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ABSTRACT: Among a large variety of organic semiconducting
materials, rubrene (5,6,11,12-tetraphenyltetracene) represents one
of the most prominent molecular entities mainly because of its
unusually high carrier mobility. Toward finding superior rubrene-
based organic semiconductors, several synthetic strategies for
related molecules have been established. However, despite its
outstanding properties and significant attention in the field of
materials science, late-stage functionalizations of rubrene remains
undeveloped, thereby limiting the accessible chemical space of
rubrene-based materials. Herein, we report on a late-stage π-extension of rubrene by dearomative annulative π-extension (DAPEX),
leading to the generation of rubrene derivatives having an extended acene core. The Diels−Alder reaction of rubrene with 4-methyl-
1,2,4-triazoline-3,5-dione occurred to give 1:1 and 1:2 cycloadducts which further underwent iron-catalyzed annulative diarylation.
The thus-formed 1:1 and 1:2 adducts were subjected to radical-mediated oxidation and thermal cycloreversion to furnish one-side
and two-side π-extended rubrenes, respectively. These π-extended rubrenes displayed a marked red shift in absorption and emission
spectra, clearly showing that the acene π-system of rubrene was extended not only structurally but also electronically. The X-ray
crystallographic analysis uncovered interesting packing modes of these π-extended rubrenes. Particularly, two-side π-extended
rubrene adopts a brick-wall packing structure with largely overlapping two-dimensional face-to-face π−π interactions. Finally, organic
field-effect transistor devices using two-side π-extended rubrene were fabricated, and their carrier mobilities were measured. The
observed maximum hole mobility of 1.49 × 10−3 cm2V−1 s−1, which is a comparable value to that of the thin-film transistor using
rubrene, clearly shows the potential utility of two-side π-extended rubrene in organic electronics.

■ INTRODUCTION
Over the past several decades, π-conjugated compounds such
as polycyclic aromatic hydrocarbons have gathered great
attention as organic semiconductors (OSCs).1 OSC-based
devices such as organic field-effect transistors (OFETs) and
organic light-emitting diodes are generally more flexible,
lightweight, and potentially less expensive than their inorganic
counterparts.2 Motivated by such potential applications, the
development of efficient synthetic methods for π-conjugated
molecules has been intensively investigated.3 Considering the
necessity for evaluating an enormous number of molecules to
find an appropriate molecular entity for device applications,
late-stage functionalization of existing OSCs can be regarded as
one of the most important strategies. Because it would enable
chemists to directly install functional groups which perturb the
physical properties of a parent molecule, fine-tuning of OSCs
can be rapidly carried out without starting their synthesis from
scratch.
Among a large variety of OSCs, rubrene (1) stands out as a

promising molecular entity because of its high carrier mobility
in single crystals (Figure 1a).4 Since a transistor using a single
crystal of rubrene was reported to exhibit unusually high carrier
mobility (15−40 cm2/Vs), rubrene has been recognized as the
benchmark in this field and has become one of the most

frequently studied molecules.5 During these studies, hundreds
of rubrene derivatives have been synthesized and characterized
to discover postrubrene materials having enhanced physical
properties.6 As shown in Figure 1b, these derivatives are
typically synthesized through an assembly of molecular
components by dimerization of propargyl chlorides/alcohols,
Diels−Alder reaction of isobenzofuran and aryne, 1,2-addition
of organometallic reagents to naphthacenequinone, and cross-
coupling reaction of 5,6,11,12-tetrachlorotetracene.6 However,
despite their compelling properties and potential applications
to a wide variety of organic electronic materials, late-stage
functionalizations of rubrene and its derivatives have been
rarely reported,7 forcing chemists to install functional groups of
interest in the early stage of lengthy synthetic protocols. This
constraint, which stems from the inertness of C−H bonds and
the inherent instability of rubrene toward light and molecular
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oxygen,8 often limits the synthetic accessibility of rubrene-
based electronic materials. Therefore, strategies for the late-
stage functionalizations of rubrene have been highly sought
after.
Recently, during our campaign to develop efficient synthetic

methods for nanographenes,9,10 we have reported a unique π-
extension method termed as dearomative annulative π-
extension (DAPEX).10 In this method, terminal regions in
the longitudinal direction of the acene substructure (M-region)
of unfunctionalized fused aromatic compounds are selectively
π-extended through formal C−H functionalizations. We
anticipated that the DAPEX would be a suitable synthetic
strategy for the late-stage π-extension of rubrene because (i)
rubrene has two M-regions at the edge of tetracene core and
(ii) the unstable tetracene moiety, which inherently prevents
late-stage functionalizations,8 can be masked by tentative
dearomatization10 (Figure 1c).
In this study, we applied DAPEX to rubrene, and

successfully obtained novel rubrene derivatives having
pentacene and hexacene cores. Although a major part of
rubrene’s unique physical properties is provided by its
tetracene core, rubrene derivatives having a larger acene core
have rarely been synthesized.11,12 Exceptionally, the family of
twistacenes has been synthesized,12 but these compounds
would no longer preserve the unique physical properties of
rubrene due to their high distortion of the acene core.
Therefore, the present synthetic protocol, which is potentially

applicable to the late-stage π-extension of reported rubrene
derivatives, would allow chemists to easily explore a new
chemical space of π-extended rubrene-based materials.
Fundamental properties including photophysical, structural,
and semiconducting properties of π-extended rubrenes were
investigated, and it was confirmed that one of these
compounds (two-side π-extended rubrene) showed semi-
conducting behavior comparable to rubrene in thin films.

■ RESULTS AND DISCUSSION
Synthesis of π-Extended Rubrenes. The DAPEX

method consists of three fundamental steps: (i) a dearomative
[4 + 2] cycloaddition of 4-methyl-1,2,4-triazoline-3,5-dione
(MTAD) with aromatic compound;13 (ii) an iron-catalyzed
annulative diarylation, which was originally developed by
Nakamura and co-workers;14 (iii) aromatization by the
removal of MTAD.10 Hence, the DAPEX of rubrene was
initiated by the dearomatization of the tetracene core (Figure
2a). As previously reported,13a the Diels−Alder reaction of
rubrene (1) with 1.1 equivalents of MTAD selectively occurred
at the terminal benzene ring of the tetracene core to give 1:1
cycloadduct 2 in 90% yield. In addition, the use of an excess
amount of MTAD (2.2 equivalents) resulted in the formation
of 1:2 cycloadduct 3 as a mixture of syn- and antidiastereomers.
The relative configuration of syn-3 was determined by X-ray
crystallographic analysis. Then, the iron-catalyzed annulative
diarylation of 2 and the subsequent rearomatization were
examined (Figure 2b). Treatment of 2 with biphenyl bis-
Grignard reagent 4 in the presence of Fe(acac)3 (acac =
acetylacetonato), 1,2-bis(diphenylphosphino)benzene
(dppbz), ZnCl2, and 1,2-dichloroisobutane successfully
afforded the desired diarylated compound 5 in 70% yield
with preferential exoselectivity. However, the subsequent
rearomatization of 5 under previously reported conditions,10

where both oxidation and retro-Diels−Alder reactions take
place in one-pot by heating with p-chloranil, only gave a trace
amount of the desired product 6, probably due to the
overoxidation of the product.15 Therefore, the rearomatization
of 5 was redesigned to prevent the overoxidation of 6 as shown
in Figure 2b. The oxidation of a diarylated compound 5
without loss of the MTAD moiety would give another
precursor 7. Because this oxidized precursor can be hypotheti-
cally rearomatized simply by heating, the π-extended product 6
would be generated in the absence of the oxidant, preventing 6
from the overoxidation. Indeed, similar approaches using a
thermally reactive precursor are well investigated in the
synthesis of unstable acenes and related compounds,16 and
beneficial for the fabrication of electronic devices. Reaction
conditions were investigated, and the oxidation of diarylated
compound 5 was successfully achieved by heating with benzoyl
peroxide (15 mol %) and N-bromosuccinimide (NBS, 1.0
equivalents) at 80 °C to give the oxidized precursor 7 in 52%
yield. As expected, the rearomatization of 7 proceeded simply
by heating in dibutyl ether (n-Bu2O) at 170 °C to afford the
one-side π-extended rubrene 6 in 86% yield. The two-side π-
extended rubrene 9 was also obtained using the same reaction
protocol (Figure 2c). Iron-catalyzed annulative diarylation at
both activated olefins of 1:2 cycloadduct 3 (1:1 diaster-
eomixture) successfully gave the tetraarylated product in 58%
yield. The subsequent oxidation with benzoyl peroxide and
NBS afforded the oxidized precursors 8 in 81% total yield. The
diastereoisomers of 8 could be easily separated by preparative
thin-layer chromatography, giving syn-8 and anti-8 in a 6:4

Figure 1. Rubrene (1) as a prominent molecular entity for OSCs. (a)
Molecular structure of rubrene and representative physical properties.
(b) Conventional synthetic strategies for rubrene derivatives. (c) π-
Extension of rubrene by DAPEX strategy.
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diastereomeric ratio, and the relative configuration of syn-8 was
determined by X-ray crystallographic analysis (see Supporting
Information for details). Finally, the thermal cycloreversion of
8 was performed, and two-side π-extended rubrene 9 was
successfully obtained. While the cycloreversion of syn-8
proceeded in good yield (80%), anti-8 only gave the product
in 57% yield, probably due to the low reactivity of anti-8
caused by its poor solubility in n-Bu2O.
Photophysical Properties. With the π-extended rubrenes

in hand, UV−vis absorption and fluorescence spectra of
rubrene (1) and π-extended rubrenes 6 and 9 in dichloro-
methane were measured to elucidate the effect of the π-
extension on the electronic properties (Figure 3). While the
longest absorption maximum of 1 was observed at 528 nm (ε =
1.07 × 104 cm−1mol−1L), π-extended rubrenes 6 and 9 have
red-shifted absorption maxima at 591 nm (ε = 6.5 × 103

cm−1mol−1L) and 659 nm (ε = 7.6 × 103 cm−1mol−1L),
respectively (Figure 3a,c). Similar marked red shifts were also
observed in the fluorescence spectra of 6 (λem = 620 nm, ΦF =

0.45) and 9 (λem = 682 nm, ΦF = 0.20) compared to that of 1
(λem = 557 nm, ΦF = 0.51) (Figure 3b,c and see SI for further
discussions about fluorescence quantum yields (ΦF) and
photostability of the compounds). The fluorescence lifetime
(τs) of 6 (22.8 ns) was twice as long as that of 1 (11.0 ns),
while symmetrically π-extended rubrene 9 showed a slightly
shorter lifetime (16.7 ns). To understand the electronic
structures, density functional theory (DFT) calculations were
performed at the BHandHLYP/TZVP//B3LYP/6-31G(d,p)
level of theory.17 As shown in Figure 3d, both the HOMO and
LUMO of 1 are localized on the tetracene core. Similarly, the
frontier molecular orbitals of 6 and 9 are localized on the
tetracene moieties with small, but nonnegligible contributions
from newly constructed benzene rings. The observed longest
absorption maxima of these molecules were assigned to the
HOMO→LUMO transitions (λ = 508 nm, f (oscillator
strength) = 0.2281 for 1; λ = 571 nm, f = 0.1580 for 6; λ =
635 nm, f = 0.1187 for 9) by time-dependent DFT (TD-DFT)
calculations. These results, along with the observed marked red

Figure 2. DAPEX of rubrene (1). (a) Regioselective dearomative [4 + 2] cycloaddition of MTAD. (b) Annulative diarylation and subsequent
rearomatization of cycloadduct 2 to give one-side π-extended rubrene 6. (c) Annulative diarylation and subsequent rearomatization of cycloadduct
3 to give two-side π-extended rubrene 9.
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shift in absorption and emission spectra, indicate that the
acene π-system of 1 was successfully extended not only
structurally but also electronically.
X-ray Crystallographic Analysis. To disclose the effect of

tetracene core π-extension on the molecular and packing
structures of rubrene, single crystals of 6 and 9 were grown
from diethyl ether and diphenyl ether solution, respectively,
and analyzed by X-ray crystallography. The results are shown
in Figure 4, along with the reported crystal structure of the
parent rubrene (1)5a and compound 10, which possesses the
common core framework (tetrabenzo[a,c,n,p]hexacene moi-
ety) with 9.12d Whereas the tetracene core of 1 is completely
planar in the single crystal (ϕ = 0°, where ϕ is an end-to-end
dihedral angle defined by four carbon atoms at the edge of an
acene moiety), and this nature is believed to contribute largely
to its unusually high carrier mobility,4 the one-side π-extended
rubrene 6 has a slightly twisted structure (Figure 4a, ϕ = 17°).
The gray-filled triphenylene moiety of 6 is almost planar (ϕ =
−5°), and the remaining anthracene moiety is twisted (ϕ =
22°), most likely due to the steric repulsion between the four
dangling phenyl groups. On the other hand, the two-side π-
extended rubrene 9 was found to have a planar acene core (ϕ =
0°). A structurally similar molecule 10, reported by Kilway and

coworkers, is known as a family of “twistacene” having a largely
twisted acene substructure (ϕ = 184°).12d With the removal of
four phenyl groups at peri positions of 10, newly synthesized 9
seemed to decrease intramolecular steric repulsions to result in
the planar structure, thereby greatly increasing the chance for
intermolecular π−π interactions like rubrene.
To analyze the packing structures of these rubrene

compounds, we performed the noncovalent interaction plot
(NCIPLOT)18 analysis for 1, 6, and 9 which were extracted
from the X-ray crystallographic analysis (Figure 4b−d).
Regarding the packing structure, 1 is known to adopt the so-
called slipped π-stack packing structure,5a where largely
overlapping intermolecular face-to-face π−π interactions and
face-to-edge CH/π interactions exist (Figure 4b).19 Com-
pound 6 also adopted a similar packing structure as 1, while
both π−π and CH/π interactions of 6 look smaller than those
of 1, resulting in weakened intermolecular interactions in 6
(Figure 4c). On the other hand, two-side π-extended rubrene 9
adopted a brick-wall packing structure with largely overlapping
two-dimensional (2D) face-to-face π−π interactions, which is
known as one of the most suitable packing structures for the
applications in electronic devices (Figure 4d,e).20 One of the
π−π stacking modes is the interaction between blue- and gray-

Figure 3. Photophysical properties of rubrene (1) and π-extended rubrenes 6 and 9. (a) UV−vis absorption spectra of 1, 6, and 9 in CH2Cl2. (b)
Normalized emission spectra of 1, 6, and 9 in CH2Cl2 in the region between λ = 500 and 800 nm. (c) Solution/emission colors of 1, 6, and 9 in
CH2Cl2 and summary of optoelectronic properties. (d) Pictorial frontier molecular orbitals and possible transitions calculated by TD-DFT at the
BHandHLYP/TZVP//B3LYP/6-31G(d,p) level of theory.
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colored molecules in which the terminal phenanthrene
moieties are overlapped with each other. The other mode is
the stacking between red- and gray-colored molecules, where
terminal benzene rings interact with naphthalene moieties in
the middle of the hexacene core (Figure 4e). The distances
between the closest pair of carbon atoms in each stacking
mode were estimated to be 3.32 and 3.45 Å, respectively,
indicating the existence of moderate to strong π−π
interactions. Through these π−π interactions, one molecule
of 9 can interact with four neighboring molecules (Figure 4e),
forming a 2D network of π−π interactions. It should be noted
that, among a large variety of rubrene derivatives reported to
date,6 only a few molecules are found to adopt this packing
structure,21 and that compound 9 is, to the best of our

knowledge, the first example of an electronically unbiased
rubrene derivative having 2D π−π interactions in the crystal
structure. The observed change in packing structures from 1 to
9 might be understandable by analogy of a well-known crystal
engineering strategy for 6,13-bis((trialkylsilyl)ethynyl)-
pentacenes (TAS-pentacenes).22 Anthony and coworkers
revealed that the packing structure of TAS-pentacene is
determined by the ratio of the diameter of trialkylsilyl groups
(r) at peri positions to the length of the acene core (L), and
the brick-wall packing structure would be observed when this
ratio (r/L) becomes close to 0.5.22 Considering the similarity
in molecular structures of rubrene and TAS-pentacene,
DAPEX of 1 caused the increase of the length of the acene
core (L), while keeping the size of substituent at peri positions

Figure 4. X-ray crystallographic structure of 1, 6, 9, and 10. (a) Oak Ridge thermal-ellipsoid plot program drawing of the top view. ϕ is an end-to-
end dihedral angle of acene cores. NCI analysis and reduced density gradient isosurface (isosurface value = 0.3) by a NCIPLOT4 program for (b)
1, (c) 6, and (d) 9. Color code based on sign (λ2)ρ was −0.7 a.u. (blue) < 0.0 a.u. (green) < 0.7 a.u. (red). Blue and red isosurfaces show regions
having attractive and repulsive interactions, respectively, and green isosurfaces show week van der Waals interactions such as π−π interaction. Each
structure was extracted from the data of X-ray crystallographic analyses. (e) Crystal packing structure of 9. Hydrogen atoms in the packing structure
of 9 and solvent molecules in the NCI plot of 6 are omitted for clarity.
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(phenyl groups) unchanged, resulting in an appropriate ratio of
r to L.
Evaluation of Hole Mobility. Because the observed brick-

wall packing structure of two-side π-extended rubrene 9 is
believed to contribute to the high carrier mobility in thin-film
OFET using prominent OSCs such as TIPS-pentacene,
oxo(phthalocyaninato)titanium (TiOPc), and N,N′-bis-
(cyclohexyl) naphthalene-1,4,5,8-bis(dicarboximide),20,22,23

OFET devices using 9 were fabricated, and their carrier
mobilities were measured. The p-type OFET devices were
fabricated in the top-contact/bottom-gate (TC/BG) config-
urations, and a thin film of 9 was formed by vapor deposition
on the SiO2 substrate treated with octadecyltrimethoxysilane
(see SI for detailed procedure). To our delight, the thin-film
layer of compound 9 showed semiconducting behavior, and
the average hole mobility for 16 independent devices was
estimated to be 7.11 × 10−4 cm2V−1 s−1 with a threshold
voltage of −4.7 V and on/off current ratio of 1.8 × 104 (Table
1, entry 1). Although the device performance was only

moderately good, the hole mobility could be improved by
thermal annealing (entries 2−5). The maximum hole mobility
of 1.49 × 10−3 cm2V−1 s−1, which is a comparable value to the
thin-film transistor using rubrene (2.71 × 10−3 cm2V−1 s−1,
entry 6), was observed when the thin film was annealed at 140
°C for 15 min (entry 4). The thermal stability of compound 9
was confirmed by thermogravimetry-differential thermal
analysis (TG-DTA, see SI), where no decomposition and no
enthalpy change of compound 9 occurred bellow 400 °C,
indicating that the observed change in hole mobilities could be
accounted by a subtle change in aggregation morphology
around the substrate surface. The transfer and output
characteristics of this device are shown in Figure 5. Although
a comparison of hole mobilities in the single crystal could not
be carried out due to the difficulty in preparing devices, the
results described above could imply the possibility of two-side
π-extended rubrene 9 as a novel class of rubrene-based OSCs
with comparable mobility to rubrene.

■ CONCLUSIONS
In conclusion, we have applied our DAPEX method to one of
the promising OSCs, rubrene, and successfully obtained π-
extended rubrene derivatives 6 and 9. The Diels−Alder
reaction of rubrene with MTAD occurred selectively at the
terminal benzene ring of the tetracene core to give 1:1 and 1:2
cycloadducts which further underwent iron-catalyzed annula-

tive diarylation with the biphenyl bis-Grignard reagent. The
thus-formed 1:1 and 1:2 adducts were subjected to radical-
mediated oxidation and thermal cycloreversion to furnish one-
side and two-side π-extended rubrenes 6 and 9, respectively.
These π-extended rubrenes 6 and 9 displayed a marked red
shift in absorption and emission spectra, clearly showing that
the acene π-system of rubrene was extended not only
structurally but also electronically. The X-ray crystallographic
analysis uncovered interesting packing modes of these π-
extended rubrenes. Particularly, two-side π-extended rubrene 9
adopts a brick-wall packing structure with largely overlapping
2D face-to-face π−π interactions, which is known as one of the
most suitable packing structures for applications in electronic
devices. Finally, the OFET devices using two-side π-extended
rubrene 9 were fabricated, and their carrier mobilities were
measured. The observed maximum hole mobility of 1.49 ×
10−3 cm2V−1 s−1, which is a comparable value to a thin-film
transistor using rubrene, clearly shows the potential utility of
two-side π-extended rubrene in organic electronics. The
established synthetic method not only represents one of the
limited examples of late-stage functionalization of rubrene, but
also enables access to a previously untapped chemical space of
rubrene derivatives having a larger acene core.
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Table 1. OFET Performance of Compound 9 and Rubrene
(1)

entry
Ta
(°C)

μaveb (cm2/
VS)

μmaxc (cm2/
VS)

Vth
d

(V)
on/off
ratioe

1 7.11 × 10−4 7.69 × 10−4 −4.7 1.8 × 104

2 100 6.26 × 10−4 6.98 × 10−4 −5.7 1.6 × 104

3 120 7.76 × 10−4 1.12 × 10−3 −7.4 1.7 × 104

4 140 7.28 × 10−4 1.49 × 10−3 −7.1 4.0 × 103

5 160 6.72 × 10−4 8.42 × 10−4 −7.9 6.3 × 103

6f 2.62 × 10−3 2.71 × 10−3 −3.3 2.1 × 105
aAnnealing temperature. bAverage hole mobility over five independ-
ent devices. cMaximum hole mobility over five independent devices.
dAverage threshold voltage over five independent devices. eAverage
on/off current ratio over five independent devices. fRubrene (1) was
used instead of compound 9.

Figure 5. Transfer (left) and output (right) characteristics of the TC/
BG device for the thin-film layer of compound 9 prepared by vapor
deposition followed by thermal annealing at 140 °C for 15 min.
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