybridization for Sox3 in stage 28 embryos (D–F). Note
that NFL induces Sox3 expression in the partial secondary axis
(arrowhead in [F]). The black lines in (A–C) indicate the section planes
in (G–I), respectively. (G–I) Histological sections of embryos at stage 30.
A wild-type embryo (G). Wnt8 mRNA injection induced both secondary
neural tube and notochord (H). NFL co-injection induced secondary
neural tube but not notochord formation (I). Arrowhead: neural tube;
arrow: notochord. (J–L) Immunostaining of notochords with the
monoclonal antibody MZ15. Wild-type embryo with single notochord
(all examined embryos) (J and J’). An embryo injected ventrally with
Wnt8 mRNA (10 pg) showed two notochords (induced secondary
notochord and the primary notochord) (all examined embryos with
secondary axes) (K and K’). An embryo injected ventrally with NFL
(200 pg each) showed only the primary notochord (arrows), with
notochord tissue absent in the partial secondary axis (arrowheads) (all
examined embryos with partial secondary axes) (L and L’). Embryos are

at stage 30. (M–R) NFL and Wnt8 induced Chordin expression in different
domains in the ventral cells. Whole-mount in situ hybridization was
used to evaluate Chordin expression in stage 10 embryos. Chordin
expression in wild-type early gastrula (M and P). Wnt8 mRNA (10 pg)
injection into ventral vegetal cells induced Chordin expression both in
the superficial layer and in the deep layer of the marginal zone (87.5%
of injected embryos showed the expression in both layers, n = 24) (N).
Injection of NFL mRNAs (200 pg each) into the same domain induced
Chordin expression mainly in the superficial layer (76% of injected
embryos showed the expression, n = 30) (O). Injection of Wnt8 into the
ventral-animal cells of eight-cell embryos induced Chordin expression
both in the ectoderm and in the mesoderm (84% of injected embryos
showed the expression in both layers, n = 25) (Q). Injection of NFL
mRNAs (200 pg each) into the same domain of eight-cell embryos
induced Chordin expression only in the ectoderm (72% of injected
embryos showed the expression, n = 32) (R). Arrowheads: superficial
layer (O) or ventral ectoderm (R); arrows: deep layers on the ventral side.
All embryos in (M–R) are shown with their dorsal sides to the right.
Dotted lines delineate the superficial layer and deeper layer on the
ventral side.
doi:10.1371/journal.pbio.1001286.g004

xNorrin Controls Early Neuroectoderm Specification

PLoS Biology | www.plosbiology.org 6 March 2012 | Volume 10 | Issue 3 | e1001286



activated these Wnt target genes (Figure 7A). This is consistent

with previous findings using cell culture assays [18,39]. In a whole-

embryo assay, the xNorrin R40K mutant largely inhibited Xbra

expression, while the xNorrin L60P mutant showed only slight

inhibitory activity (Figure 7E and 7G compared to Figure 7B and

7D). In an extreme case, the xNorrin K57N mutant completely

failed to suppress Xbra expression (Figure 7F). A lack of BMP4

binding ability might explain this loss of TGF-b inhibition.

However, only a minor reduction in BMP4 binding was observed

for the xNorrin K57N mutant compared to wild-type xNorrin.

The xNorrin R40K mutant also did not show significantly reduced

binding to BMP4 (Figure S6).

Next, we examined whether a lack of TGF-b inhibition by xNorrin

compromised its neural induction function in a loss-of-function

background. Because we could not directly study the K57N mutation

through a knock-in experiment in Xenopus, we tested K57N mutant

function in xNor-MO-injected embryos. In contrast to wild-type

xNorrin, which was able to significantly rescue the anterior defects of

Figure 5. Reciprocal inhibition between xNorrin and TGF-b. (A–E) xNorrin inhibits Activin-B-mRNA-induced mesoderm formation. A wild-type
(WT) embryo at a neurula stage (A). Wild-type animal caps with elongation (5% of the caps showed elongation, n = 60) (B). Elongated animal caps
induced by Activin-B mRNA (25 pg) injection (82% of the injected caps showed elongation, n = 55) (C). Animal cap elongation was blocked in animal
caps injected with Activin-B (25 pg) and xNorrin (200 pg) mRNAs (10% of the co-injected caps showed elongation, n = 58) (D). The Activin-B-mRNA-
induced expression of mesoderm markers (Wnt8, Xbra, m-actin, and MyoD) was inhibited by xNorrin (E). RNAs were injected into the animal pole of
one-cell embryos, and animal caps were cut around stage 8 and cultured in 16 MMR until the sibling embryos reached neurula stage. (F and G)
xNorrin inhibits BMP4 signaling. xNorrin mRNA (500 pg), like DBMPR mRNA (200 pg) and Chordin mRNA (100 pg), inhibited BRE-Luc reporter activity
in Xenopus embryos (F). xNorrin mRNA (500 pg) inhibited BMP4-induced Smad1 phosphorylation in animal caps (G). P-Smad1, phosphorylated
Smad1; T-Smad1, total Smad1; WE, whole embryo. (H) BMP4 inhibited xNorrin-induced otx2, Xpax6, and NCAM RNA expression in animal caps of stage
15 embryos. –RT, no reverse transcription; WE, whole embryo; WT, wild-type animal caps. (I) xNorrin interacts with BMP4. BMP4-Flag and xNorrin-Myc
mRNAs or xNorrin-Flag and BMP4-Myc mRNAs were injected into adjacent cells of four-cell embryos. FLAG-tagged proteins were immunoprecipitated
(IP) from later gastrula embryos with a FLAG antibody. The proteins were PAGE separated and immunoblotted (IB) with an anti-c-Myc antibody.
Arrowheads indicate xNorrin-Myc (top) or BMP4-Myc (bottom). L.C., IgG light chain.
doi:10.1371/journal.pbio.1001286.g005
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the morphants (including eyes in 23% of the embryos) (Figure S7A–

S7D), the K57N mutant was far less efficient, often producing

phenotypes similar to those of xNor-MO-injected embryos (Figure

S7E). We did not observe normal eye formation in any K57N-

mutant-injected embryos (Figure S7F), suggesting that TGF-b
inhibition is crucial for the full activity of xNorrin.

Together, these results indicate that Wnt activation and TGF-b
inhibition activities are encoded by distinct domains in Norrin

proteins and that the loss of TGF-b inhibition in Norrin mutants

may be a novel mechanism implicated in the development of

Norrie disease in humans (see Discussion).

Discussion

The present work addresses the molecular nature and

mechanism of a maternal signal that specifies the early

neuroectoderm. Our findings reveal an essential coordination of

canonical Wnt signaling activation and extracellular BMP/TGF-b
inhibition by maternal xNorrin and further highlight the

integration of the two major signaling pathways during early

neuroectoderm specification (Figure 8). Our results also point to

the de-repression of BMP/TGF-b as a new molecular mechanism

in Norrie disease.

Figure 6. xNorrin induces neural formation independent of b-
catenin signaling. (A) xNorrin dose-dependently induced neural
marker (Xpax6, otx2, NCAM, and Sox2) expression. The induction is
independent of mesoderm formation (m-actin: muscle actin) and could
occur in the presence of a b-catenin-MO. RNA and MO were injected at
the one-cell stage, and the caps were dissected around stage 8 and
cultured until they reached stage 15. –RT, no reverse transcription; WE,
whole embryo; WT, wild-type. (B) xNorrin induced Sox3 expression in
animal caps (89% of xNorrin injected caps showed the expression,
n = 45). xNorrin mRNA (300 pg) was injected into the animal pole of
two-cell embryos. Sox3 expression in stage 15 animal caps was analyzed
with in situ hybridization. WT, wild-type animal caps; xNorrin, xNorrin-
mRNA-injected caps. (C) xNorrin induced the expression of ectopic
neural and anterior markers in whole embryos. xNorrin mRNA (300 pg)
was injected into the ventral animal tier cells of 32-cell embryos.
Expression of Sox3 (by DBMPR: 80%, n = 30; by xNorrin: 73%, n = 30) and
XAG1 (by DBMPR: 69%, n = 35; by xNorrin: 79%, n = 34) were induced at
ectopic sites. b-gal, b-gal-mRNA-injected embryos; DBMPR: DBMPR-
mRNA-injected embryos; WT, wild-type uninjected embryos; xNorrin:
xNorrin-mRNA-injected embryos. Arrows: ectopically induced Sox3 or
XAG1. Sox3 expression in wild type is shown in a dorsal view, while
XAG1 expression in wild type is shown in an anterior view. All other
embryos are shown in a ventral view, except the embryo in the b-gal/
Sox3 panel, which is in a lateral view.
doi:10.1371/journal.pbio.1001286.g006

Figure 7. TGF-b inhibition is implicated in Norrie disease. (A)
xNorrin point mutants showed various levels of Wnt activation activity.
Wild-type (WT) or mutant xNorrin and Fizzled4 and Lrp5 (FL) were
injected into animal poles. The expression of Xnr3, Saimois, and Chordin
in animal caps was analyzed by RT-PCR. xNorrin R40K and xNorrin L60P
showed slightly decreased and no Wnt activation, respectively. xNorrin
K57N moderately increased Wnt activation. –RT, no reverse transcrip-
tion; WE, whole embryo. (B–G) xNorrin point mutants showed various
levels of mesoderm inhibition activity. Individual xNorrin point mutant
mRNAs and b-gal mRNA were co-injected into the vegetal halves of
two-cell-stage embryos. The expression of Xbra was analyzed at stage
10.5 by whole-mount in situ hybridization. While wild-type xNorrin
inhibited Xbra expression (83% of the injected embryos showed very
low or no Xbra expression, n = 35) (D), xNorrin K57N failed to inhibit
Xbra expression (13% of the injected embryos showed reduced Xbra
expression, n = 39) (F). xNorrin R40K (61% of the injected embryos,
n = 33) and L60P (41% of the injected embryos, n = 32) also showed
decreased Xbra expression (E and G). Uninjected (B) and b-gal-injected
embryos (C). b-gal is stained in red. The embryos are in vegetal views,
but slightly tilted toward marginal zones to show Xbra signal.
doi:10.1371/journal.pbio.1001286.g007
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Wnt Signaling Induction by xNorrin and Early
Neuroectoderm Specification

Canonical Wnt signaling activation in early embryos is essential

for the initial dorsal specification [2,25]. Heasman and colleagues

previously provided strong evidence that Wnt11 and Wnt5A are

endogenous ligands required for b-catenin signaling in all dorsal

cells, including dorsal animal cells [5–7]. These important findings

seem to indicate that any additional Wnt agonists specifically

required for b-catenin activation in dorsal animal cells would be

redundant. However, previous studies suggested that in Xenopus, an

animal-to-vegetal signal was implicated in promoting neural fate

before gastrulation, and dorsal animal cells from the blastula are

able to develop into neural tissues cell-autonomously in culture

[18,28,40]. Noggin and Chordin were discovered to act as neural

inducers prior to gastrulation. We demonstrated a lack of b-

catenin activation in xNor-MO-injected embryos, which strongly

indicated that Wnt11 activity was not sufficient to compensate for

the loss of xNorrin activity in vivo (Figure 3I). The severe neural

tissue formation defect in xNor-MO embryos is likely due to a

failure in the specification of the early neuroectoderm. The

significant down-regulation of the dorsal marker Chordin supports

this hypothesis (Figure 3J–3N).

If both Wnt11 and xNorrin are involved in dorsal specification,

then why does maternal xNorrin, which is likely retained in

Wnt11-depleted embryos, fail to compensate for the loss of Wnt11

RNA in generating anterior dorsal formation [5]? It is possible that

additional molecules are required for xNorrin function in dorsal

animal cells. For example, cortical rotation may play a role in the

activation of xNorrin signaling. In fact, we found that the dorsal

enrichment of xNorrin was lost in UV-irradiated embryos

(Figure 2B and 2C and data not shown). One possibility is that

a vegetal signal, such as Wnt11, may be required to fully activate

xNorrin signaling in the dorsal ectoderm during cortical rotation.

Candidate targets of this vegetal signal may include Xenopus

Frizzled4 and Xenopus LRP5, two known receptors for xNorrin

[18]. Similarly, the absence of Xnr3 and Siamois expression in

xNorrin-injected animal caps can be attributed to the lack of

functional xNorrin receptors, which are required for xNorrin

signaling (Figure S2B).

Reciprocal Inhibition between xNorrin and TGF-b
In early embryos, balanced signaling activities from opposite

domains are critical for patterning the dorsal–ventral, anterior–

posterior, and animal–vegetal axes. For example, in the Xenopus

gastrula, ventral BMP molecules antagonize Chordin and Noggin

from dorsal cells through direct binding in the extracellular space

[1]. Similarly, mesoderm-promoting Nodal activity in the vegetal

pole is negatively regulated by maternal TGF-b signaling

inhibitors, such as Coco and Ectodermin, from the animal half

[41,42]. In addition, the competence of blastomeres to form neural

and retinal progeny is repressed by endomesoderm-promoting

factors in the vegetal pole [43].

Previously, Coco expressed at the animal pole was proposed as a

competence factor to block Nodal signaling and ensure the correct

patterning of the ectoderm [41]. Our results indicate that xNorrin

also directly inhibits BMP/TGF-b signaling, likely through direct

extracellular binding without the activation of Wnt signaling

(Figures 5 and 6). It is possible that this BMP antagonizing activity

is required to predispose the dorsal ectoderm toward neural fates

before zygotic BMP inhibitors are expressed. Both maternal Coco

and xNorrin are expressed in overlapping domains in the animal

pole of Xenopus oocytes [41]. It would be interesting to investigate

how distinct TGF-b antagonists are coordinated to modulate

multiple TGF-b signaling pathways in vivo. Although both Coco

and xNorrin are TGF-b antagonists, there is a clear difference in

that Coco also functions as a Wnt inhibitor by some unknown

mechanism, while xNorrin is a Wnt agonist.

We also showed that the ectopic expression of xNorrin in the

vegetal-marginal regions inhibited mesoderm formation and

blocked gastrulation (Figure 7D and data not shown), underscor-

ing the importance of restricting xNorrin activity to the dorsal

animal pole. This result seems to suggest that the xNorrin-

mediated inhibition of mesoderm formation may account for the

unexpected failure of NFL to induce complete secondary axes on

the ventral side (Figure 4). However, we observed that the

combination of the xNorrin K57N mutant, Frizzled4, and Lrp5 also

failed to induce secondary axes (data not shown), suggesting that

an alternative mechanism must prevent NFL from inducing

secondary axes (Figure 4) [18]. A putative Norrin-specific

Figure 8. A model of dorsal specification in Xenopus. During oogenesis, maternal xNorrin and Wnt11 are localized to the animal and vegetal
poles, respectively. After fertilization, both mRNAs are enriched at the dorsal side, leading to two localized activity domains: BCNE center and
Nieuwkoop center. xNorrin in the dorsal animal cells helps to specify neuroectoderm fate by activating a Wnt/b-catenin signaling domain, the BCNE
center, and also participates in antagonizing the Nodal-related signal from the vegetal half and the BMP signal from the ventral side. Wnt11 in the
dorsal vegetal domain is required for b-catenin activation in all dorsal regions, including in the BCNE center. Yellow: xNorrin and BCNE center. Purple:
Wnt11. Red dots indicate stabilized b-catenin. Green: Nieuwkoop center.
doi:10.1371/journal.pbio.1001286.g008
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inhibitor in the endomesoderm other than TGF-b cannot be

excluded.

The BMP/TGF-b inhibition function of xNorrin may be

attributed to a predicted cysteine-knot domain in the carboxyl

terminal (Figure S1) [44]. A previous bioinformatics study

classified the putative Norrin cysteine-knot domain as a mucin

protein, along with secretory mucin and von Willebrand factor

[45]. Other members of this subgroup may be tested for their

potential ability to negatively regulate TGF-b family members.

Conversely, BMP4 was shown to repress Norrin-induced neural

formation (Figure 5H). In addition to xNorrin RNA localization in

the dorsal animal region, ventrally expressed BMP4 and vegetally

expressed mesoderm inducers, such as Nodal, may further restrict

xNorrin activity to the prospective neuroectoderm. Thus,

reciprocal inhibition between BMP/TGF-b and xNorrin are

equally important for appropriate embryonic patterning.

A Link between TGF-b Signaling and Norrie Disease
Norrin has been identified as an activator of the canonical Wnt

signaling pathway through two separate receptor complexes,

Frizzled4/Lrp5 and Frizzled4/TSPAN12 [17–19]. Given the

direct link between Norrin mutations and Norrie disease, and the

roles of TGF-b signaling in multiple human diseases, it is

important to recognize that Norrin also functions as a potent

inhibitor of TGF-b family members. Two lines of evidence

indicate that canonical Wnt signaling and TGF-b inhibition are

induced separately by Norrins. First, xNorrin can induce neural

formation in the absence of Wnt target activation (Figure 6A).

Second, selected xNorrin point mutants (e.g., K57N) potently

suppress endogenous TGF-b target gene expression but maintain

robust Wnt activation capability (Figure 7).

One of the major defects caused by Norrie disease is abnormal

vascular development in the retina and inner ear [18]. The

development of the elaborate vascular structure in the retina is

strongly influenced by VEGF, which in turn can be positively

regulated by TGF-b/ALK5 signaling [46]. Although Norrin

mutations cause retinal hypovascularization, a previous study

showed that the numbers of blood vessels in the ganglion cell layer

and the nerve fiber layer are actually increased in the Norrin

knock-out mice [47], suggesting a pro-angiogenesis activity that

may be enhanced in these cell layers. Because Norrin hemizygous

mutant mice also have severe defects in ear and brain development

[18,48], further investigation of local TGF-b regulation in these

organs is also warranted.

Finally, the finding that two independent activities are encoded

in the small Norrin protein (mature human Norrin has only 109

amino acid residues) raises the question of how Wnt pathway

activation and TGF-b signal tuning are coordinated by Norrin in

vivo. Solving the three-dimensional structures of the wild-type

Norrin protein and selected point mutants may help answer this

question and may even help elucidate the molecular mechanisms

of Wnt agonist signaling through its receptors.

Materials and Methods

Plasmid and mRNA
The initial xNorrin cDNA clone was first amplified from a X.

laevis cDNA library using Pyrobest DNA polymerase (TaKaRa)

and PCR primers partially based on a predicted X. tropicalis Norrin

gene sequence. (http://genome.jgi-psf.org/cgi-bin/dispGeneMo-

del?db = Xentr4&id = 158316): xNorrin Up: 59-AGACGAATT-

CACCTGAGAGGAAGACTGGG-39, xNorrin Down: 59-AG-

ACCTCGAGAGCAACGCAAGCGAATGG-39. The cDNA for

the coding region was amplified using xNorrin Up: 59-AATCG-

GATCCATGGGAAATCGTGTCCTTC-39 and xNorrin Down:

59-ATATCTCGAGCTATGAATTGCACTCTTC-39. The xNor-

rin cDNA was then cloned between the BamHI and XhoI sites of

pCS2+. The xNorrin59-Myc plasmid was generated by inserting

xNorrin cDNA, including the 59 UTR, between the BamHI and

ClaI sites of pCS2+MT, thereby introducing a C-terminal Myc-

tag. The pCS2+ xNorrin-FLAG plasmid was generated by inserting

xNorrin cDNA between the BamHI and XbaI sites of pCS2+-

FLAG-C4. The xNorrin single point mutants (R40K, K57N, and

L60P), which mimic human Norrie disease mutants, were

generated by site-direct mutagenesis (Fast Mutagenesis System,

TransGen) [18].

The mRNA for Xenopus injections was prepared using the

RiboMax Large Scale RNA Production System (Ambion)

according to the manufacturer’s instructions. The pCS2+-xNorrin,

pCS2+-xNorrin (R40K, K57N, or L60P), xNorrin-Myc, pCS2+-

xFrizzled4 [49], pCS2+-hLrp5 [50], and Wnt8 [31] plasmids were all

linearized with NotI; BMP4 was linearized with EcoRI; and Wnt11

[51] was linearized with BamHI. All plasmids were transcribed

with SP6 RNA polymerase. RNA microinjections were carried out

as described [52].

Embryo Manipulation and Injection
All animal studies in this report were approved by the

Institutional Review Board of the Institute of Genetics and

Developmental Biology, Chinese Academy of Sciences. X. laevis

eggs were isolated in 16MBS plus high salt solution and fertilized

using sperm suspensions in 16MMR. Embryos were cultured in

0.16 MMR. Embryo dissection was performed as previously

described [52]. Briefly, mid-blastula embryos were transferred into

16Steinberg’s solution, the vitelline membrane was removed, and

363 mm2 animal caps were cut. Explants were cultured in 16
Steinberg’s solution until they reached the indicated stages [53].

For MO oligonucleotides and mRNA injections, embryos were

transferred into 16 MMR containing 2% Ficoll (Amersham

Biosciences). Pigment intensity was used to differentiate the dorsal

and ventral sides. After injections, embryos were washed

thoroughly and returned to 0.16MMR during the blastula stage.

For UV treatment, embryos were irradiated by placing them in

a quartz colorimetric cup oriented with the animal pole upwards

and UV-irradiated at 50 mJ using the Stratagene Crosslinker 1800.

Immediately after irradiation, the embryos were transferred into

16MMR containing 2% Ficoll. For rescue experiments, four- to

eight-cell-stage embryos were injected with 500 pg of xNorrin

mRNA or 500 pg of Wnt11 mRNA [23].

Antisense Morpholinos
xNorrin antisense MOs were purchased from Genetools. The

MO sequences used were: xNor-MO: CTCAATCCCAGTC-

TTCCTTTCAGGT, xNor-misMO: CTGAATCCGAGTGTT-

CGTTTCACGT, and xNor-spMO: TTAAAGTGGACTGTA-

CCTTGGCAGT. MOs were dissolved in sterile, filtered water at

a concentration of 5 ng/nl and injected at the doses described in

the text.

Reverse Transcription PCR
Total RNA was prepared using the Proteinase K method and

treated with 10 mg of yeast tRNA and RNase-free DNase

(Promega) before cDNA synthesis [52]. cDNA was synthesized

by reverse transcription, and the reactions were performed in a

volume of 20 ml using 200 ng of random primer (Promega), 56
first-strand buffer, 0.01 M DTT, 40 U RNase inhibitor (TaKaRa),

1 mM each dNTP, and 200 U M-MLV RT (Invitrogen) at 37uC
for 50 min. Reactions were then heat-inactivated at 70uC for
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10 min and stored at 220uC. One-tenth of the mixture was used

as a template for PCR. PCR was carried out in a volume of 25 ml

containing 100 mM dNTPs, 0.2 mM each primer, and 1 U of

rTaq DNA polymerase (TaKaRa). The PCR parameters and

DNA primers are described in Table S1. PCR cycles were

determined such that no amplification saturation was reached in

semi-quantitative assays.

Luciferase Assays
SuperTopFlash DNA (20 pg), containing eight copies of the

TCF-binding site upstream of a minimal TK promoter and the

luciferase open reading frame, and pRL-TK DNA (10 pg) (Renilla

luciferase was used as an internal control) [5] were co-injected into

two dorsal animal cells at the eight-cell stage of wild-type, xNor-

MO (20 ng)–injected, or xNor-misMO (20 ng)–injected embryos

Three replicate samples for each of the three embryo types were

frozen at the late blastula stage, and luciferase assays were carried

out using a Promega Luciferase Assay system.

Western Blot
To test for xNor-MO activity, one-cell-stage embryos were

injected with 5 ng, 10 ng, or 20 ng of xNor-MO at the marginal

zone and then injected four times with a total of 1.5 ng of xNorrin-

Myc mRNA into the marginal zone at the four-cell stage. A total of

five blastula embryos were homogenized in 100 ml of ice-cold lysis

buffer [54]. Protein lysates were spun for 15 min at high speed at

4uC. Protein detection by Western blot was performed using anti-

c-Myc (9E10) primary (Santa Cruz Biotechnology) and HRP-

conjugated secondary (Pierce) antibodies with Pierce Western blot

detection reagents.

For co-immunoprecipitation assays, 500 pg of xNorrin-Myc and

500 pg of BMP4 mRNA were injected into different cells of four-

cell-stage embryos. The injected embryos were frozen at stage 10

in batches of five and lysed with 500 ml of ice-cold lysis buffer. The

cleared lysate was mixed with anti-FLAG-M2 agarose beads and

incubated overnight at 4uC. The beads were pelleted, washed four

times with lysis buffer, mixed with SDS-PAGE sample buffer, and

processed in a standard electrophoresis and Western blot protocol.

Whole-Mount In Situ Hybridization
Whole-mount in situ hybridization was performed according to

a standard protocol as described previously [55], with minor

modifications for dissected embryos. For dissected embryos, whole

pigmented embryos were fixed for 1 h in MEMFA, bisected along

the dorsal–ventral axis with a scalpel blade, fixed for two

additional hours in MEMFA, and washed and stored in 100%

methanol. The embryos were hybridized at 65uC overnight. BM

Purple was used as a substrate (Roche). Pigment was then

bleached. The RNA probes were labeled with digoxigenin-UTP

(Roche) with the appropriate RNA polymerase using linearized

plasmids.

Histological Analysis
For histological analysis, embryos were fixed overnight in

Bouin’s solution and then dehydrated and embedded in paraffin.

Sections of 10-mm thickness were prepared and stained with

hematoxylin and eosin as previously described [56].

Supporting Information

Figure S1 Norrins are highly conserved in vertebrates.
(A) An alignment of Norrin protein sequences from selected

vertebrate species. Prefixes used for Norrins from different species:

human (h), mouse (m), chicken (c), X. laevis (xl), X. tropicalis (xt), and

zebrafish (z). Conserved cysteine residues are highlighted in red.

(B) Percentages of identical amino acid residues between Norrin

proteins from different species.

(TIF)

Figure S2 Maternal xNorrin activates the canonical Wnt
pathway. (A) xNorrin expression during early Xenopus develop-

ment detected by reverse transcription PCR (RT-PCR). ODC

(ornithine decarboxylase) served as a loading control. RT–: no

reverse transcription. Embryos were staged according to Nieuw-

koop and Faber [53]. (B) Expression of Siamois and Xnr3 (Wnt

target genes) and Xbra (mesoderm marker) in isolated animal caps

from embryos co-injected with NFL (200 pg each), xNorrin

(200 pg), or Wnt8 (10 pg) mRNAs. Nor, Norrin; WE, whole

wild-type embryo; WT, wild type. ODC served as a loading

control. (C) Norrin can lead to phosphorylation of its receptor,

LRP6. LRP6 phosphorylation at three specific threonine (T) and

serine (S) sites (T1479, S1490, and T1493) was analyzed in

HEK293 cells transfected with Lrp6/Axin/mFz4, with or without

mouse Norrin or xNorrin, using site-specific antibodies. Total LRP

was detected using a general LRP antibody.

(TIF)

Figure S3 Maternal xNorrin is required for anterior
neural formation. (A) The genomic sequence of the first exon

and the first intron boundary of xNorrin. The first two

presumptive nucleotides ‘‘gt’’ of the intron are labeled in red.

The splicing site sequence targeted by xNor-spMO is indicated by

a green line. See Materials and Methods for sequence information

for all MOs. (B) RT-PCR to detect xNorrin mRNA expression in

stage 15 embryos. xNor-spMO (20 ng) inhibited zygotic xNorrin

transcription, while xNor-MO (20 ng) or xNor-misMO (20 ng) (a

four-nucleotide mismatched MO compared to xNor-MO) did not.

(C–F) Representative MO-injected tadpole at stage 34. xNo-

spMO (20 ng) did not cause severe anterior defects, unlike xNor-

MO. (G) Summary of (C–F). Uninjected: n = 30; MO: n = 24;

misMO: n = 30; spMO: n = 40. (H) xNor-MO injection inhibited

anterior neural formation. Whole-mount in situ hybridization was

performed for XBF-1 mRNA (anterior neural marker) and HoxB9

mRNA (posterior neural marker) in stage 15 embryos. Dorsal

animal cell injection of xNor-MO (10 ng) at the four- to eight-cell

stage greatly reduced the expression of the anterior neural marker

XBF-1 (63%, n = 32), while injection of xNor-misMO (10 ng) or

xNor-spMO (10 ng) (27%, n = 29) was far less effective to reduce

the expression. Neither xNor-MO (n = 25) nor xNor-spMO

(n = 25) injection affected HoxB9 expression. MOs were co-injected

with b-gal mRNA (100 pg). b-gal staining is shown in red. XBF-1

staining embryos are shown in anterior view, and HoxB9 staining

embryos are shown in dorsal view, with the anterior pole at the

top. misMO, xNor-misMO; MO, xNor-MO; spMO, xNor-spMO.

(TIF)

Figure S4 xNorrin is essential for early dorsal-specific
gene expression. (A) The injection of xNor-MO reduced Xnr3

(stage 9: 70% reduced, n = 17; stage 10: 70% reduced, n = 20) but

not gsc (14% reduced, n = 22) expression, as assayed by whole-

mount in situ hybridization. (B) RT-PCR analysis showed that

xNor-MO injected into dorsal animal cells reduced the expression

of early dorsal-specific genes in stage 9 embryos. This reduction

could be rescued by the injection of xNorrin mRNA (50 pg) lacking

the xNor-MO target sequence. Note that xNor-MO did not

change Xnr1 expression. ODC served as a loading control. (C) The

overexpression of NFL in ventral vegetal blastomeres induced Wnt

target gene expression. Upon injection into the ventral blastomeres

of early eight-cell embryos, both NFL and Wnt8 induced Xnr3

(NFL: 56%, n = 25; Wnt8: 83%, n = 46) and Chordin (NFL: 72%,
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n = 29; Wnt8: 88%, n = 60) expression. However, NFL only weakly

induced the Spemann organizer marker gsc (NFL: 7%, n = 28;

Wnt8: 84%, n = 50). All embryos are in vegetal views. Arrowheads

indicate the injection sites. (D) RT-PCR results (not quantitative)

showed that NFL injection into ventral-vegetal cells ectopically

activated Wnt target genes (Chordin, Siamois, and Xnr3) at the

ventral side of the embryos. ODC served as a loading control.

(TIF)

Figure S5 xNorrin induces neural formation and inhib-
its mesoderm formation. (A) RT-PCR analysis of neural gene

expression in stage 15 animal caps from embryos injected with

Wnt8 (20 pg), Wnt11 (200 pg), xNorrin (xNor) (200 pg), and NFL

(200 pg each). The expression of otx2, Sox2, and NCAM (all neural

markers) was analyzed. ODC served as a loading control. (B–D)

Xbra expression detected in whole-mount in situ hybridization. A

wild-type embryo at stage 10.5 (B); reduced Xbra expression in

stage 10.5 embryos injected with xNorrin RNA (200 pg) at the

vegetal pole at the two-cell stage (82% reduced, n = 34) (C);

reduced Xbra expression in stage 10.5 embryos injected with

mouse Norrin RNA (200 pg) at the vegetal pole at the two-cell stage

(66% reduced, n = 36) (D).

(TIF)

Figure S6 xNorrin interacts with TGF-b family mem-
bers. (A) xNorrin binds to BMP4. Epitope-tagged wild-type

xNorrin or xNorrin point mutants (R40K or K57N) and BMP4

were separately expressed in HEK293 cells. The conditioned

medium from cells expressing individual xNorrin and BMP4 were

mixed and incubated. The FLAG-tagged protein complexes were

immunoprecipitated using an anti-FLAG antibody and separated

in SDS-PAGE and blotted. An anti-c-Myc antibody was used to

detect Myc-tagged BMP4. The expression of FLAG-tagged

proteins was detected using an anti-FLAG antibody. xNorrin

was shown to bind to BMP4. The R40K mutant retained this

binding activity, while the K57N mutant showed slightly reduced

BMP4 binding. Conditioned medium of the parent FLAG-

plasmid-transfected cells was used as a control (ctrl). Arrowhead,

BMP4-Myc; arrow, immunoglobulin light chains (LC). a-FLAG,

anti-FLAG tag monoclonal antibody; a-Myc, anti-c-Myc-tag

monoclonal antibody. (B) xNorrin binds to Xnr1 but not DKK-

1. The assay performed was similar to that described in (A).

Conditioned medium (ctrl) was the same as in (A). Arrowheads

indicate FLAG-tagged protein. Arrows point to immunoglobulin

heavy chain (HC, top) and light chain (LC, bottom).

(TIF)

Figure S7 The xNorrin K57N mutant failed to efficiently
rescue anterior defects in xNorrin morphants. (A–E) An

uninjected embryo (A). A xNor-MO (20 ng)–injected embryo (B).

Note the lack of eye pigment. A xNor-misMO (20 ng)–injected

embryo (C). A xNor-MO and wild-type Norrin RNA (50 pg) co-

injected embryo (D). A xNor-MO and xNorrin K57N RNA (50 pg)

co-injected embryo (E). (F) Summary of anterior defect frequency

in (A–E). Uninjected: n = 40; MO: n = 24; xNor rescue: n = 20;

K57N rescue: n = 19; misMO: n = 15. RNAs and MO were

injected into the dorsal animal region at the four-cell stage. All

embryos shown are around stage 36.

(TIF)
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