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Abstract: Children are unique in the context of the COVID-19 pandemic. Overall, SARS-CoV-2 has a
lower medical impact in children as compared to adults. A higher proportion of children than adults
remain asymptomatic following SARS-CoV-2 infection and severe disease and death are also less
common. This relative resistance contrasts with the high susceptibility of children to other respiratory
tract infections. The mechanisms involved remain incompletely understood but could include the
rapid development of a robust innate immune response. On the other hand, children develop a
unique and severe complication, named multisystem inflammatory syndrome in children, several
weeks after the onset of symptoms. Although children play an important role in the transmission
of many pathogens, their contribution to the transmission of SARS-CoV-2 appears lower than that
of adults. These unique aspects of COVID-19 in children must be considered in the benefit–risk
analysis of vaccination. Several COVID-19 vaccines have been authorized for emergency use in
adolescents and clinical studies are ongoing in children. As the vaccination of adolescents is rolled
out in several countries, we shall learn about the impact of this strategy on the health of children and
on transmission within communities.

Keywords: COVID-19; SARS-CoV-2; pediatric; multisystem inflammatory syndrome in children
(MIS-C); immunopathogenesis

1. Introduction

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, children
are underrepresented in terms of frequency and severity, accounting for less than 2%
of diagnosed cases [1–3]. This under-representation is partly explained by the fact that
children are less often diagnosed with a severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, as they are less symptomatic than adults and because they appear
less susceptible to the infection.

It is estimated that up to 70% of children infected with SARS-CoV-2 remain asymp-
tomatic [4–6]. In symptomatic children, clinical presentation is usually unspecific and
indistinguishable from other respiratory virus infections, as the most frequent symptoms
are fever and coughing, and up to 15% of children also present gastrointestinal symptoms,
while anosmia is present in less than 1% of the cases [7].

If COVID-19 is a benign disease in most children, a very small proportion of pediatric
patients develop severe disease and require hospitalization, accounting for only 1.5% of all
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COVID-19 hospital admissions [8]. Although it has been difficult to identify risk factors for
severe disease in children, toddlers and adolescents are more likely to be hospitalized than
young infants, and children with chronic pulmonary disease, congenital cardiac disease or
neurological disease are more likely to be admitted to intensive care units [8]. The mortality
associated with COVID-19 in children is very low, as pediatric deaths represent only 0.08%
of all deaths associated with COVID-19 [9]. In the spring of 2020, clusters of children
in Europe and America developed a severe hyperinflammatory syndrome resembling
Kawasaki disease (KD) or toxic shock syndrome [10–13] several weeks after diagnosis of
SARS-CoV-2 infection. The syndrome was named multisystem inflammatory syndrome
in children (MIS-C) by the US Centers for Disease Control and the WHO, or paediatric
inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS)
by the UK Royal College of Paediatrics and Child Health (RCPCH).

It remains unclear why children are less susceptible to COVID-19 and why some de-
velop MIS-C. Regarding the lower susceptibility, several hypotheses have been proposed,
including cross-reactive immunity against seasonal coronaviruses to which children have
been exposed and a lower expression of the angiotensin-converting enzyme 2 (ACE2) re-
ceptor, required for virus entry into human cells through interaction with the protein S, but
data supporting these possibilities remain inconclusive. Data are emerging which suggest
that children may develop a more rapid and more regulated immune response to SARS-
CoV-2, allowing viral control with limited inflammation. This peculiar immune response
profile could involve training of innate immunity by exposure to vaccines and pathogens
in childhood [14]. Although children are less affected by COVID-19, they are infected and
contribute to the transmission of SARS-CoV-2 [8]. Characterizing the immune response to
SARS-CoV-2 in children who present with uncomplicated COVID-19 is required to under-
stand the mechanisms underlying MIS-C and to define the immunological mechanisms
controlling viral excretion and transmission that can be targeted by vaccination.

2. Immune Response to SARS-CoV-2 Infection in Children

Understanding why children are generally less prone to develop severe COVID-19
and associated symptoms could help to define immune mechanisms of protection against
SARS-CoV-2 infection in the general population. The way children respond to SARS-
CoV-2 is somewhat unusual, since the severity of infections with many other respiratory
viruses, such as respiratory syncytial virus or influenza, is generally higher in children.
This difference cannot be explained by a reduced viral load, as children have similar and
sometimes higher viral copies in the first days of infection as compared to adults, but this
viral load does not correlate with the severity of symptoms [15–18]. There is also no clear
evidence that an age-dependent variation in the ACE2 expression level correlates with
reduced disease severity. The gene expression of ACE2 in the nasal cavity and lungs was
initially shown to be lower in young infants and to increase with age [17,19,20], but in later
studies it was found to be similar in infected adults and children [21].

Because infection with common cold human coronaviruses (HCoVs)—HCoV-229E,
-HKU1, -NL63 and -OC43—is frequent in children, it has been hypothesized that the
presence of antibodies or cross-reactive T cells induced by HCoVs infection could provide
protection in young individuals [22,23]. However, if children have high frequencies of
class-switched B cells against SARS-CoV-2 and related coronaviruses, the level of HCoVs-
specific antibodies is lower in children than in adults and was not associated with the risk
of SARS-CoV-2 infection or MIS-C [21,24–28]. On the other hand, antibodies to HCoVs
cross-react primarily with the S2 portion of the spike protein and, therefore, have limited
capacity to neutralize SARS-CoV-2 [29]. It is possible that non-neutralizing HCoVs-specific
antibodies could also contribute to viral control through Fc-dependent mechanisms and
promote deleterious inflammatory responses, although evidence for a pathogenic role
of antibodies in SARS-CoV-2 infection remains inconclusive [30–33]. Overall, the role of
pre-existing and potentially cross-reactive HCoVs-specific antibodies in age-dependent
susceptibility to SARS-CoV-2, or in disease severity, remains uncertain [34].
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Early control of SARS-CoV-2 replication during primary infection is mainly medi-
ated by the innate immune system [35]. Severe disease is associated with a lower initial
interferon (IFN) response, followed by uncontrolled and persistent inflammation [36]. A
key question is, therefore, whether children mount a less intense inflammatory response
resulting in fewer and milder symptoms, or whether they have a more potent innate
immune response, controlling viral replication more efficiently. Baseline cytokine levels are
generally lower in children [37] and lower levels of inflammatory cytokines are detected in
the lungs of children suffering from acute respiratory distress syndrome than in adults [38].
Studies initially reported that clinical parameters of inflammation were either undetectable
or low in children with COVID-19 [14,39–41]. However, similar or higher systemic levels
of cytokine were observed in later studies of hospitalized children and adults [21]. On
the other hand, high levels of inflammatory cytokines were observed in severe cases of
pediatric COVID-19 [42–44] and also in children with mild disease [28]. A pivotal study
by Pierce et al. showed that children have a more intense nasal innate immune response,
including higher levels of IFN-gamma and IFN-alpha, as compared to adults, suggesting
that they may develop higher anti-viral responses at the mucosal level early on during
infection [21]. A potent and efficient IFN response may, therefore, contribute to protection
of children against COVID-19-associated symptoms [45]. A potential role for trained innate
immunity, due to previous vaccinations or common infections, in the control of SARS-CoV-2
infection in children has been proposed [46] but currently lacks experimental evidence.

Analyses of peripheral blood immune cells in the first days after onset of symptoms
revealed similar profiles in children and adults, including activation of monocytes and
dendritic cells (DC) and transiently reduced numbers of lymphocytes, monocytes, DCs
and NK cells [28,47]. Neutrophils appear to be less activated in pediatric, as compared
to adult, COVID-19 cases, and this could mitigate tissue inflammation and damage [48].
On the other hand, children have higher numbers of circulating lymphocytes, which may
contribute to better disease control [49–51]. As circulating T, B and NK cells decrease
post-infection, they could be recruited at the site of infection earlier and in higher numbers
in children than they are in adults.

Does a more efficient innate immune response result in a different adaptive immune
response to SARS-CoV-2 in children, as compared to adults? It is now well established
that children can mount a robust neutralizing antibody response to SARS-CoV-2 [17,52–54].
Initial reports from small pediatric cohort studies showed lower serum neutralizing activity,
as compared to adults [21,55], and a reduced breadth of the antibody response to the spike
protein [55]. A pre-print report indicates that the level of SARS-CoV-2 antibodies is reduced
in children (N = 122) as compared to adults (N = 36), independently of disease severity,
with a relatively higher proportion of antibodies targeting non-structural proteins, such as
ORF3b and NSP1, than the nucleocapsid (N) or spike (S) proteins [56]. In contrast, other
studies described similar levels of SARS-CoV-2 antibodies in both age groups, including
those specific to the N protein [17,26,28,57,58]. Systems serology analyses, involving
multiparametric assessment of antibody responses, showed a similar functional antibody
profile, including phagocyte and complement-activating IgG, in children and adults with
mild COVID-19 [33,54]. We recently conducted a longitudinal study of household contacts
of COVID-19 cases and observed a similar magnitude and breadth of SARS-CoV-2-specific
antibody response in children and adults with mild disease [28]. This study also indicated
a more rapid onset of antibody response to the receptor-binding domain (RBD) and a more
rapid appearance of peripheral blood B cell transcriptomic signature in children than in
adults. A more rapid B cell response to SARS-CoV-2 in children could also contribute
to a better control of the virus and to reduced symptoms. Indeed, levels of neutralizing
antibodies and antibody-secreting B cells seven days after the onset of symptoms inversely
correlated with viral load in children [59]. In addition, higher levels of somatic mutations
in memory B cells and a more sustained antibody response were associated with a faster
recovery from symptomatic COVID-19 in adults [60]. Limited data are available regarding
the persistence of antibody responses in children. In a small cohort of children, anti-SARS-
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CoV-2 IgG declined six months after infection with lower levels than their infected parents
at the same time point [61]. In a recent larger cohort study, children and adolescents showed
high and durable antibody responses to SARS-CoV-2, following mild or asymptomatic
infection [62]. Regarding cell-mediated immunity, only a few reports describe a lower or
similar magnitude of SARS-CoV-2-specific T cells in children [21,57,63]. As the magnitude
of the adaptive immune response to SARS-CoV-2 is related to severity of symptoms, it is
essential that studies compare adults and children with similar clinical presentations.

3. Multisystem Inflammatory Syndrome in Children (MIS-C)

In contrast to children with acute COVID-19, children with MIS-C have no clinical
features of active SARS-CoV-2 infection but have a history of COVID-19 or of contact with
a person with COVID-19 around 4 weeks before the development of MIS-C symptoms [13].
Furthermore, MIS-C cases were typically observed 3–6 weeks following the peak incidence
of COVID-19 in the general population [13,64]. Initially, MIS-C was reported as an atypical
form of Kawasaki disease (KD) in regions of the world most affected by COVID-19, in
Europe and in North and Latin America [11,12,65]. The exact incidence of MIS-C is uncer-
tain. According to a study in New York, MIS-C occurs in two out of every 100,000 infected
children [66]. Some ethnic groups were overrepresented, at least at the beginning of the
pandemic, such as the African and Hispanic communities [10,11]. This could be explained
by population-based genetic susceptibility; viral factors, as new variants of the virus might
be more prone to induce immunopathological responses (for instance, due to epitopes with
superantigen activity); or social determinants, as some ethnic minorities might have been
more exposed to SARS-CoV-2 infection [67]. Children with MIS-C are older than children
with KD, with a median age of 8–9 years, as compared to 3 years in KD [11,64].

Clinically, children with MIS-C present more heterogeneous symptoms than classical
KD, as most children present with persistent fever, systemic inflammation, shock and
multiple organ involvement [68]. Gastrointestinal manifestations are observed in 50–80%
of MIS-C cases, sometimes with features of acute abdominal pain. They also frequently
present with cutaneous rash and neurological symptoms, with features of meningitis and
encephalitis [11,13,64,65,69,70]. Further, they very often present with cardiac dysfunction,
with the occurrence of coronary artery dilation in 4–20% of children [11,64,71]. Patients
often present with shock or hemodynamic instability; 60–80% require hospitalization in
an intensive care unit; and 50% need inotropes and/or fluid resuscitation [11,64,72]. This
syndrome usually resolves rapidly with corticosteroids and intravenous immunoglobulins
(IVIG) [11,64,73–75]. The fatality rate is estimated to be 1–2% [66]. Inflammatory response
in children with MIS-C is characterized by an increase in levels of C-reactive protein (CRP),
procalcitonin, troponins, brain natriuretic peptide (BNP), ferritin and cytokines, such as
IL-1, IL-6, IL-8, IL-10, IL-17, IL-18, IFN-γ and TNF, associated with profound lymphopenia
and neutrophilia [10,11,13,74,76,77].

The physiopathology of MIS-C has been studied, but there is still no clear explanation
as to why a small proportion of infected children develop MIS-C. It has been reported
that the various symptoms of MIS-C reflect local vasculitis and inflammation of the af-
fected organs. Similarly to KD, MIS-C is triggered by a previous infection and is likely
an autoimmune syndrome. The inflammatory markers, such as CRP, ESR, procalcitonin
and cytokines, appear more elevated in MIS-C as compared to other pediatric COVID-19
cases [13]. However, the inflammatory response is more intense in MIS-C compared to chil-
dren with KD, and the cytokine profile is different; in KD, there is a robust IL17A increase,
which is not observed in MIS-C. In contrast, MIS-C is associated with elevated levels of
IL-1, which could be induced by endothelial cells damaged by autoantibodies and comple-
ment [78]. Autoantibodies of multiple specificities, including endothelial, gastrointestinal
and immune cells, have indeed been observed in MIS-C [77,78]. These autoantibodies may
form immune complexes and trigger immune damage to host tissues [77]. The production
of autoantibodies may be due to cross-reactivity between SARS-CoV-2 and self-antigens.
Although observed after infection, the production of autoantibodies has not been reported
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following COVID-19 vaccination (mainly targeting the spike antigen), suggesting that
tissue damage due to SARS-CoV-2 infection involves other viral antigens than the S antigen.
SARS-CoV-2 infection in the gastrointestinal tract may particularly favor the production
of autoantibodies in MIS-C patients, and, in line with this hypothesis, many MIS-C cases
have mesenteric adenitis and ileitis [11,65,79]. There are also possible roles played by direct
virus dissemination and by a direct effect of the virus in the pathogenesis of MIS-C, as
various autopsy reports have identified SARS-CoV-2 RNA on post-mortem tissues, in the
extracellular compartment and within several cell types (cardiomyocytes, heart and brain
endothelial cells, mesenchymal cells, macrophages and neutrophils) [80,81]. Therefore, the
hyperinflammatory process and local vasculitis, combined with a direct, cytopathic effect of
the virus in affected organs, could favor the onset of MIS-C. Another possibility is the occur-
rence of antibody-dependent enhancement (ADE) of coronavirus entry. Indeed, it has been
suggested that SARS-CoV-2 antibodies bound to Fc receptors on macrophages and mast
cells could favor virus entry and contribute to immune dysregulation [82,83]. The develop-
ment of MIS-C may also involve a suppression of type I and type III interferon responses,
which could first lead to an uncontrolled local viral replication with increased secretions
of various cytokines, and then to an exaggerated adaptive immune response, involving B
and T cells cross-reacting with self-antigens and triggering autoimmunity [78,84–86]. One
hypothesis is that a unique part of the SARS-CoV-2 S protein could act as a superantigen,
inducing oligoclonal activation of T cells [87]. This is supported by a recent report by
Moreews et al., who observed an expansion of activated T cells expressing the Vbeta 21.3 T
cell receptor beta-chain variable region in both CD4 and CD8 subsets in the majority of
MIS-C patients, and not in control patients [88].

The humoral immune response in MIS-C patients appears to be different to that
in children with uncomplicated COVID-19, although available data are limited. MIS-C
patients produce neutralizing antibodies and have lower levels of IgM and higher levels of
IgA and anti-spike IgG, as compared to other pediatric cases [89]. Another study reported
that children with MIS-C had higher titers of SARS-CoV-2 spike RBD-specific IgG, as
compared to children with uncomplicated COVID-19 [90]. All MIS-C children also had
RBD IgM antibodies, suggesting recent SARS-CoV-2 infection. RBD IgG titers correlated
with parameters of disease severity, such as erythrocyte sedimentation rate and duration
of hospitalization and ICU stay [90]. These observations suggest that moderate levels
of antibody protect against infection, while, above a certain threshold, higher levels of
antibody may promote hyperinflammation.

It has been hypothesized that patients with MIS-C could have an unknown primary
immunodeficiency [91]. Inborn defects of type I interferon responses are associated with
severe COVID-19, with poor control of viral replication and excessive pulmonary and
systemic inflammation [36,92,93]. Various immune defects have been associated with
virus-triggered hyperinflammatory disease, such as herpes viruses and hemophagocytic
lymphohistiocytosis (HLH). Several genes have been identified for HLH (such as PRF1,
UNC13D, STX11 and STXBP2) that encode molecules involved in the cytotoxicity of CD8-T
cells and NK cells [94]. In this case, CD8-T cells and NK cells cannot lyse infected cells and
this results in excessive immune stimulation (43). Another example is XIAP or NLRC4 defi-
ciencies, which are associated with an overstimulation of the inflammasome [95]. However,
monogenic or oligogenic defects associated with MIS-C have not been identified yet.

4. SARS-CoV-2 Transmission by Children in Household Studies

Clinical clusters studies are a good way to understand the transmission of a disease.
Many SARS-CoV-2 clusters have been reported and often include children, but rarely as the
primary cases. The general consensus is that children are less frequently secondary cases
than adults [96–103], or even that there is a similar attack rate across all age categories [104].
There are limited data about the infectivity of children showing a lower infectivity than
adults. A Swiss study found that children were the first to develop SARS-CoV-2 symptoms
in family clusters only in 8% (3/39) of the cases [105]. In 637 households in Israel, the
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infectivity of children was estimated to be 63% (95% CI: [37%, 88%]), relative to that
of adults [106]. In South Korea, among 107 pediatric COVID-19 index cases and their
248 household members, the median age of pediatric COVID-19 index cases was 15 years
(IQR 10–17 years), and the secondary attack rate was only 0.5% (95% CI 0.0–2.6%) [107].

Infectivity may vary with the age of children. A follow-up study of 5706 index cases
in South Korea showed 11.8% (1248/10,592) and 1.9% (921/48,481) RT-PCR confirmed
infection rates among household contacts and non-household contacts, respectively. The
number of secondary cases was significantly different according to the age of the index
case. For 0–9-year-old index cases, 5.3% of household contacts and 1.1% of non-household
contacts were positive, whereas for 10–19-year-old index cases, 18.6% of household contacts
and 0.9% of non-household contacts were positive, suggesting higher infectivity of older
children [108]. These age-dependent transmission patterns, with higher secondary attack
from adults (28.3%; 95% CI 20.2–37.1%) than from children (16.8%; 95% CI 12.3–21.7%;
p < 0.001), have also been found in systematic reviews [109]. Outside the context of house-
hold transmission, data are scarce but confirm that children are rarely the primary source of
secondary transmission in childcare and school settings and are more likely to be infected
by an adult household member [110].

Clinical studies analyzing clusters of transmission, however, have several limitations,
especially considering SARS-CoV-2 peculiarities. Children are often underrepresented
as index cases, potentially because they are often asymptomatic [6,111]. However, the
“index case” is often considered as the one infecting the rest of the family [112]. On
the other hand, wide circulation of the virus among asymptomatic children has not been
demonstrated [113]. It is, therefore, unlikely that children are the asymptomatic transmitters
responsible for the infection of their relatives in the majority of familial clusters.

Important data were reported by Laxminarayan et al. [114]. Their tracing analysis
of 84,965 confirmed cases and 575,071 contacts in two Indian provinces showed the high-
est probability of transmission within case–contact pairs of similar age. This enhanced
transmission risk in similar age pairs seems strongest among children aged 0–14 years and
among adults aged ≥65 years, although the greatest proportion of test-positive contacts
within most age groups were exposed to index cases aged 20–44 years. An increased trans-
mission risk within similar age pairs could be explained by different type and duration of
contacts according to age, leading to a different risk of contamination. Such phenomena
could contribute to the discrepancies seen in secondary attack rates across the studies,
where attention is given to index cases or secondary infected people, but rarely to the
transmitter–infected pair. However, cautions must be taken comparing epidemiological
data over time, as shown by a study in the UK demonstrating differences between the
two epidemiological waves. In contrast to the first COVID-19 wave, data suggested an
increased risk of reported SARS-CoV-2 infection and COVID-19 among adults living with
children during the second wave [115]. This difference could be explained by the different
context in which the majority of children lived between the first and second waves—fewer
contacts, due to fear of the virus and the closing of schools, during the first wave; and
an increase in contacts, due to psycho-social necessity, less virus-related anxiety in the
younger population and open schools, during the second wave.

Seroprevalence studies can also be used to estimate the incidence of SARS-CoV-2
infection. In Switzerland, a serosurvey showed a significantly lower seroprevalence among
children aged 5–9 years (0.8%) and a lower risk of seropositivity compared to individuals
aged 20–49 years (RR 0.32) [116], therefore confirming the studies on attack rate. Only
few studies have been published on this topic, and it will also be important to assess the
durability of antibodies following SARS-CoV-2 infection in children for the interpretation
of seroprevalence studies [61,62].

5. Vaccination of Children

COVID-19 vaccination of children is the subject of several debates, and different
approaches are currently being followed by countries where COVID-19 vaccines are suf-
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ficiently available to immunize this population. Clinical trials of mRNA and inactivated
vaccines have been conducted in adolescents and have demonstrated a favorable safety
profile and a similar immunogenicity to that observed in young adults [117,118]. Although
sample size was relatively limited, as compared to adult studies, high efficacy of the
BNT162b2 mRNA vaccine was shown in 12–15-year-old adolescents [117]. Immunogenic-
ity and safety studies of mRNA vaccines are currently being conducted in younger children.
Recent results showed immunogenicity of the Coronavac inactivated vaccine in children
3–11 years old [118]. Non-human primate studies showed potent and durable antibody and
T cell responses to mRNA vaccines in infant animals [119]. Based on these studies, mRNA
and inactivated COVID-19 vaccines have been approved for emergency use in adolescents
by the regulatory authorities of several countries, including the US, Israel, the UK and
China, and by the European Medicine Agency; vaccination of this population is being
rolled out in an increasing number of countries. Notably, the UK recently decided to restrict
vaccination to adolescents who are at risk of severe COVID-19 and to those who are house-
hold contacts of immunosuppressed patients (https://www.gov.uk/government/news/
jcvi-issues-advice-on-COVID-19-vaccination-of-children-and-young-people, accessed on
31 July 2021) As for any vaccine in any target population, the decision to recommend
and implement COVID-19 vaccination of adolescents and younger children is based on
benefit–risk analyses [120–123]. Although most children remain asymptomatic, 6% of
children are hospitalized; 13% of those hospitalized meet the criteria for severe disease
with a fatality rate of 1%, while others suffer from prolonged symptoms (long COVID)
and could, therefore, benefit from vaccination [124]. This benefit is stronger for vulnera-
ble children who are at risk of severe COVID-19. On the other hand, although children
are not predominant contributors to SARS-CoV-2 transmission, preventing infection by
vaccination would indirectly reduce the risk of infection and disease for their contacts.
This would be particularly important if those contacts were vulnerable and responded
poorly to vaccination because of immunosuppression. Compulsory COVID-19 vaccination
of children has been proposed to achieve high vaccination coverage, at the level of the
population, and herd immunity [125–127]. However, as vaccine hesitancy in adults remains
high in many countries, the prospect of reaching herd immunity, especially for variants
of concern, appears more distant, and the argument of targeting children for compulsory
vaccination has become weaker. Children would also benefit from COVID-19 vaccination
if this would allow them to relax control measures, resulting in increased and diversified
social contacts and reduced psychological impact of being a potential vector of the disease
in the household [121]. Thus, several benefits of COVID-19 vaccination can be identified
for healthy children, although globally they appear less marked than for adults. Although
clinical trials have shown favorable safety profiles of mRNA and inactivated COVID-19
vaccines, the sample size of these studies is relatively limited, and long-term follow-up is
still lacking. More safety data are being collected by countries where adolescent vaccination
is being rolled out. This surveillance has allowed the identification of several cases of per-
imyocarditis following immunization of young adults and adolescents with the BNT162b2
or the mRNA-1273 vaccine, particularly in young male adults and adolescents [128–130].
These cases were rare, with an estimate of between 1/10,000 and 1/100,000 vaccinees,
and were mild and self-limited. Therefore, it was concluded that the benefit of COVID-19
vaccination of adolescents, including the prevention of COVID-19 hospitalization, intensive
care unit admission and death, outweighed the risk of perimyocarditis associated with
mRNA vaccination [129]. As vaccine coverage of adults further increases, the proportion of
COVID-19 cases in children will increase. With accumulating evidence of favorable safety
profiles, COVID-19 vaccination of children is likely to be further promoted in the coming
months and years.

6. Concluding Remarks

In contrast to respiratory tract infections caused by other viruses, SARS-CoV-2 has a
lower impact on the health of children as compared to adults. However, severe disease,

https://www.gov.uk/government/news/jcvi-issues-advice-on-COVID-19-vaccination-of-children-and-young-people
https://www.gov.uk/government/news/jcvi-issues-advice-on-COVID-19-vaccination-of-children-and-young-people
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including MIS-C, has been observed and COVID-19 can be fatal in previously healthy
children. Several hypotheses have been proposed to explain the favorable outcome of
SARS-CoV-2 infection in children. Studies suggest that a robust, early innate immune
response could play an important role. On the other hand, risk factors of severe COVID-19
and MIS-C remain poorly understood. Children at risk of severe COVID-19 because of
underlying medical conditions can be offered vaccination. Identifying children at risk
of MIS-C would help to extend this strategy. Based on their immunogenicity and safety
profiles, several COVID-19 vaccines have been proposed to adolescents in an increasing
number of countries. The lessons learned and experience gained from the COVID-19
pandemic will be very important for the prevention and the care of other infections affecting
children and for the pathogens that will cause future pandemics.
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