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ABSTRACT: Herein, we describe a two-step ring expansion of 1-indanones to afford 2-chloro/bromo-1-naphthols (32 examples).
The developed method shows broad functional group tolerance, benefits from mild reaction conditions, and enables rapid access to
the tetracyclic core of gilvocarcin natural products. The orthogonally functionalized products allow for selective postmodifications as
exemplified in the total synthesis of defucogilvocarcin M. For the selective oxidation of the chromene, a mild and regioselective
oxidation protocol (DDQ and TBHP) was developed.

Polyfunctionalized aromatic structures that are derived
from 1-naphthols are present in bioactive natural

products, numerous pharmaceuticals, and chiral ligands.1

According to the substituents present at the ortho, meta, and
para positions, two major classes can be identified (Scheme
1a). Class A comprises 3-carboxy-1-naphthols with variations
at the ortho and para position as exemplified by chartartin2 (1),
salimabromide3 (2), and diphyllin4 (3). On the contrary,
parviflorene E5 (5), the VANOL ligand6 (4), and the
gilvocarcin natural product ravidomycin7 (6) represent ortho-
substituted 1-naphthols with different degrees of substitution
at the meta and para position (class B). The potent biological
activities associated with these structures as well as their use in
asymmetric catalysis have attracted a great deal of attention for
the development of efficient methods for their synthesis.8

Much effort has been spent to access orthogonally function-
alized 1-naphthols. Despite significant progress in this area, the
developed methods often involve multistep sequences,9 harsh
reaction conditions,10 and the use of precious transition-metal
catalysts11 or require a β-ketoester functionality to proceed.12

Other protocols are based on sensitive and uncommon
intermediates or reagents (e.g., cyclobutenones, allenes, or
nitrones).13 Moreover, they suffer from noncommercial
starting materials, thus preventing rapid access to structurally
diverse analogues. Here, we present a robust two-step protocol
for the construction of orthogonally functionalized 2-halo-1-
naphthols starting from 1-indanones. A plethora of 1-
indanones with a broad substitution pattern are commercially
available, and functionalized variations thereof are readily
accessible via known literature procedures.14 The applicability
of the developed methodology is shown for the synthesis of the
natural product defucogilvocarcin M (45).15

During the course of our investigations to develop novel ring
expansion reactions, we gained access to a variety of class A 1-
naphthols (Scheme 1b).16 This protocol enabled the synthesis
of chartarin (1) and also provided access to an advanced
intermediate toward salimabromide (2).17 While a diverse set
of (hetero)arenes were generated via this strategy, the inherent
ester functionality restricted synthetic access to class A
structures and variation of the ortho position was possible
only at the stage of the 1-indanone (7a). In addition, several of
the 1-indenone intermediates (7b) required for the cyclo-
propanation were unstable and prone to polymerization. We
wanted to address these issues by investigating the ring
expansion of gem-dihalocyclopropane18 10, readily available
from indene 7c. During our early investigations, Wang found
access to 2-fluoro-1-naphthols via a related cyclo-propanation−
ring expansion (CPRE) using (bromodifluoromethyl)-
trimethylsilane.10d The incorporation of a chlorine or bromine
atom at this position was not possible via this strategy and
restricted further diversification. Inspired by seminal work by
Ciamician and Dennstedt and related reports on ring
expansion reactions,18,19 we envisioned an alternative strategy
that employs chloroform and bromoform as inexpensive and
easy to handle halogen sources for installing the chloride and
bromide, respectively. The obtained ortho-chlorinated and
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brominated 1-naphthols 11b are more valuable substrates than
their fluorinated analogues 11a, especially when considering
further postmodifications to access a large number of known
bioactive 1-naphthols featuring an ortho substituent.20

We began our investigations by studying the CPRE of 1-
indanone-derived trimethylsilyl enol ether 12 (Table 1). While
aqueous sodium hydroxide (entry 1) or sodium methanolate
(entry 2) led to only desilylation of the starting material, we
were delighted to find that upon treatment of 12 with
potassium tert-butoxide and chloroform in pentane at
cryogenic temperatures ring expansion followed by partial in
situ deprotection to 1-naphthol 14 was observed (entry 3). To
ensure complete desilylation, hydrochloric acid (entry 4) or
tetrabutylammonium fluoride (TBAF, entry 5) was added after
full conversion of the starting material. While the use of acidic
conditions provides slightly higher yields for 12, TBAF proved
to be superior with regard to functional group tolerance. It is
noteworthy that the use of sublimed grade potassium tert-

butoxide showed significantly higher yields compared to those
of reagent grade batches. In this context, we were likewise
interested in gaining access to 2-bromo-1-naphthols to expand
the range of possible postmodifications of the obtained 1-
naphthols (Table 2). A simple exchange of chloroform for
bromoform gave the desired naphthol 17 in moderate yield
(47%) accompanied by large amounts of recovered 1-indanone
(entry 1). The competing desilylation was prevented by
employing a more stable tert-butyldimethylsilyl enol ether.
This allowed for the preparation of 2-bromo-1-naphthol 16
even at ambient temperature (entry 2). However, larger
amounts of the base and bromoform were needed to ensure
full conversion (entry 3). Although the combination of this
protocol with deprotection conditions (DBU in MeCN/H2O
or HF·pyr in THF) in a one-pot fashion afforded unprotected
naphthol 17 in good yields, we observed reproducibility issues
leading to varying yields between 56% and 76%. We also
noticed that application of these conditions to a broader
substrate scope led to significantly lower yields, not only at the
stage of the ring expansion but also for the subsequent
deprotection step. The inconsistencies of the subsequent TBS
deprotection required another change of the protecting group.
We later found that the use of a triisopropyl (TIPS) group was
ideally suited as it provided good yields for the enol ethers and
could be easily removed upon treatment with either TBAF or a
suspension of KOAc in DMF/water (entry 4).21 Detailed
studies showed that the reproducibility of the CPRE step was
strongly dependent on the order and temperature at which the
substrate and the base were combined. While addition at 23 or
0 °C immediately afforded a deep purple solution, addition at
−78 °C led to the formation of a pale-yellow mixture and
provided 17 in reproducible 85% yield (entry 5). Efforts to
identify and characterize possible side products resulting from
a competing aryne formation were unsuccessful.
With the optimized conditions in hand, we began

investigating the conversion of several substrates to the
corresponding 2-chloronaphthols (Scheme 2, protocol A).
We found that halogens (19Cl−24Cl), acetals (25Cl), ethers
(26Cl−28Cl), esters (30Cl and 31Cl), alkyls (33Cl), and aryls
(32Cl) and silyl ethers (29Cl) were stable under the reaction
conditions to afford the corresponding 1-naphthols in yields of
≤83%. Unexpectedly, only the presence of methoxy groups led
to significantly lower yields under the standard conditions
(16% for 27Cl, 57% for 28Cl).22 This was attributed to the
decreased stability of the transient silyl enol ether. We were
able to address this issue by adapting the conditions developed
for the preparation of 2-bromonaphthols (compare Table 2).
Under these conditions, 27Cl and 28Cl were obtained in 83%
and 81% yields, respectively.

Scheme 1. Selected Examples and Synthetic Access to
Chemically and Biologically Relevant 1-Naphthols

Table 1. Selected Screening Conditions for the Preparation of 2-Chloro-1-naphthols

entry reagents temp time solvent deprotection yield of 13 (%) yield of 14 (%)

1 CHCI3, NaOH, BnEt3NCI 45 °C 3 days CH2CI2, H2O − 0 0
2 CCI3COOEt, NaOMe 0 °C 4 h pentane − 0 0
3 CHCI3, KOt-Bu −78 to 23 °C 3 h pentane (0.5 M) − 10 55
4 CHCI3, KOt-Bu −78 to 23 °C 3 h pentane (0.5 M) aqueous HCI 0 86
5 CHCI3, KOt-Bu −78 to 23 °C 2 h pentane (0.2 M) TBAF 0 80
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When the substrates mentioned above were subjected to
protocol B, comparable yields were obtained for halogenated
naphthols 19Br−24Br, benzyl ether 26Br, silyl ether 28Br,
and p-phenyl derivative 32Br (Scheme 2). However, the
protocol was less compatible with electron-donating groups
such as an acetal (25Br) or methoxy unit (27Br and 28Br)
and failed in the presence of an ester (30Br and 31Br). The
slightly decreased yield for ortho,meta-substituted naphthol
33Br can be rationalized by steric hindrance. In the course of
investigating further postmodifications to showcase the
applicability of the obtained 2-halo-1-naphthols shown in
Scheme 2, we observed an unusual dearomatization reaction.
When 2-bromo-5-iodonaphthol 22 was treated with N-
chlorosuccinimide (NCS) in acetonitrile, quantitative con-
version to bench-stable enone 47 was observed without

formation of expected naphthol 46.23 We found that this rather
rare dienone tautomer24 undergoes conjugate addition25 with
several nucleophiles, thus representing a formal meta-
functionalization (see the Supporting Information).
Having prepared a library of 2-halonaphthols, we turned our

attention to the synthesis of defucogilvocarcin M [45 (Scheme
3)].15 This natural product belongs to a family of >15
antitumor antibiotics, of which the first member was isolated in
1955.26 Due to their structural and biological properties,
defucogilvocarcin M and its related members have become a
popular synthetic target.15b,26 Starting from known indanone
34,27 2-bromonaphthol 35 was obtained in 70% yield over two
steps on a gram scale. Two-step oxidation gave dihydroqui-
none 37, which was regioselectively benzylated with 3828 in
the presence of potassium carbonate to give ethers 39.
Subsequent methylation provided the key benzyl ethers 40.
Among the different known strategies for forming the
gilvocarcins’ biaryl bond (e.g., Meerwein, Suzuki, Stille,
Heck, and Meyers coupling), no Ar−X−Ar−X (X = halogen)
coupling has been reported so far.15b,26 Somewhat surprisingly,
all attempts to realize a Ni- or Pd-catalyzed intramolecular
sp2−sp2 cross-coupling or a classical Ullmann coupling29 failed
in our hands. After a survey of alternative methods, Lipshutz’s
Cu(I)-mediated biaryl coupling protocol (t-BuLi, CuCN·
2LiX) evolved as the first solution for obtaining the full
skeleton of 45 (procedure a).30 When an excess of t-BuLi (11
equiv) was used, simultaneous removal of the benzyl group
took place to form 41b, sparing an additional deprotection step
(procedure b).31 Prolonged treatment with 1,3-dinitrobenzene
(>1.5 h) led to overoxidation and thus opening of the lactone
ring (not shown). Due to unsatisfactory yields, we screened
further coupling conditions and were delighted to see that
Stille−Kelly coupling32 afforded the desired tetracycle 41a in
63% yield, with the results for 40Br being better than those of
40I (see the Supporting Information for a detailed screening
table). Severe and unanticipated difficulties awaited us when
we attempted the oxidation of chromene 41 to install the
missing lactone unit. For this purpose, we initially protected
the free hydroxy-chromene 41b. Compound 41c resisted
oxidation to the corresponding chromenone 43 by several
established procedures, including PCC, PDC, SeO2, KMnO4,
MnO2, TBHP/KI, or TBHP/I2.

33 In most cases, ring opening
of the intermediate lactol to give the corresponding
benzoquine or decomposition was observed. Progress was
made when we found that treating a solution of 41c in 1,4-
dioxane with DDQ and TBHP resulted in the formation of
peroxyacetal 42c (R = i-Pr). When the partially purified
peroxyacetal 42c was treated with 1,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU) in dichloromethane, a Kornblum−
DeLaMare rearrangement34 to the desired lactone took

Table 2. Selected Screening Conditions for the Preparation of 2-Bromo-1-naphthols

entry R KOt-Bu (equiv) CHBr3 (equiv) base addition deprotection yield of 15 (%) yield of 16 (%) yield of 17 (%)

1 TMS 2.0 2.2 at −78 °C TBAF, THF 0 0 47
2 TBS 2.0 2.2 at 23 °C - 43 36 0
3 TBS 6.0 5.0 at 23 °C DBU, MeCN/H2O 0 0 67
4 TIPS 4.5 2.0 at 23 °C KOAc, DMF/H2O 0 0 70
5 TIPS 4.5 2.0 at −78 °C KOAc, DMF/H2O 0 0 85

Scheme 2. Scope of 2-Chloro- and 2-Bromo-1-naphthols
Obtained via CPRE of 1-Indanones

aVia TIPS-silylenol ether. bYield for TIPS-protected naphthol (see
the Supporting Information for details). cTBAF deprotection.
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place. We were pleased to see that this transformation could
also be applied in a one-pot fashion affording isopropylated
defucogilvocarcin M (43) in 85% yield. Moreover, these
conditions not only were completely selective for the
chromene core in the presence of a benzyl group (44) but
also tolerated the free hydroxyl group of naphthol 41b to
directly give defucogilvocarcin M (45) in 80% yield.
Spectroscopic data (1H NMR and 13C NMR) for the synthetic
material were in full agreement with reported values.35

In summary, we have developed a powerful protocol for
converting a broad range of readily available 1-indanones into
diversely substituted 2-chloro/2-bromo-1-naphthols. The
halogen in the ortho position served as a useful handle for
further functionalization as demonstrated in the synthesis of
defucogilvocarcin M. In addition, a mild protocol for the
selective benzylic oxidation of chromenes was developed.
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