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Autophagy is a catabolic pathway involved in the regulation of bone homeostasis. We explore clinical correlation of autophagy-
related key molecules to establish risk signature for predicting the prognosis, tumor microenvironment (TME), and immu-
notherapy response of osteosarcoma. Single cell RNA sequencing data from GSE162454 dataset distinguished malignant cells
from normal cells in osteosarcoma. Autophagy-related genes (ARGs) were extracted from the established risk signature of the
Molecular Signatures Database of Gene Set Enrichment Analysis (GSEA) by univariate Cox and least absolute shrinkage and
selection operator (LASSO) Cox regression analysis. Overall survival (OS), TME score, abundance of infiltrating immune cells,
and response to immune-checkpoint blockade (ICB) treatment in patients with different risks were compared based on risk score.
Nine ARGs were identified and risk signature was constructed. In all osteosarcoma datasets, the OS was significantly longer in the
high-risk patients than low-risk onset. Risk signature significantly stratified clinical outcomes, including OS, metastatic status, and
survival status. Risk signature was an independent variable for predicting osteosarcoma OS and showed high accuracy. A
nomogram based on risk signature and metastases was developed. ,e calibration curve confirmed the consistency in 1-year, 3-
year, and 5-year predicted OS and the actual OS.,e risk score was related to 6 kinds of Tcells and macrophages, myeloid-derived
suppressor cell, natural killer cell, immune score, and stromal score in TME. ,e risk signature helped in predicting patients’
response to anti-PD1/anti-PD-L1 treatment. ,e ARGs-led risk signature has important value for survival prediction, risk
stratification, tumor microenvironment, and immune response evaluation of osteosarcoma.

1. Introduction

Osteosarcoma is the main malignant primary bone tumor in
young adults and children. Osteosarcomas are derived from
osteoblast mesenchymal stem cells (MCSs) and are most
common in the metaphysis of the long bone, especially
around the knee joint at the distal femur or proximal tibia
[1]. ,ree main histological subtypes of osteosarcoma have
been defined: osteoblastic osteosarcoma (50% of cases),
chondroblastic osteosarcoma (25% of cases), and fibroblastic
osteosarcoma (25% of cases) [2]. With complete surgical

resection and multiagent chemotherapy, up to 70% of pa-
tients with high-grade osteosarcomas and localized ex-
tremity tumors can become long-term survivors [3].
However, for patients with metastatic diseases or patients
with recurrence after treatment, the survival rate after five
years was less than 30% [2]. ,e high level of cellular het-
erogeneity and the complexity of molecular and genetic
mechanisms associated with osteosarcoma make the clinical
treatment of metastatic osteosarcoma extremely difficult [4].
For the past few years, the increasing feasibility of molecular
profiling together with the creation of both robust model
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systems [5–7] and large, well-annotated tissue banks has led
to an increased understanding of osteosarcoma biology [8].

Autophagy is an intracellular degradation process that
participates in the regulation of osteoblast homeostasis,
including the survival, differentiation, and activity of oste-
oblasts, osteocytes, and osteoclasts [9]. A series of evidence
suggests that autophagy defects may be related to some bone
diseases, such as osteoporosis [10] and Paget’s disease of
bone [11]. It is reported that autophagy is a survival-pro-
moting way for tumor cells to increase their proliferation
and development, resist cancer therapy, and retain cancer
stem cell (CSC) pools in osteosarcoma [12]. Moreover, the
molecular network of autophagy can control the chemical
resistance of osteosarcoma in tumor microenvironment
(TME) and mechanism [13]. ,erefore, targeted autophagy
is a promising therapeutic strategy to overcome chemo-
therapy resistance and reduce metastasis of osteosarcoma
[14]. At present, the research on autophagy in osteosarcoma
only stays at the molecular level, involving complex TME
and a variety of molecular mechanisms cannot be ignored.

In this study, we focused on the comprehensive analysis
of scRNA-seq and RNA-seq to explore the potential effects
of autophagy-related molecules on the prognosis, TME, and
immunotherapy of osteosarcoma, which provided a po-
tential direction for the study of extensive microenviron-
mental effects and regulatory mechanisms of autophagy
regulatory molecules in osteosarcoma.

2. Materials and Methods

2.1. Collection and Analysis of ScRNA-Seq Data. ,e ex-
pression profiles and clinical data of 50174 cells from 6
osteosarcoma samples were downloaded from the
GSE162454 dataset in the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database. Seurat in R
software was used to process scRNA data, and the pro-
portion of mitochondria and rRNA was calculated by
PercentageFeatureSet function to ensure that the motifs
expressed in each cell were more than 100 and less than
8000, mitochondrial gene content <35% and unique mo-
lecular identifiers (UMI)> 1000. ScRNA-seq data were
normalized via the “LogNormalize” algorithm. ,e highly
variable genes were identified by FindVariableGenes func-
tion and principal component analysis (PCA) was per-
formed based on the first 2000 highly variable genes.,e first
50 PCs were selected to use t-distributed stochastic neighbor
embedding (t-SNE) algorithm for dimensionality reduction.
,e CellCycleScoring function was applied to identify the
cycle phase-specific changes of cells in different samples.,e
“CellCycleScoring” function scores each cell according to the
expression of G2/M and S phase markers. ,e G2/M or S
phase scores were inversely correlated, and the cells that did
not express G2/M and S phase markers were in G1 phase
[15].

2.2. Clinical Data Download and Processing of Osteosarcoma
Samples in Target Database. Clinical phenotypic data and
expression profiles of osteosarcoma samples were

downloaded from the Target database. Samples lacking
survival time and survival status were eliminated, and
survival time of all patients >0 years were ensured. Finally,
84 osteosarcoma samples with complete clinical data were
included. In addition, 53, 47, and 34 tumor samples with
complete clinical data were downloaded from the three GEO
datasets GSE21257, GSE39058, and GSE16091, respectively.

2.3. Gene Set VariationAnalysis (GSVA). ,eHallmark gene
set was obtained from Molecular Signatures Database
(MsigDB, https://www.gsea-msigdb.org/gsea/msigdb/). 531
autophagy-related genes (ARGs) were extracted from the
MsigDB of GSEA, https://www.gsea-msigdb.org/gsea/index.
jsp). “GSVA” performed ssGSEA on normal and tumor cells
from tumor samples in Target database to determine en-
richment pathways.

2.4. Construction of Risk Signature Based on Autophagy-Re-
lated Genes. To screen the genes related to prognosis from
the obtained ARGs, univariate Cox regression analysis was
performed.,en, LASSO regression was performed with 10-
fold cross validation and a p value of 0.05 was based on the
results of the univariate analysis for ARGs. ,en stepwise
multivariate Cox regression analysis was performed, and the
filtered ARGs were used to build a risk signature. According
to the risk signature, the risk score of each patient in training
and verification set was obtained, and the standardized risk
score was divided into high-score and low-score groups with
a critical value of 0.

2.5. Prognostic Value Evaluation of Risk Signature. ,e R
software package “timeROC” determined the AUC of the
model at different time points by generating the time-de-
pendent receiver operating characteristic (ROC) curve of
risk signature. Kaplan-Meier survival analysis was carried
out to distinguish the OS of high-score group and low-score
group. ,e T-test was applied to explore the correlations
between the risk score and clinicopathological features
(including initially diagnosed age, gender, metastasis, and
life status).

2.6. Construction of a Nomogram. Univariate and multi-
variate Cox regression analyses were performed to deter-
mine the independent prognostic factors of osteosarcoma.
Based on all the independent prognostic factors screened,
nomogram was drawn using “rms.” ,e predictive perfor-
mance of nomogram was evaluated by generating 1-year, 3-
year, and 5-year calibration chart and comparing them with
the benefit rate of a single index by decision curve analysis
(DCA).

2.7. �e Tumor-Infiltrating Immune Cells and TME Score of
Risk Signature. To determine the relationship between risk
signature and tumor-infiltrating immune cells, the pro-
portion of infiltrating immune cells was calculated by
CIBERSORT and compared between high- and low-risk
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score groups. ,e TME score of each sample, including
stromal score, immune score, and ESTIMATE score, was
calculated by the “estimate” package in R based on the gene
expression of the samples in the Target dataset.

2.8. Acquisition of Immune-Checkpoint Blockade Genomic.
To establish the relationship between risk score and ICB, we
collected two immunotherapy groups: an anti-PD-L1 antibody
from the “IMvigor210” R package and an anti-PD-1 antibody
from the GSE78220. ,e gene expression profiles of pre-
treatment biopsy samples were transformed into TPM format.

2.9. Statistical Analysis. A two-tailed unpaired Student’s t-
test was used to compare differences between two the groups
of normally distributed data. ,e correlation between in-
filtrating immune cells and risk score was calculated by
Spearman correlation analysis. Kaplan-Meier statistics and
log-rank tests were used for survival analysis. All data
processing was conducted in R 4.0.1 software and a two-
sided pvalue <0.05 was considered significant.

3. Results

3.1. Identification of Malignant Cells and Normal Cells and
Cell Types in Osteosarcoma Using ScRNA-Seq Data. ,e
overall flowchart of this study was shown in Figure S1. In
accordance with the quality control standard and the
standardization of scRNA-seq data, 44516 cells from 50174
osteosarcoma cells were selected for analysis (Figure S2(b)
and S2(c)). ,ere was a significant correlation between the
number of RNA and UMI counts with Pearson’s R� 0.88.
And the correlation coefficient R� −0.23 between the
number of RNA features and the content of mitochondrial
genes indicated that there was a negative correlation between
them, but the correlation degree was low. ,e correlation
coefficient between UMI counts and the content of mito-
chondrial genes was −0.08, indicating that that their negative
correlation was almost negligible (Figure S2(a)). PCA was
performed to determine the available dimensions, and the
results did not show significant separation between cells in
osteosarcoma. Top 50 PCs with significant differences were
selected for further analysis (Figure S2(d)). ,e unsuper-
vised clustering of cells was visualized by t-SNE, showing the
distribution of cells in each tissue in different colors
(Figure 1(a)). In view of the fact that proliferation is one of
the main characteristics of tumor cells, we also labeled cells
at different stages of the cell cycle in human osteosarcoma
(Figure 1(b)). Furthermore, the distribution of normal cells
and cancer cells in osteosarcoma was also annotated
(Figure 1(c)).We found that inmost samples, the proportion
of malignant cells was significantly higher than that of
normal cells (Figure 1(d)). Most of the cells from osteo-
sarcoma samples were in G1 phase of the cell cycle. Another
part of the cells were in the S phase of the cell cycle, and a
small part of the cells were in the G2/M phase of the cell cycle
(Figure 1(e)). Fourteen clusters were identified for clustering
of malignant and nonmalignant cells (Figure 2(a)), which
were annotated as nine cell types (B cell, CD8 T cell,

endothelial cell, epithelial cell, fibroblast, macrophage, mast
cell, osteoblastic tumor cell, and plasma cell) (Figure 2(b)).
Osteoblastic tumor cell accounted for the majority of ma-
lignant cells and epithelial cells (Figure 2(c)). Significant
distribution of endothelial cells, mast cell, macrophage,
osteoblastic tumor cell, fibroblast, plasma cell, and B cell can
be seen in nonmalignant cells (Figure 2(d)).

3.2. AutophagyWasRelated to theMalignantDegree of Tumor
Cells. We analyzed the expression of different tumor reg-
ulatory pathways betweenmalignant and nonmalignant cells
in osteosarcoma. Different from normal cells, epithelial-
mesenchymal transition and DNA repair, G2M checkpoint,
E2F targets and MYC targets, and other signaling pathways
were highly active in malignant cells. It was worth noting
that the activity of a variety of autophagy signals was
inhibited, including chaperone-mediated autophagy, posi-
tive regulation of autophagy, regulation of autophagy, se-
lective autophagy, and negative regulation of autophagy
(Figure 3(a)). ,ese pathways also had different enrichment
scores in normal cells and malignant cells (Figure 3(b)).
,erefore, autophagy may play an important role in the
malignant transformation of cells.

3.3. Development and Validation of Autophagy-Related Risk
Signature. Based on univariate Cox regression analysis of all
acquiredARGs, 39 ARGs related to osteosarcoma survival were
screened. LASSO regression analysis was used to calculate the
regression coefficient of each gene (Figure 4)(a). ,e model
performed best when 21 genes were included (Figure 4)(b).
Further multivariate Cox regression analysis screened 9 genes
from 21 ARGs to develop risk signature: risk score� −0.675
∗HUWE1+0.585∗MYC− 1.375∗EIF4G2− 0.729∗USP10+0.9
11∗KIF25+0.595∗TRIM8−1.218∗CASP1− 0.732∗STUB1+1.3
91∗CRYBA1. A risk score for each patient was computed using
the risk signature to predict prognosis. In the Target dataset, the
survival time of patients with low-risk score was significantly
longer respective to patients with high-risk score.,e 1-year, 3-
year, and 5-year classification efficiency scores of risk signature
for prognostic prediction were 0.93, 0.94, and 0.92, respectively,
far higher than 0.75, indicating that it has strong specificity and
sensitivity in prognostic prediction of patients in Target dataset
(Figure 4)(c). For the verification set GSE21257, risk score was
significantly correlated with the prognosis of the patients. Risk
score predicted survival of 1-year AUC� 0.83, 3-year
AUC� 0.85, 5-year AUC� 0.77 (Figure 4(d)). For the samples
in the GSE16091 dataset and GSE39058 dataset, high-risk score
was significantly associated with a worse prognosis. In both
cohorts, the AUC of ROC curve of risk signature predicting 1-
year, 3-year, and 5-year survival rate of osteosarcoma was all
more than 0.75 (Figures 4(e), 4)(f). ,ese data confirmed the
satisfactory predictive efficiency of risk signature based on 9
ARG in the prognosis of osteosarcoma.

3.4. Prognostic Value of the Risk Signature. We investigated
whether risk signature can distinguish different clinico-
pathological features. ,e patients in Target dataset were
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stratified according to gender, newly diagnosed age, me-
tastasis, and survival status. By comparing the risk score of
each group, we found that gender and age had no significant
correlation with risk score. ,e risk score of patients with
tumor metastasis was significantly higher than that of pa-
tients without metastasis. ,e risk score of dead patients was
also significantly higher than that of survival patients
(Figure 5)(a). Univariate and multivariate Cox regression
analysis showed that risk score and metastases were inde-
pendent variables for predicting the prognosis of osteo-
sarcoma (Figures 5(b), 5)(c). To evaluate the prognosis of
patients with osteosarcoma more accurately, a nomogram
was constructed according to the independent prognostic
variables risk score and metastases (Figure 5)(d). ,e cali-
bration curve of the nomogram showed that the 1-, 3-, and
5-year survival rates predicted by nomogram were in good
agreement with the observed survival rates (Figure 5)(e).,e
net benefit of risk score and metastases and nomogram in
predicting the prognosis of osteosarcoma was evaluated by
DCA. When the threshold was about 0.11.0, risk score alone
or nomogram combined with risk score and metastases
showed higher net benefit in the prognosis assessment of
patients (Figure 5)(f ).

3.5. Changes of TME-Related Factors between Different Risk
Groups Predicted by Risk Signature. Considering the im-
portance of infiltrating immune cells in TME, the abundance
of infiltrating immune cells in different risk groups predicted
by risk signature was evaluated by CIBERSORT. For all
infiltrating immune cells that showed a difference in
abundance between the high-risk score and low-risk score

groups, including activated B cell, central memory CD8
T cell, effector memory CD8 T cell, gamma delta T cell,
regulatory T cell, type 1 T helper cell, CD56 bright natural
killer cell, macrophage, myeloid-derived suppressor cell
(MDSC), natural killer cell, and natural killer T cell, their
abundance was significantly higher in the low-risk score
group (Figure 6)(a). ,e TME score (stromal score, immune
score, ESTIMATE score) of the two risk score groups was
significantly different, and the low-risk score group showed
significantly higher TME-related scores relative to the high-
risk group (Figure 6)(b). Spearman correlation analysis was
conducted on all these TME-related indicators and risk score
that showed significant differences between the high- and
low-risk score groups, and the results showed that they were
significantly negatively correlated with risk score
(Figures 6(c), 6(d).

3.6. Evaluation of Anti-PD-1/PD-L1 Immunotherapy Based
on Risk Signature. We studied whether risk signature can
predict patients’ response to ICB treatment based on two
immunotherapy cohorts. In the anti-PD-L1 cohort, 348
patients showed different responses to anti-PD-L1 treat-
ment, including complete response (CR), partial response
(PR), stable disease (SD), and progressive disease (PD). Risk
score in patients with SD/PD was significantly higher than
that in patients with CR/PR (Figure 7(a)). ,e response rate
of high-risk score group and low-risk score group to anti-
PD-L1 treatment was further determined. ,e results
showed that the response rate to ICB therapy was 30% in the
low-risk score group and 17% in the high-risk score group
(Figure 7(b)). And the patients with low-risk score in the
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Figure 1: Normal and malignant cells in osteosarcoma (a) A t-SNE map of the distribution of cells in each osteosarcoma sample, and each
color represents the cells in each sample. (b),e t-SNE diagram shows cells at different stages of the cell cycle, and different stages of the cell
cycle are marked with different colors. (c) ,e t-SNE diagrams of malignant and nonmalignant cells in osteosarcoma samples are rep-
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IMvigor210 cohort showed significant survival advantages
compared with the patients with high-risk score
(Figure 7(c)). For both early and advanced patients in this
cohort, high-risk score was always associated with shorter
survival (Figures 7(d), 7(e)). In the anti-PD1 cohort, risk
score was significantly upregulated in patients with SD/PD
treated with anti-PD-1 compared with patients with CR/PR
treated with anti-PD1 (Figure 7(f )). ,e response rate of the

low-risk score group to immunotherapy in this cohort was
77%, which was significantly higher than that of the high-
risk score group (Figure 7(g)). In addition, the high-risk
score in this cohort caused a poor prognosis (Figure 7(h)).
An analysis of these results between the two risk groups of
autophagy-related risk signature classification showed that
patients with low-risk score had a higher potential to re-
spond to immunotherapy.
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4. Discussion

For a long time, the prognosis of patients with metastatic
osteosarcoma has not been satisfactory [16]. Advances in
biological understanding, the development of robust pre-
clinical models, the feasibility of rapid clinical testing and

novel treatment concepts are beneficial to improve the
prognosis of patients with osteosarcoma [8]. Autophagy is a
biological behavior related to osteosarcoma metastasis and
has a complex relationship with TME and drug resistance
[17, 18]. Based on emerging bioinformatics analysis of
technologies and methods, it is expected to expand our
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Figure 3: ,e role of autophagy in normal and malignant cells of osteosarcoma. (a) Difference in activation of biological pathways between
normal and malignant cells in osteosarcoma. (b) ,e enrichment scores of different signal pathways in normal and malignant cells of each
osteosarcoma sample.
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Figure 4: Continued.
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Figure 4: Development and validation of autophagy-related risk signature. (a) ,e regression coefficient of each gene was calculated by
LASSO regression analysis. (b),e optimal parameter was selected in the LASSOmodel. (c),e survival curve of samples calculated by risk
signature and the ROC curve for evaluating risk signature efficiency in Target dataset. (d–f) Survival analysis and ROC curves for predicting
1 -, 3-, and 5-year survival of osteosarcoma from three datasets from the GEO database.
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understanding of the biological effects of autophagy and its
relationship with TME.

In this study, we identified autophagy regulatory genes
related to the prognosis of osteosarcoma and constructed
risk signature based on 9 prognosis-related autophagy
regulatory genes. Its accuracy and practicability were
verified in 3 datasets. Our results showed that the classifier
could effectively distinguish osteosarcoma patients with

different survival outcomes and showed high specificity
and sensitivity. Reviewing the nine ARGs in risk signature,
HUWE1 is a ubiquitin (Ub) E3 ligase, which acts as a
terminating enzyme during protein ubiquitination [19].
According to currently available studies, HUWE1 plays a
key role in regulating autophagy and other biological
functions in many cancers, including DNA damage re-
sponse, transcription, autophagy, apoptosis, and
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Figure 5: Prognostic value of the risk signature. (a) After stratifying the patients in Target dataset according to gender, newly diagnosed age,
metastasis, and survival status, the core risks for the patients in the group were compared. (b–c) Univariate and multivariate Cox regression
analysis determined the independent prognostic factors of osteosarcoma in Target dataset. (d) ,e nomogram constructed based on risk
score and metastases predicted the 1 -, 3-, and 5-year survival rates of patients with osteosarcoma. (e) Calibration curves for nomogram. (f )
DCA evaluated the net benefit of risk score and metastases and nomogram in predicting the prognosis of osteosarcoma. ,e asterisks
represented the statistical p value (ns, no statistical difference, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001).
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Figure 6: Continued.
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metabolism [20]. Transcription factor MYC plays a central
role in cancer by inducing autophagy [21]. EIF4G2 is a kind
of eukaryotic translation initiation factor that indirectly
participates in the regulation of autophagy in cancer [22].
USP10 can enhance autophagy under stress [23]. Inhibition
of KIF25 can kill cervical cancer and osteosarcoma cells
[24]. It is reported that TRIM8 participates in many cellular
responses, plays a central role in immune response, and
coordinates various basic biological processes, including
autophagy [25]. STUB1 is a chaperone-dependent E3
ubiquitin ligase, which participates in the regulation of
autophagy and lysosome function by regulating the activity
of TFEB [26]. CRYBA1/β A3/A1-crystallin locates in ly-
sosomes and controls phagocytosis and autophagy by
regulating internal lysosomal acidification and V-ATP
enzyme [27]. ,e comprehensive effect of autophagy
regulated by these genes in osteosarcoma was reported for
the first time in this study.

Malignant osteosarcoma cells form a complex mixture
with other normal cells and some chemical factors (hypoxia,
acidosis). ,is complex mixture of special TME is a perfect
place for osteosarcoma to develop and metastasize [28].
,erefore, these aspects should not be ignored when dis-
cussing the regulation of osteosarcoma. Here, in the first part
of the study, we distinguished the distribution of normal and
malignant cells in osteosarcoma tissues by scRNA-seq
analysis. After the establishment of risk signature, the
predictive value of the model on the abundance of infil-
trating immune cells and TME score in TME was analyzed.
Activated B cell, central memory CD8 T cell, effector

memory CD8 T cell, gamma delta T cell, regulatory T cell,
type 1 T helper cell, CD56 bright natural killer cell, mac-
rophage, MDSC, natural killer cell, and natural killer T cell
had a high proportion in the low-risk group based on risk
signature, and in the low-risk group, the immune score and
stromal score in TME were also significantly higher than
those in the high-risk group. Autophagy has been reported
in previous studies to directly regulate the activity of T cells
and natural killer cells [29]. And autophagy in T cell subsets
plays an active role in antitumor immune response [30]. ,e
risk score composed of ARGs was negatively correlated with
the abundance of 6 kinds of T cells and natural killer cell,
suggesting that 9 ARGs were the regulatory factors of
autophagy to control the activity of the above immune cells,
and the antitumor immune effect was stronger in the low-
risk group.

,e key role of autophagy in TME is related to the ef-
ficacy of antitumor immunotherapy [31]. We investigated
whether risk signature dominated by ARGs helps guide ICB
therapeutic interventions. In the two immunotherapy co-
horts studied, the response rate of samples with low-risk
score to anti-PD-L1 or anti-PD1 was always significantly
higher than that of patients with high-risk score. ,erefore,
low-risk groups are more likely to benefit from ICB.

In summary, we have identified a new ARGs-driven risk
signature, which can not only help to evaluate the prognosis
of osteosarcoma, but also can be used as a useful tool to
distinguish patients’ different clinical features and TME.
More importantly, risk signature can help predict patients’
responses to immunotherapy.
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Figure 6: Changes of TME-related factors between different risk groups predicted by risk signature. (a) Risk signature predicts the
abundance of infiltrating immune cells in different risk groups. (b) Differences in TME scores between the two risk score groups, including
stromal score, immune score, and ESTIMATE score. (c–d) Spearman correlation analysis of risk score and TME-related indicators with
significant differences between high- and low-risk score groups and risk score.,e asterisks represent the statistical p value (ns, no statistical
difference, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001).
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Figure 7: Evaluation of anti-PD-1/PD-L1 immunotherapy based on risk signature. (a) Risk score of patients in the anti-PD-L1 cohort who
showed different responses to anti-PD-L1 therapy. (b) ,e response rate of high-risk score group and low-risk score group to anti-PD-L1
therapy in the anti-PD-L1 cohort. (c) Survival analysis of patients with low-risk score and high-risk score in the IMvigor210 cohort. (d) ,e
survival curve of patients with low-risk score and high-risk score in the IMvigor210 cohort with stage I-II. (e) ,e Kaplan-Meier curve of
stage III-IV patients with different risk score in IMvigor210 cohort. (f ) Risk score differences between different ICB treatment groups in the
anti-PD1 cohort. (g) ,e percentage of patients who responded to PD-1 blocking immunotherapy in different risk groups. (h) ,e Kaplan-
Meier curve showed the prognosis of patients in the anti-PD1 cohort classified as high-risk and low-risk groups. ,e asterisks represent the
statistical p value (ns, no statistical difference, ∗p< 0.05, ∗∗p< 0.01).
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