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Diagnostic imaging reports are generally written with a target audience of other providers. As a result, 
the reports are written with medical jargon and technical detail to ensure accurate communication. 
With implementation of the 21st Century Cures Act, patients have greater and quicker access to their 
imaging reports, but these reports are still written above the comprehension level of the average patient. 
Consequently, many patients have requested reports to be conveyed in language accessible to them. 
Numerous studies have shown that improving patient understanding of their condition results in better 
outcomes, so driving comprehension of imaging reports is essential. Summary statements, second 
reports, and the inclusion of the radiologist’s phone number have been proposed, but these solutions 
have implications for radiologist workflow. Artificial intelligence (AI) has the potential to simplify 
imaging reports without significant disruptions. Many AI technologies have been applied to radiology 
reports in the past for various clinical and research purposes, but patient focused solutions have largely 
been ignored. New natural language processing technologies and large language models (LLMs) have 
the potential to improve patient understanding of their imaging reports. However, LLMs are a nascent 
technology and significant research is required before LLM-driven report simplification is used in patient 
care.
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INTRODUCTION

Artificial intelligence (AI) is increasingly applied to 
the field of radiology. Since 2017, the number of radiolo-
gy related AI papers has drastically increased (Figure 1). 
The current applications of AI are centered around inter-
preting medical images and improving workflow, driven 
by deep learning such as convolutional neural networks 
trained on large data sets [1]. Computer aided detection 

has found application in breast imaging and chest radio-
graphs, among other modalities [2]. During this recent 
boom, AI has transformed the radiology experience for 
radiologists, but the use of AI and big data to improve the 
patient experience has largely been unexplored (Figure 
1). New generative AI technology, based off of natural 
language processing (NLP), has the potential to drastical-
ly improve patient health literacy [3].



Amin et al.: AI to improve patient health literacy408

PATIENT HEALTH LITERACY

Imaging Reports
Imaging reports have historically been written with a 

target audience of other physicians and healthcare profes-
sionals. Until the 1970s, radiology reports were predom-
inately a form of communication between the radiologist 
and the referring provider, earning radiologists the nick-
name “the doctor’s doctor.” In the late 20th century, legal 
pressures forced radiologists to increasingly become the 
patient’s doctor as well [4]. Notably, the Mammography 
Quality Standards Act (MQSA) passed in 1992 legislated 
that radiologists send a lay summary directly to patients.

21st Century Cures Act
Today, with the 21st Century Cures Act [5], imaging 

reports are increasingly and immediately available to pa-
tients. Unfortunately, they remain incomprehensible by 
the average patient in the United States [6]. The Health 
Insurance Portability and Accountability Act’s Privacy 
Rule (1996), with adjustment by the Health Informa-
tion Technology for Economic and Clinical Health Act 
of 2009, established the patient’s right to access their 
medical records [7]. However, many barriers to access 
remained, as patients would have to request providers 
to receive their health information [8]. The 21st Century 
Cures Act, signed into law in December 2016, signifi-

cantly changed the way patients interact with their health 
information. While the act is known for its provisions 
designed to accelerate drug and device approvals, less-
er-known provisions improved patient access to their 
electronic health information (EHI). The Cures Act Final 
Rule requires that patients can electronically access their 
EHI – whether unstructured or structured – for free [9]. 
Further, the Information Blocking Provision necessitated 
that patients have access to segments (including imaging 
reports) of their EHI, defined by the United States Core 
Data for Interoperability (USCDI), by April 5, 2021 and 
all of their EHI by October 6, 2022, with certain excep-
tions [9].

Before the information blocking provision, many 
practices participated in time-delayed responses to al-
low the referring provider time to review the report and 
facilitate future care before patients became aware of 
abnormal or anxiety-inducing images [10-12]. The effect 
of the Information Blocking Provision on time-delayed 
responses is ambiguous, but many providers have already 
stopped this practice [10-12]. Practices dropping time-de-
layed responses have reported increased call volume, 
which may contribute to physician workflow disruptions 
and provider burnout [10,11]. At the same time, the in-
formation blocking provision has many ramifications 
for patient privacy. Notably, parents or caregivers with 
proxy-access to an adolescent’s or older adult’s EHI may 
inadvertently see information that was requested to be 

Figure 1. Graph of PubMed Indexed radiology publications between 1989 and 2022 related to artificial 
intelligence, both artificial intelligence and the patient, deep learning, and natural language processing.
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withheld [9]. Immediate release creates an opportunity 
to further patient-centered care and allows for greater 
patient participation in their care decisions, but many hur-
dles remain. Here, issues related to patient health literacy 
are addressed.

Patient Engagement
Even prior to the Cures Act, patients engaged with 

radiology web portals with 51.2% of patients viewing 
their radiology reports [13]. In another study, 85% of pa-
tients wished to view their radiological images while 64% 
of patients wished to receive access to their reports [14]. 
Additionally, a study looking at requests on web portals 
found that 33% of patients sent messages asking for the 
results of a recent scan [8]. Demographically, women, 
English speakers, those with commercial insurance, and 
patients 25-39 were the most likely to view their reports; 
compared to whites, Asian Americans were significant-
ly more and African Americans were significantly less 
likely to view their reports [13]. For content of radiology 
reports, patients wish to receive very detailed reports of 
their radiology findings: 81.6% for abnormal findings and 
46.4% for normal findings [15].

Limitations to Patient Health Literacy
As radiology moves to a value-based and patient-cen-

tered practice, access is only the first step: patients must 
understand their imaging reports. The American Medical 
Association (AMA) and National Institutes of Health 
(NIH) recommend that patient education materials are 
written between the 3rd- and 7th-grade levels, given 
that the average American reads at the 8th-grade level 
[4,16,17]. However, a study by Martin-Carreras found 
when analyzing 97,052 radiology reports, the mean 
reading grade level (± standard deviation) was 13.0 ± 2.4 
and only 4.2% of reports were at or below the 8th-grade 
reading level [6].

The average reading level of reports may reflect the 
fact that the patient’s ability to understand these reports 
is often not considered [18]. A scoping review of English 
language diagnostic imaging reporting guidelines found 
that only two out of six international guidelines (The 
Royal College of Radiologists and the Royal Australian 
and New Zealand College of Radiologists) explicitly note 
that imaging reports should consider the patient. Instead, 
the guidelines from international radiology professional 
bodies emphasize structure and technical detail in reports 
[18].

Some authors have also written about making radiol-
ogy reports more understandable for both patients and 
their referring providers [19-21]. These authors recognize 
that the report must be clear, concise, and specific while 
balancing the preferences of different readers of the re-

port. Though, authors suggest reports can strike a greater 
balance between the patient, referring provider, and ra-
diologist without losing medical sophistication by using 
medical language from medical school over residency 
specific jargon [19].

Currently, the greatest limitations preventing patient 
literacy of reports are polysyllabic terms and intricate 
concepts unknown to the layperson. A pilot study by 
Gunn et al. asked 104 patients to review CT, X-Ray, ul-
trasound, and MRI reports and rate their comprehension 
level, identify any issues with the report, and provide 
free-text feedback [22]. They found that the median 
comprehension was 2.5/5, and the most common issue 
impacting comprehension was “unclear or technical lan-
guage” (59.6% of the evaluations). In the free text por-
tion, the most common request was an explanation in lay 
terms (20.1% of evaluations). These findings are despite 
the fact that 63% of the respondents had at least a college 
degree, which is much higher than the national average 
of 32.5% [22,23]. Many other studies extensively show 
that patients have a poor understanding of their radiology 
findings, often due to the technical language [24-28].

Importance of Patient Health Literacy
A systematic review by Nickel et al. found that the 

use of medical jargon contributes to greater patient anxi-
ety, perceptions of increased severity of the ailment, and 
increases inclination for more aggressive treatments [29], 
creating concern for many referring providers [30]. This 
concern is amplified given the increasingly immediate 
access to imaging reports.

Immediate access to readable imaging reports has 
the potential to tremendously benefit patients, as pa-
tients with a greater understanding of their disease are 
more likely to adhere to treatment plans [31]. For mam-
mograms, decreasing the grade level of the wording for 
“recall” letters following an abnormal finding has been 
shown to significantly improve timely patient follow-up 
[32]. In general, a systematic review by Berman et al. 
found improved health literacy is associated with de-
creased hospitalizations and emergency care, improved 
use of health care services, improved health status and 
lower mortality in older patients, and diminished racial 
disparities [33]. Improving the comprehension of imag-
ing reports has the potential to tremendously improve 
patient outcomes while also improving the visibility of 
radiologists [32].

Potential Solutions
There are many potential solutions to bridging the 

gap in patient health literacy. Early efforts in clinical in-
formatics by the Canon Group sought to bring structure 
and standard lexicon to radiology reports in the 1990s 
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NEW ARTIFICIAL INTELLIGENCE 
METHODS TO BRIDGE THE GAP

Background
AI driven computer-aided diagnosis systems have 

long been incorporated into radiology workflow [2]. 
However, NLP, a subset of AI, is now being used to 
create many patient-experience tools (Figure 2). NLP 
has shown effectiveness in summarizing text, translating 
text, and answering questions [42]. NLP is divided into 
symbolic and statistical NLP [43]. While symbolic NLP 
uses a rules-based architecture, statistical NLP learns 
from large amounts of data [43]. Symbolic systems allow 
a programmer to know exactly why a certain output was 
generated and allow programmers to add additional rules 
to incorporate greater information. Meanwhile, statistical 
NLP produces greater variation in output but does not re-
quire the inclusion of as many linguistic rules to generate 
the desired output [44]. Statistical approaches are partic-
ularly useful in analyzing imaging reports, as there are 
large variations due to modality, indication, preferences, 
and culture [45,46]. The earliest initiatives involved in 
processing radiology reports were based on symbolic ap-
proaches, but with advances in NLP, most paradigms are 
combinations of symbolic and statistical approaches [44].

These initial efforts related to imaging reports include 
noting critical findings [47]; identifying diseases such as 

to aid future computer-assisted analyses [34,35]. Today, 
standard lexicon, such as RadLex by the Radiological 
Society of North America, and structured reports have 
the potential to improve patient comprehension of their 
radiology reports [4].

Decreasing the reading level of imaging reports 
has also been proposed, but communication with other 
providers may be impacted and the chance for medical 
errors may increase [22]. Instead, radiologists could gen-
erate a second report in lay terms for each examination, 
in addition to the report directed toward other healthcare 
professionals. However, a second report would increase 
the administrative burden on radiologists and may lead 
to lower job satisfaction [22]. Others have suggested the 
inclusion of the radiologist’s contact information in the 
reports [36] or an immediate result consultation with a 
radiologist [37]. Some articles have also suggested the 
inclusion of a single summarizing statement in layman’s 
terms at the end of the report [22,38].

Authors have also suggested using AI to mine the 
report to create these simple summary sentences, repre-
senting one of the many AI-driven solutions [10]. Many 
have also suggested providing annotated reports with 
definitions or including hyperlinks on medical terms to 
receive more information and or images. [11,22,39,40]. 
These suggestions are implementable with software that 
can recognize medical and radiological terms and then 
link to medical databases [41].

Figure 2. Concepts in Computer Science and Artificial Intelligence.
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odd language, and grammatical errors. Further, some key 
medical information was often skipped in the simplified 
report [67]. Overall, the radiologists recognized that there 
are many statements in the simplified report that may lead 
to the wrong conclusion and consequently psychological 
harm, but generally believed that direct harm to patients 
would be averted [67]. In Lyu et al.’s study, an evaluation 
by two radiologists found that ChatGPT output for CT 
scans (MRIs) had on average missing information every 
10.3 (12.5) outputs and incorrect information every 31.3 
(15.4) outputs. The radiologists gave an overall quality 
score of 4.268/5.0, with 52% of all outputs receiving a 
full score.

Limitations
These results suggest that LLMs have the potential 

to simplify radiology reports. Automatically generated 
second reports could be sent to patients along with their 
original report after verification by experts. Though, as 
of now, verification is necessary because LLMs have the 
potential to hallucinate and provide false information. 
LLMs may also not have the full picture of a patient’s his-
tory and may provide incorrect recommendations. Over 
time, the LLMs may improve in their ability to accurately 
simplify radiology reports as GPT-4 has been shown to 
perform better than GPT-3.5 in certain tasks [69,70].

CONCLUSION

Due to the Cures Act, patients have greater access to 
their imaging reports. However, these reports are often 
not comprehensible by the median patient. As medicine 
and radiology evolve to a more patient-centered prac-
tice, improving the ability of patients to understand their 
radiology outcomes is warranted, given that patient un-
derstanding of their medical information has been shown 
to improve outcomes [33]. Many solutions such as sum-
mary statements or second reports have been proposed, 
but these may impact a radiologist’s workflow. AI, which 
already has many applications in radiology, has the po-
tential to drive the simplification of imaging reports with-
out significant disruptions to clinical workflow. However, 
LLMs are nascent technology and rigorous research is re-
quired prior to the implementation of LLM-driven report 
simplification in patient care.
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