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ABSTRACT: Understanding the formation process of self-assembled monolayers
(SAMs) of organophosphonic acids on ZnO surfaces is essential to designing their
various applications, including solar cells, heterogeneous catalysts, and molecular
sensors. Here, we report the significant effect of surface dissociation on SAM formation
of organophosphonic acids on single-crystalline ZnO nanowire surfaces using infrared
spectroscopy. When employing the most conventional solvent-methanol (relative
permittivity εr = 32.6), the production of undesired byproducts (layered zinc
compounds) on the surface was identified by infrared spectral data and microscopy.
On the other hand, a well-defined SAM structure with a tridentate coordination of
phosphonic acids on the surface was confirmed when employing toluene (εr = 2.379) or
tert-butyl alcohol (εr = 11.22−11.50). The observation of layered zinc compounds as byproducts highlights that the degree of Zn2+

dissociation from the ZnO solid surface into a solvent significantly affects the surface coordination of phosphonic acids during the
SAM formation process. Although the ZnO nanowire surface (m-plane) is hydrophilic, the present results suggest that a weaker
solvent polarity is preferred to form well-defined phosphonic acid SAMs on ZnO nanowire surfaces without detrimental surface
byproducts.

■ INTRODUCTION

Molecular surface modification on metal oxide nanostructures
has shown great promise to tailor their surface functionalities
for various applications, including heterogeneous catalysts1,2

and molecular sensors.3,4 One of the promising molecular
surface modifications is applying self-assembled monolayers
(SAMs) on metal oxide surfaces.5−7 Various SAMs have been
successfully introduced onto surfaces of various metal oxide
nanostructures, including thin films, nanowires, nanoparticles,
and others.5,8−10 For example, SAMs were applied onto ITO
substrates to modulate the work function.11,12 Among various
head groups of SAMs, a phosphonic acid has particularly
attracted the significant attention of many researchers13−18

because phosphonic acids provide a more robust modification
layer when compared to those formed from carboxylic acids,
especially after annealing to maximize the number of P−O
bonds.19−22 For example, interesting applications using
phosphonic acid SAMs on ZnO surfaces have been successfully
demonstrated8−10,13−15,21−23 since ZnO is one of the most
popular metal oxide materials.24−26 Zhang et al. have reported
the formation of phosphonic acid SAMs on ZnO surfaces.14

Lim et al. demonstrated the long-term stability and high
sensing selectivity with phosphonic acid SAM modified ZnO
nanowire sensors.27 Despite these successes of phosphonic
acid SAMs on ZnO nanostructures, the nature of the formation
process is still complex and affected by many experimental
parameters, including temperature,28,29 concentration and

modification time,30 solid surface and material,18,31,32 and
solvent.20,21 Solvent selection for the SAM formation process is
especially important because the solvent must dissolve the
SAM molecules.33 Literature survey for phosphonic acid SAMs
on ZnO surfaces reveals that the major solvents for these SAM
formation processes are alcohols, including methanol, ethanol,
and others.29,34−37 Although Chen et al. have reported the
solvent effect on the phosphonic acid SAM formation process
on ITO substrates,38 such solvent effects on phosphonic acid
SAM formation processes on ZnO nanostructures have not
been studied. Here, we report the significant impact of surface
dissociation on SAM formation of organophosphonic acids on
single-crystalline ZnO nanowire surfaces using infrared spec-
troscopy. We found that the degree of Zn2+ dissociation from
the ZnO solid surface into a solvent strongly affects the surface
coordination of phosphonic acids during the SAM formation
process.
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■ RESULTS AND DISCUSSION

Figure 1a,b shows the time-series data of FT-IR during SAM
formation processes of octadecylphosphonic acid (ODPA) on
ZnO nanowires in methanol solvent. The concentration of
ODPA is 0.1 mM. The details of ZnO nanowire growth
processes can be seen in Methods. The analyzed data (the alkyl
peak area and the wavenumber of CH2 symmetric stretch
vibration-νs(CH2)) are shown in Figure 1c,d. Clearly, the IR-
absorbance of SAMs in Figure 1a,b tends to be stronger with
increasing surface modification time, as also seen in Figure 1c.
As seen in Figure 1a,d, the wavenumber of νs(CH2) tends to
decrease from 2853.7 down to 2850.8 cm−1. This trend is well
known as the alkyl chain conformation change from gauche to
all-trans geometry with increasing SAM surface density.39,40

Although the interpretation of absorption bands of alkyl chains
(2800−3000 cm−1) is straightforward, the absorption bands
for phosphonic acids (900−1250 cm−1) exhibit rather
complicated spectra, as seen in Figure 1b. Previous studies
on IR spectra of phosphonic acid SAMs have reported different
identifications on their data.5,10,13,16,41 For example, the peaks
around 900−1050 cm−1 were assigned to the P−OH group by
comparing the obtained IR peaks of SAMs with the IR peaks of
phosphonic acid powder.5,14,41,42 The peaks around 1040 cm−1

were determined to be the stretching modes of PO3
2−,41 which

involve P−O and PO terminations.41 The peak around 1220
cm−1 was reported to be PO stretching.29 Although their
identifications are rather different in detail, these identifications
based on IR peaks of phosphonic acid powder assume the
existence of phosphonic acid SAMs on ZnO surfaces without
considering surface side reactions. Figure 1e shows the
scanning electron microscope (SEM) images of ZnO nanowire
surfaces when varying the SAM surface modification time. As
clearly seen in the SEM images, some foggy nanostructures on
the nanowire surfaces appear with increasing SAM modifica-
tion time. The foggy nanostructure becomes clear in ODPA
modified ZnO nanowires with a SAM modification time of 24
h (Figure S1). Since the emergence of such nanostructures
during the SAM formation process is distinct, it is important to
identify the structure of the foggy nanostructures.
First, we performed X-ray diffraction (XRD) measurements

to identify the structure of foggy nanostructures on ZnO
nanowire surfaces, as seen in Figure S2. Unfortunately,
conventional XRD measurements could not detect any
significant signals for the foggy surface nanostructures,

presumably due to the randomness of crystal orientation and
the small amount. Here, we consider possible side surface
reactions during phosphonic acid SAM formation on ZnO
surfaces. One of the plausible surface reactions is the formation
of layered zinc phosphonate (Zn-ODP) structures, as
illustrated in Figure 2a.43 Figure 2b shows the comparison

between the present IR spectrum and the previously reported
IR spectrum for the layered Zn-ODP structures.43 Clearly,
there is a good correlation between the two spectra. Especially,
the six IR peaks (around 940, 980, 1060,1080, 1120, and 1170
cm−1) are well consistent with such IR peaks of the layered Zn-
ODP structures. Note that some peaks in the present samples
are not consistent with those of the layered Zn-ODP
structures. Thus, based on these results, we conclude that
the observed surface nanostructures during phosphonic acid
SAM formation on ZnO surfaces are layered Zn-ODP. For
well-defined phosphonic acid SAMs on ZnO surfaces, this
layered Zn-ODP formation is detrimental. It is noted that the
present series of experiments were performed using the most
conventional solvent-methanol.34,35 Next, we solve this
undesired side surface reaction issue by considering the
reaction mechanism.
To form layered Zn-ODP on ZnO, a dissociation of Zn2+

from ZnO nanowire surfaces must be significant; otherwise,
simple phosphonic acid SAM formations should occur. Based
on this speculation, we change the solvent from relatively polar

Figure 1. FT-IR spectra of ODPA on ZnO nanowires in the (a) alkyl or (b) phosphonic acid region for an ODPA concentration of 0.1 mM in
methanol solvent. ODPA modification time dependence of (c) alkyl peak area and (d) wavenumber of CH2 symmetric stretch vibration (νs(CH2)).
Inset figures show enlarged characteristics at an early stage of SAM formation. (e) FESEM images of ODPA modified ZnO nanowires using
methanol solvent. The ODPA concentration was 0.1 mM for all samples.

Figure 2. (a) Schematic diagram of the layered Zn-ODP structure.
(b) FT-IR spectrum of ODPA on ZnO nanowires in the phosphonic
acid region for an ODPA concentration of 0.1 mM for 60 min in
methanol solvent. The reported FT-IR spectrum of layered Zn-
ODP43 is also shown.
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methanol (relative permittivity εr = 32.644) to non-polar
toluene (εr = 2.37944) to suppress the degree of dissociation of
Zn2+ from the ZnO nanowire surface. Figure 3a−e shows the
results of phosphonic acid SAM formation on ZnO nanowire
surfaces when employing toluene as the solvent. There is a
significant difference between the two solvents (methanol and
toluene) on the FT-IR spectra and SEM images. First, when
comparing between Figures 3b and 1b on absorption bands for
phosphonic acids (900−1250 cm−1), the spectra of toluene-
solvent samples exhibit mainly three peaks (970, 1070, and
1140 cm−1), which are also found in Figure 1b with other
peaks from the layered Zn-ODP. Thus, these results highlight
that the surface molecular conformation of phosphonic acids is
strongly affected by the solvent. As seen in Figure 3c, the SAM
formation speed in toluene solvent is slower than that in
methanol solvent in Figure 1c. Interestingly, the data of Figure
3d implies that the degree of all-trans geometry is higher for
toluene solvent than that for methanol solvent because the
wavenumber of νs(CH2) is lower for toluene solvent. More
importantly, SEM observations in Figure 3e do not show any
surface nanostructures during the phosphonic acid SAM
formation process, which is rather different from the trend in
Figure 1e. Therefore, altering the solvent from polar methanol
to non-polar toluene significantly suppresses the emergence of
surface side reactions and formation of layered Zn-ODP on the
ZnO nanowire surface. The proposed strategy of using a non-
polar solvent was confirmed by performing experiments using
tert-butyl alcohol solvent (εr = 11.22−11.5045,46). Figure S3
shows the FT-IR spectra of ODPA on ZnO nanowires using
tert-butyl alcohol solvent, which agrees well with that using

toluene solvent (Figure 3a−d). Thus, the suppression of side
surface reactions was achieved in tert-butyl alcohol solvent with
weaker polarity than methanol. Finally, we attempt to identify
the molecular conformation of phosphonic acids when using
toluene by comparing with DFT calculations, as illustrated in
Figure 3f. The calculated wavenumbers for a bidentate
coordination with PO and a tridentate coordination without
PO of phosphonic acids on ZnO surfaces are shown in
Figure 3b. The comparison between experimental spectra and
DFT simulations reveals the existence of a tridentate
coordination of phosphonic acids on ZnO surfaces when
employing toluene solvent. Thus, these results highlight that
phosphonic acid SAM formation on ZnO surfaces requires
non-polar solvent-toluene rather than conventional polar
solvent-methanol to perform well-defined SAM formation
without detrimental surface side reactions with byproducts,
although the ZnO nanowire surface is hydrophilic.

■ CONCLUSIONS

We demonstrate the significant effect of surface dissociation on
SAM formation of organophosphonic acids on single-
crystalline ZnO nanowire surfaces using infrared spectroscopy.
When employing the most conventional solvent-methanol
(relative permittivity εr = 32.6), the presence of undesired
byproducts (layered zinc compounds) on the surface was
identified by infrared spectral data and microscopy. On the
other hand, a well-defined SAM structure with a tridentate
coordination of phosphonic acids on the surface was confirmed
when employing toluene (εr = 2.379) or tert-butyl alcohol (εr =
11.22−11.50). The observation of layered zinc compounds as

Figure 3. FT-IR spectra of ODPA on ZnO nanowires in the (a) alkyl or (b) phosphonic acid region for an ODPA concentration of 0.1 mM in
toluene solvent. ODPA modification time dependence of (c) alkyl peak area and (d) wavenumber of CH2 symmetric stretch vibration (νs(CH2)).
DFT-calculated vibrations of PO (ν(PO)) and P−O (ν1(P−O), ν2(P−O)) are also indicated. (e) FESEM images of ODPA modified ZnO
nanowires using toluene solvent. The ODPA concentration was 0.1 mM for all samples. (f) Optimized structure of bidentate coordination of
phosphonic acid on Zn and tridentate coordination on the hexagonal ZnO (10−10) plane calculated by DFT simulations.
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byproducts highlights that the degree of Zn2+ dissociation from
the ZnO solid surface into a solvent significantly affects the
surface coordination of phosphonic acids during the SAM
formation process. Although the ZnO nanowire surface (m-
plane) is hydrophilic, the present results suggest that a weaker
solvent polarity is preferred to form well-defined phosphonic
acid SAMs on ZnO nanowire surfaces without detrimental
surface byproducts.

■ METHODS
ZnO Nanowire Growth. Single-crystalline ZnO nanowires

were hydrothermally grown on a ZnO seed layer/SiO2/p-Si
substrate. A 5 nm Ti adhesion layer and 100 nm ZnO seed
layer were sequentially deposited onto a 100 nm SiO2/p-type
Si substrate by radio frequency (RF) sputtering. Solutions for
hydrothermal reactions were mixtures composed of 5 mM zinc
nitrate hexahydrate, Zn(NO3)2·6H2O (Wako, 99.0%) and 5
mM hexamethylenetetramine (HMTA), (CH2)6N4 (Wako,
99.0%). The ZnO-deposited substrate was immersed in the
growth solution and kept at 80 °C for 24 h. A ZnO nanowire
array was obtained on the substrate after the reaction. After
growth, the samples were rinsed with DI water and IPA. Then
the ZnO nanowires were annealed for 1 h at 600 °C in
atmospheric air to prevent surface degradation.47

Modification of Octadecylphosphonic Acid SAMs on
ZnO Nanowires. Modification solutions (0.1 mM) were
prepared by dissolving octadecylphosphonic acid (ODPA) in
methanol or toluene. The annealed ZnO nanowire array was
dipped in the solution (10 mL) at room temperature. Then,
the samples were washed with methanol or toluene and
tetrahydrofuran. After air flow drying, the ODPA modified
ZnO nanowire arrays were annealed for 30 min at 150 °C in
atmospheric air.
Characterizations. Scanning electron microscope (SEM)

images were acquired using a JEOL JSM7610F instrument.
The SEM images (Figures 1e and 3e) confirm that the grown
ZnO nanowires exhibit hexagonal columnar structures
(diameter of ∼100 nm), which indicates that the ZnO
nanowires have a single wurtzite structure with the prism
(10−10) plane as the main face. Structural characterizations of
ZnO nanowires were determined by XRD (PHILIPS, X’Pert
MRD 45 kV, 40 mA). The FT-IR spectra of the surface
molecules on the ZnO nanowires were recorded at room
temperature on a Thermo Fisher Scientific Nicolet iS50 FT-IR
spectrometer equipped with a mercury-cadmium-telluride
(MCT) detector. 300 scans were accumulated to obtain each
spectrum. The test room was purged with dry air. The FT-IR
spectrum for bare ZnO was used as the background spectrum
for the other measurements. For FT-IR experiments, a double-
polished float-zone Si substrate was used for the ZnO nanowire
array samples. To analyze the change in the relative amount of
alkyl chains, the peak area was calculated by integrating the
region from 2800 to 3000 cm−1 of the IR absorption spectrum.
Computational Details. We computed the vibrational

frequencies of phosphonic acid on ZnO (10−10) surfaces
using density functional theory (DFT) to assign the P−O
stretching bands. Simplified cluster models with partially fixed
coordinations frozen atoms (see Table S1) were employed to
consider the adsorbed ZnO (10−10) surface approximately.
These models were extracted from a wurtzite ZnO crystal
structure with a = b = 3.25 Å and c = 5.2 Å. The DFT
calculations were carried out using the Gaussian 16 program
suite Revision A03 with the B3LYP hybrid functional.48 The

obtained harmonic vibrational frequencies were shifted using a
scale factor of 0.96449 to incorporate anharmonic effects
effectively.
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