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Abstract

Most cases of BCR-ABL1-negative myeloproliferative neoplasms (MPNs), essential thrombocythemia, polycythemia vera and
primary myelofibrosis are associated with JAK2V617F mutations. The outcomes of these cases are critically influenced by the
transition from JAK2V617F heterozygosity to homozygosity. Therefore, a technique providing an unbiased assessment of the
critical allele burden, 50% JAK2V617F, is highly desirable. In this study, we present an approach to assess the JAK2V617F burden
from genomic DNA (gDNA) and complementary DNA (cDNA) using one-plus-one template references for allele-specific
quantitative-real-time-PCR (qPCR). Plasmidic gDNA and cDNA constructs encompassing one PCR template for JAK2V617F

spaced from one template for JAK2Wild Type were constructed by multiple fusion PCR amplifications. Repeated assessments
of the 50% JAK2V617F burden within the dynamic range of serial dilutions of gDNA and cDNA constructs resulted in
52.5364.2% and 51.4664.21%, respectively. The mutation-positive cutoff was estimated to be 3.65% (mean +2 standard
deviation) using 20 samples from a healthy population. This qPCR approach was compared with the qualitative ARMS-PCR
technique and with two standard methods based on qPCR, and highly significant correlations were obtained in all cases.
qPCR assays were performed on paired gDNA/cDNA samples from 20 MPN patients, and the JAK2V617F expression showed a
significant correlation with the allele burden. Our data demonstrate that the qPCR method using one-plus-one template
references provides an improved assessment of the clinically relevant transition of JAK2V617F from heterozygosity to
homozygosity.
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Introduction

The discovery of a mutation in the Janus kinase 2 (JAK2) gene

opened a new era in the understanding of BCR-ABL- negative

myeloproliferative neoplasms (MPNs) [1–5]. An acquired trans-

version in JAK2 exon 14 (c.1849G.T) that is confined to

hematopoietic cells and results in p.Val617Phe (JAK2V617F) is

observed in approximately 90% of patients with polycythemia vera

(PV), 50% of essential thrombocythemia (ET) cases and 50% of

primary myelofibrosis (PMF) cases [1,3]. JAK2V617F impacts the

function of the pseudokinase JH2 domain, which normally plays a

role in the auto-inhibition of JAK2 kinase activity [4]. In vitro

studies have demonstrated that JAK2V617F leads to a specific

phosphorylation associated with the constitutive activation of the

tyrosine kinase function [3].

Primarily involved in myeloid development, the JAK2 protein is

a non-receptor tyrosine kinase associated with the cytoplasmic

regions of several cytokine membrane receptors [6]. JAK2 is

activated when these receptors bind to hematopoietic growth

factors, and it acts as a molecular intermediary through the

constitutive activation of STAT5-, AKT- and ERK-dependent

pathways [7,8].

After the acquisition of JAK2V617F, loss of heterozygosity (LOH)

may occur by the duplication of the mutant allele via mitotic

recombination of the short arm of chromosome 9, resulting in

homozygosity. Consequently, the quantity of mutant versus wild-

type JAK2 may vary significantly, introducing the concept of allele

burden. The term homozygosity is employed to indicate patients

in whom the level of mutant allele in the test sample is greater than

50% of the total JAK2 (mutant [MT] plus wild type [WT]). The

JAK2V617F burden has been correlated with changes in clinical

phenotype and disease complications, such as thrombosis and

myelofibrosis [9–11]. Homozygosity is associated with a signifi-

cantly longer duration of disease, treatment with cytoreductive

therapy and a higher rate of complications [3]. JAK2V617F LOH

has been observed in approximately 30% of patients with PV and

PMF, compared to only 2–4% of patients with ET [12,13].

Therefore, the accurate estimation of the V617F allele burden

and (in particular) the unbiased assessment of the 50% allele

burden has gained major clinical relevance in patients with PV,
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ET and PMF because values significantly greater than 50%

guarantee the presence of at least some cells exhibiting LOH and

the prognostic consequences associated with this condition. The

current methods to analyze the JAK2V617F allele burden are based

on the absolute or disconnected quantification of standards for the

MT and WT alleles. Hence, a practical approach to measure the

V617F allele burden with a special focus on the accurate

assessment of the one-plus-one MT:WT allelic ratio and the

associated experimental error is highly desirable in this field.

This work presents a new approach to assess the JAK2V617F

allele burden in gDNA (genomic DNA) and cDNA (complemen-

tary DNA from total RNA) samples using one-plus-one template

references in a general strategy of allele-specific quantitative real

time-PCR (qPCR).

Materials and Methods

Studied Population and Samples
Peripheral blood samples were obtained from a total of 53

patients with MPNs and 20 healthy donors (control group).

Twenty of the MPN patients were diagnosed according to the

current hematological criteria established by the World Health

Organization (WHO) as six PV, five ET and nine PMF cases;

these patients were used to test the allele burden and transcript

expression of JAK2V617F for correlation analysis. Another group of

33 cases was used to validate the above method by comparing it

with ARMS-PCR, and with two other standard qPCR assays. This

study was approved by the local Institutional Ethics Committee

(Academia Nacional de Medicina de Buenos Aires). Written informed

consent was obtained in all cases. The patients’ characteristics are

listed in Table 1.

gDNA and total RNA were extracted from total leukocytes by

standard procedures after 3 cycles of lysing red cells from

peripheral blood samples. Leukocyte pellets were either treated

with TRIzol (Invitrogen, Argentina) for total RNA extraction or

with phenol/Tris-HCl (pH: 8) for gDNA extraction. One

microgram of total RNA was reverse transcribed into cDNA

using random hexamer primers and reverse transcriptase M-MLV

(Promega, Biodynamics Argentina). In addition, a gDNA sample

from SET-2, a cell line derived from a MPN patient with

JAK2V617F heterocigosity, was used to confirm the inaccurateness

of using JAK2V617F positive cell lines as standards.

Construction of JAK2V617F-JAK2Wild Type (JAK2MT-JAK2WT)
One-plus-one Template Reference Plasmids

The JAK2 gDNA-MT::WT 1::1 and JAK2 cDNA-MT::WT 1::1

reference constructs consisted of a tripartite structure (i.e., an MT-

left arm, a spacer and a WT-right arm) (Figure 1A and 1B). Each

construct provided two templates for qPCR amplification: one for

JAK2V617F and one for JAK2 WT. These constructs were assembled

following a strategy of multiple fusion PCR amplifications with

conventional primers and specially designed fusion oligonucleo-

tides (Table 2), as described in detail in Methods S1 and Figure S1.

For the amplification and storage of the qPCR amplification

references, the cDNA and gDNA MT-WT one-plus-one template

PCR products were cloned into plasmid vector pCR2.1-TOPO

(Invitrogen SRL, Argentina) (details of the procedure are provided

in the last section of Methods S1).

The cDNA and gDNA JAK2V617F-JAK2WT one-plus-one

template reference plasmids are available for research use only

after a Material Transfer Agreement (MTA) form is signed.

Confirmation of the Uniqueness of JAK2V617F in both the
gDNA and cDNA Constructs by BsaXI Restriction Analysis
and DNA Sequencing

The JAK2V617F mutation (c.1849G.T) introduces a single

BsaXI restriction site in both gDNA and cDNA constructs. To

investigate the presence of a single copy of mutated JAK2 in each

construct, BsaXI restriction analysis was performed. Three

microliters of PCR products obtained from an aliquot of a 1023

dilution of the gDNA plasmid with primers FOin and ROin, as

well as 3 mL of PCR products from a 1027 dilution of the cDNA

plasmid with primers FO-1 and RO-1, were subjected to BsaXI

restriction with 20 units of enzyme in a total volume of 20 ml under

the conditions recommended by the manufacturer (New England

Biolabs, USA). The restriction products were analyzed using EtBr-

stained agarose gel electrophoresis (2%), Figure S2 (E).

In addition, the JAK2 constructs (gDNA and cDNA MT::WT

1::1) were bidirectionally sequenced (with FOin and ROin for the

gDNA construct and with FO-1 and RO-1 for the cDNA

construct) using the fluorescently labeled chain termination

approach (BigDye ABI, Argentina) and an ABI 3130 XL

apparatus (Genetic Analyzer from Applied Biosystems). The

DNA sequences of MT-arm and WT-arm from the gDNA and

cDNA constructs are shown in Figure S2 C and D, respectively.

Primer Specificity and Structures of JAK2 gDNA and cDNA
Reference Plasmids

The molecular structures of the gDNA and cDNA reference

plasmids were studied using PCR amplification experiments with

multiple primer pair combinations (Table 2). Two different

annealing temperatures (58uC and 60uC) were evaluated, and

2 ml from a 1027 dilution of the gDNA and cDNA plasmids was

amplified. The following optimized PCR thermocycling protocol

was applied: an initial step of 94uC for 2 min; 25 cycles of 94uC for

30 sec, 58u/60uC for 45 sec and 72uC for 1 min, and a final

extension step at 72uC for 5 min.

The desired specific structures of the gDNA and cDNA

constructs (Figure 1A and 1B) were positively confirmed by the

results shown in Figure S3 A and B, respectively. The results

demonstrated that only the properly oriented primers produced

size-specific PCR amplifications: FOn/RMTn, UpSp-g/LoSp-g

and Fwt/ROin for the gDNA plasmid; and FO-1/RI-1, UpSp-c/

LoSp-c and FI-1/RO-1 for the cDNA plasmid.

Table 1. Patient characteristics.

PV (n = 6) ET (n = 5) MF (n = 9)

Males/females 3/3 2/3 3/6

Median age (years) 64 58 55

Range age (years) 42–90 50–90 50–68

Characteristics at diagnosis:

Hematocrit values (%) 57.262.3 42.262.3 3360.9

White blood cells, 6109/L 11.562 8.961.2 10.562

Neutrophils (%) 65.866,2 5965 62.367.2

Platelets, x 109/L 354.2673.9 294362100 234.1650.4

Splenomegaly 1/6 0/6 4/9

Patients on cytoreductive
treatment

4/6 3/5 6/9

doi:10.1371/journal.pone.0086401.t001

Improved Measurements of JAK2V617F
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Quantitative Real-time PCR
Quantitative real-time PCR (qPCR) was performed using the

LightCycler 2.0 (Roche Diagnostics, Mannheim, Germany), which

is based on SYBR Green chemistry. The 20-ml qPCR reaction

mixtures contained 5 ml of sample cDNA or 40 ng of gDNA, 1X

PCR Mix (LC FastStart DNA Master SYBR Green I, Roche

Diagnostics, Argentina), 3.5 mM MgCl2 and 0.25 mM of each

primer.

The optimal reaction conditions for amplifying JAK2V617F and

JAK2WT from cDNA templates were 50 cycles of a 4-step PCR

(95uC for 5 sec, 58uC for 3 sec, 72uC for 20 sec and 75uC for

1 sec). The optimal conditions for gDNA templates were 45 cycles

of a 4-step PCR (95uC for 5 sec, 62uC for 6 sec and 72uC for

12 sec) after an initial denaturation (95uC for 10 min). The allele-

specific primer sets used in this study to perform the relative

quantification of JAK2V617F and JAK2WT from the patient cDNA

samples were previously published by Vannucchi et al. [14], and

the allele-specific primer sets for quantification from patient gDNA

samples were modified from a qualitative ARMS-PCR strategy

published by Jones et al. [15] (Table 2).

Calibration curves were generated using serial dilutions of the

cDNA and gDNA JAK2 V617F::JAK2WT 1::1 reference plasmids to

estimate the qPCR amplification efficiencies and to quantify the

JAK2V617F and JAK2WT alleles on gDNA and transcripts within

the dynamic range.

Quantification Strategy, Formulas and Error Estimation
The allele burden (AB) magnitude was calculated with the

formula MT/(MT+WT) and expressed in arbitrary units related

to the dilutions of the MT::WT 1::1 template reference curves.

The errors associated with the MT and WT measurements were

estimated using a linear regression (data not shown) between the

mean and the standard deviation (SD) of each reference template

dilution triplicate: 1025, 1026, 1027 and 1028 (Figure S4). To

calculate the AB error (DAB) (in SD), the estimated MT and WT

SDs were propagated using Gauss’ method of partial derivatives,

i.e., DAB2 = |dAB/dMT|2DMT2+|dAB/dWT|2DWT2, which

resulted in DAB (MT; DMT; WT; DWT) = [(WT *

DMT)2+(MT*DWT)2]K/(MT+WT)2.

JAK2V617F Genotyping by the Amplification Refractory
Mutation System (ARMS)

Genomic DNA was extracted from total peripheral blood

leucocytes obtained from 20 patients with suspected diagnoses of

MPNs using phenol-chloroform according to standard procedures.

The JAK2V617F ARMS (amplification refractory mutation system)

analysis was performed using a multiplex PCR strategy, as

described by Jones et al. [15]. The allele-specific primers contained

a mismatch three bases from the 39 end to maximize allele

discrimination. The ARMS-PCR assay was performed using Taq

DNA polymerase (Promega, Argentina), 25 ng of genomic DNA

substrate and 30 amplification cycles (including a critical annealing

temperature of 60uC) under standard amplification conditions.

The results were analyzed by agarose gel electrophoresis (3%).

Independent JAK2V617F Quantification Methods for
Validation of the One-plus-one Reference System

Two independent methods were applied to validate our one-

plus-one plasmid-based reference system by use of the Pearson

correlation statistics. First, a qPCR system based on allele specific

Taqman-probe quantification was performed as described Bous-

quet et al [16]. A second qPCR system based on allele specific

amplification, which take advantage of human gDNA samples

from a MPN patient with JAK2V617F homozygosity and a healthy

blood donor with JAK2WT genotype to achieve the standard curves

for qPCR, was performed as it is applied in a number of

laboratories worldwide [8]. In order provide accurate standard

curves the amount of JAK2 PCR template copy number in both

gDNA samples (i.e., JAK2V617F and JAK2WT) was equaled by

experiments of PCR amplification analysis on a common reference

region in ABL1 exon 3.

Results

Strategy to Assess the JAK2V617F Allele Burden Using
One-plus-one Template References

The JAK2V617F allele burden (AB) percentage (i.e.,

AB% = 1006MT/[MT+WT]) represents a weighted average of

cells with zero, one or two copies of JAK2V617F in a given gDNA

sample (ABg). The ABg% is largely similar for cDNA samples

Figure 1. JAK2 MT:WT 1:1 reference constructs. Upper diagram: reference construct from genomic DNA. Bottom diagram: reference construct
from complementary DNA. These diagrams show the allele-specific primers used to amplify the mutated allele (MT) and the wild-type allele (WT).
Indicated are the GenBank files and the molecular sizes of each segment and of each amplification product.
doi:10.1371/journal.pone.0086401.g001

Improved Measurements of JAK2V617F
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(ABc) but may be modified by differential JAK2 allele mRNA

expression, which is either produced by differential transcription

rates of MT and WT or differential mRNA stability. In addition,

the eventual contribution of allelic mRNA from enucleated

elements in the whole blood samples (e.g., platelets) may introduce

another source of variation to the ABc measurements.

ABg and ABc have no units because the units of MT and WT

are equal (arbitrary units associated with the copies of the 1:1

reference plasmid) and, therefore, cancelled. This is not the case

when using two independent reference plasmids (MT and WT),

whose accuracy in assessing the relative ABg relies upon two

independent absolute copy number estimations. Hence, the main

objective behind applying a one-plus-one template reference

strategy is to reduce the inevitable biases associated with assessing

JAK2V617F AB to approximately 50%, considering that this value is

of major clinical significance.

The capacity of the gDNA and cDNA reference plasmids to

assess ABg and ABc was investigated by repeated measurements of

the same reference plasmid dilution within the dynamic range

(defined as the range in which the fluctuation of 50% AB was

minimal) (Figure 2). The ABg reference plasmid exhibited a mean

of 52.53% and a standard deviation of 4.20% in the range 1023–

1027 dilution (Figure 2A). Therefore, a limit value of JAK2V617F

ABg of 56.73% (mean+SD) was predetermined to indicate a

reliable transition to homozygosity. ABc exhibited a mean of

51.46% and a standard deviation of 4.21% in the range 1026–

1029 (Figure 2B).

The dynamic range of the ABg analysis, reference plasmid

dilutions with minimal errors (1023–1027) that corresponded to

approximately 1.26106–1.2 copies, included the average JAK2

copy number in gDNA inputs of 20 ng (66103 copies), which was

used in our qPCR system. Although the dynamic range of ABc

(1026–1029) corresponded to 9.656103–9.65 JAK2 template

copies, the difficulty in estimating the absolute JAK2 template

copies in the cDNA samples prevented a determination of whether

the cDNA dynamic range actually contained the absolute template

copy number.

Individual values of MT and WT were associated with an

intrinsic operative error (SD), which was obtained by interpolating

these MT and WT values by a linear regression performed with

the reference plasmid dilution triplicates (plasmid dilutions versus

SD triplicates). The propagation of these MT and WT errors in

the allele burden formula (Materials and Methods) allowed the

provision of each AB measurement with its corresponding

experimental SD.

Experimental Cutoff for Detecting JAK2V617F Positive
Samples

In addition, to determine the experimental cutoff for discrim-

inating JAK2V617F-positive from -negative samples using qPCR,

we assessed the ABg values from 20 healthy donors and obtained a

mean value of 1.04% and an SD of 1.3%. A reliable JAK2V617F

cutoff was based on an ABg threshold of 3.65%, which resulted

from the mean plus two SD of the control population.

Experimental Correlation between ARMS-PCR and qPCR
Using One-plus-one Template References

To analyze the qPCR method based on one-plus-one references

against the widely used qualitative method based on ARMS-PCR

[15], 20 DNA samples from patients with a suspected diagnosis of

MPNs (10 positive cases and 10 determined to be negative for

JAK2V617F using ARMS-PCR) were analyzed by qPCR in a blind

experiment. The negative samples (according to ARMS-PCR)

showed ABg values estimated by qPCR (mean 6 standard error

(SE)) of 1.960.6%; the ABg values of the positive samples were

5569% (Figure 3).

Using a cutoff value of 3.65%, 18 out of 20 cases showed

coincident results by both approaches. Interestingly, 2 of the 10

cases that were negative according to ARMS-PCR were positive

according to qPCR, with ABg values of 5.1% and 6.7%. The most

likely explanation is that these values scored below the detection

limit of ARMS-PCR, which can be estimated on ABg values

greater than 6.7%. Therefore, this discrepancy between the two

methods may be ascribed to the greater sensitivity of qPCR.

Quantitative PCR using one-plus-one template references, as a

qualitative tool with a cutoff of 3.65%, allowed the identification of

two false negatives by ARMS-PCR and produced no false

positives.

Two Independent Correlations Analyzes between
Quantitative JAK2V617F ABg Determinations and the One-
plus-one Reference System

To validate the qPCR method based on one-plus-one reference,

12 gDNA samples from patients with diagnosis of MPNs and

healthy controls were subjected to a blind JAK2V617F ABg

quantification using the Taqman-based method described by

Bousquet et al [16]. Figure 4A shows the highly significant

correlation (p,0.0001); Pearson r = 0.968 between both methods.

In addition, gDNA samples from 12 patients with MPNs were

used for a second validation of the one-plus-one system against an

allele-specific qPCR amplification method using a selected

JAK2V617F+/+ patient and a healthy control DNA samples as

standards. Equally to the other validation, Figure 4B shows a

highly significant (p,0.0001) correlation (Pearson r = 0.967)

between both quantitative methods.

In addition, a JAK2-V617F heterozygous patient-derived cell

line, SET-2, was evaluated giving a JAK2-V617F allelic burden of

80%.

Table 2. Oligonucleotide primers.

Name Sequence (59-.39) Reference

Construction of cDNA MT:WT 1::1 template reference

FO-1 ATTTTTAAAGGCGTACGAAGAGAAGTAG (14)

RO-1 ATAAGCAGAATATTTTTGGCACATACAT (14)

Up-Sp-cDNA GAAGTTGCTAAACAGaagaaaccccaggaaacaga This study.

Lo-Sp-cDNA CTGAATAGTTTCTGTctcagcccctaagtcgtatc This study.

Construction of gDNA MT:WT 1::1 template reference

FOnew CATATAAAGGGACCAAAGCACA This study.

FOin TCCTCAGAACGTTGATGGCAG (15)

ROin ATTGCTTTCCTTTTTCACAAGAT (15)

Up-Sp-gDNA CAGAGCATCTGTTTTaagaaaccccaggaaacaga This study.

Lo-Sp-gDNA GACTGTTGTCCATAActcagcccctaagtcgtatc This study.

Allele specific cDNA primers

RI-1 ACCAGAATATTCTCGTCTCCACAaAA (14)

FI-1 GCATTTGGTTTTAAATTATGGAGTATaTG (14)

Allele specific gDNA primers

Rmt GTTTTACTTACTCTCGTCTCCACAaAA (15)

Fwt GCATTTGGTTTTAAATTATGGAGTATaTG (15)

RMTnew TTACTTACTCTCGTCTCCACAaAA This study.

doi:10.1371/journal.pone.0086401.t002

Improved Measurements of JAK2V617F

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86401



Allele Burden and the Expression of JAK2V617F in Patients
with MPNs

The application and performance of these new strategies of

allele-specific qPCR using one-plus-one template references were

tested in 19 cases with JAK2V617F-positive MPNs: 6 PV, 5 ET and

8 PMF cases. The JAK2V617F allele burden and RNA expression

(mean6SD) were as follows: 62.8632.1 and 71632.6 for PV;

53620.6 and 53.6621.3 for ET; and 80614 and 9763.4 for

PMF, respectively (Table 3). This series represents preliminary

results from our population and indicates a higher JAK2V617F allele

burden and RNA expression in patients with PMF than in those

with PV or ET.

The patient-paired assessment of the JAK2V617F allele burden

(ABg) and the RNA expression level (ABc) from 19 positive MPNs

(Table 3) allowed us to perform a correlation analysis. A positive

correlation was observed (Spearman r = 0.53, p = 0.02) even with

the inclusion of four cases with increased JAK2V617F RNA

expression levels (outliers) (Figure S5). Interestingly, all four

patients in this group of outliers exhibited splenomegaly, increased

white blood cell counts and bone marrow fibrosis. Although the

small number of cases exhibiting JAK2V617F overexpression

suggests that caution should be exercised concerning reaching

general conclusions, this result encourages the performance of

further studies.

Discussion

The discovery of mutations in JAK2 has allowed crucial

advances in the understanding of the pathophysiology of typical

BCR-ABL1-negative MPNs. The mutation JAK2V617F is a useful

molecular marker that has improved and simplified the diagnosis

of these disorders. The JAK2V617F mutation is found in more than

90% of patients with PV and in nearly one-half of those with PMF

or ET [17,18]. Consequently, all the recommended diagnostic

algorithms for these entities include qualitative molecular infor-

mation regarding JAK2 mutations [19]. However, a quantitative

study stratifying patients into different quartiles according to their

allele burden at diagnosis may be even more appropriate for

evaluating the clinical implications of JAK2V617F load.

A multicenter study demonstrated large discrepancies between

the different methods used to quantify the JAK2V617F mutation

[20]. Hence, it is extremely important to employ suitable reference

standards to allow an exact quantification of the JAK2V617F allele

burden.

Considering that a blood leukocyte sample represents a

potential mixture of cells that are homo/heterozygous for

JAK2V617F, homozygosity cannot be determined when the allele

burden is lower than 50% and it can only be warranted when the

proportion of the JAK2V617F allele is significantly greater than

50%. Because the presence of a JAK2V617F homozygous clone is

associated with major clinical consequences, it is crucial to

determine the AB turning point (i.e., 50%) without bias.

In addition, a method that permits the exact and reproducible

quantification of JAK2V617F is extremely valuable for the

evaluation of patients with MPNs, particularly for the follow-up

of patients treated with JAK2 inhibitors.

There is a growing interest in assessing the JAK2V617F allele

burden and in its potential influence on disease phenotype, disease

complications and evolution [11]; raising the possibility that

homozygosity for the mutant allele is a time-dependent clonal

Figure 2. Graphics of deviation from the 1:1 ratio in the dynamic range of dilutions of the reference plasmids. Left panel, gAB values
for each plasmid dilution of gDNA; right panel, gAB values for plasmid cDNA.
doi:10.1371/journal.pone.0086401.g002

Figure 3. Comparison of ARMS-PCR and qPCR assays. Ten cases
shown to be positive for the JAK2V617F mutation using ARMS-PCR
exhibited an allele burden of 55% 69% (mean 6 SE) according to qPCR.
Ten negative cases according to ARMS-PCR showed an allele burden of
1.9% 60.6%, including two cases that were negative by ARMS-PCR and
positive by qPCR with a value above our cutoff (.3.65%, estimated
from a healthy population).
doi:10.1371/journal.pone.0086401.g003

Improved Measurements of JAK2V617F
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evolution event [4]. The use of different reference standards for

quantitative assays may generate discrepancies between AB values.

We provided two independent validations comparing the one-

plus-one plasmid-based method with an allele-specific Taqman-

probe based qPCR method [16]; and with a method based on

curves made from patient samples, using a V617F JAK2

homozygous patient and a JAK2 non-mutated control, as has

been used in a number of laboratories worldwide [20]. Recently,

the European Leukemia Net (ELN) performed a study for

establishing optimal quantitative-polymerase chain reaction assays

for routine diagnosis of JAK2-V617F by comparing 12 laborato-

ries: three of them using unpublished ‘in-house’ developed assays

and nine of them applying published standard curves using either

independently measured plasmid DNA for JAK2-WT and JAK2-

V617F or, alternatively, DNA samples from a homozygous JAK2-

V617 patient and a healthy donor [21]. Quentmeier et al revealed

an active mitotic recombination on JAK2-V617F positive cell lines

such as MB-02, MUTZ8, HEL or SET-2 using FISH (fluorescent

in situ hybridization) and microsatellite analysis, which associates

with genetic imbalances on JAK2 locus and may cause quantifica-

tion inconsistencies when these cell lines are used for standard

curves [22]. In agree with this evidence, we measured an allelic

burden of 80% from SET-2, a JAK2V617F heterozygous patient-

derived cell line, reflecting an active mitotic recombination in vitro

and the lack of reliability to use it for standard curves.

The quantification method presented in this paper would be

most appropriate for assessing ABs of approximately 50% because

the molecular structure of the construct (one-plus-one) warrants a

fixed 1:1 ratio between the mutated and wild-type JAK2 PCR

templates. To the best of our knowledge, no standard for real-time

PCR-based quantitative approaches has used the one-plus-one

template structure thus far.

As a qualitative tool, our approach using a threshold value

(obtained in healthy donors) of 3.65% (mean +26SD) allowed the

positive molecular detection of JAK2V617F in 19 cases with MPNs

and demonstrated a more sensitive detection limit than ARMS-

PCR ($6.7%).

This qPCR-based approach using one-plus-one template

references allowed the rapid estimation of the allele burden and

RNA expression of JAK2V617F in 19 positive cases with classical

MPNs and detected 13 cases associated with homozygous clones

(ABg$56.73% [mean+SD]).

Although the sample size prevents general conclusions about

Argentinian patients with MPNs, a similar trend to those reported

in the literature for the JAK2V617F allele was observed in our

Figure 4. Validation of the one-plus-one reference system qPCR assay. A. Twelve MPN cases (n = 10) and negative controls (n = 2) shown
highly significant (p,0.0001) correlation (r = 0.967 95%CI = 0.88–0.99) between JAK2V617F ABg measured by an allele-specific Taqman probe-based
qPCR method (16) and by the one-plus-one reference system. B. Other group of 12 MPN cases shown highly significant (p,0.0001) correlation
(r = 0.968 95%CI = 0.88–0.99) between JAK2V617F ABg measured by a MPN-patient/healthy-control DNA-standardized allele-specific qPCR amplification
method (17) and by the one-plus-one reference system. Linear regressions are shown in both graphs.
doi:10.1371/journal.pone.0086401.g004

Table 3. Allele burden and expression of JAK2V617F mutation.

Patient (N6) MNP JAK2V617F gAB[%]* JAK2V617F cAB [%]*

1 PV 34.8 99.9

2 PV 92.6 83.4

3 PV 53.08 57.3

4 PV 19.3 12.8

5 PV 97.27 97.3

6 PV 80.3 78.6

7 ET 39.5 45.7

8 ET 67.7 45.7

9 ET 45.1 53.3

10 ET 31.5 35.02

11 ET 81.1 89.9

12 MF 86.2 99.8

13 MF 93.05 90.1

14 MF 62.3 94.1

15 MF 60.1 99.9

16 MF 98.6 99.8

17 MF 67.18 99.3

18{ MF 0.54 5.21E-04

19 MF 83.4 99.9

20 MF 91.2 95.4

*The propagated error (SD) of the AB from individual values of MT and WT
measurements was negligible; therefore, it was not considered (range
6.3761028–1.531025).
{Case Nu 18 was negative for the JAK2V617F mutation.
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group: higher ABg and ABc expression in patients with PMF or

PV than in patients with ET.

Although the relative expression level of JAK2V617F was

variable, this depends mainly on the percentage of ABg in the

majority of cases. We observed correlations between the levels of

JAK2V617F ABg and ABc in patients with PV, ET and PMF, in

agreement with the results reported by Lippert et al. [23] and

Tiedt et al. [24]. In contrast to the general trend, we found four

outliers (i.e., patients with relatively increased levels of JAK2V617F

transcripts) (Figure S5) who exhibited splenomegaly, high white

blood counts and bone marrow fibrosis. The possibility of

JAK2V617F allele overexpression or differential RNA stability in

MPNs and the possible clinical consequences are extremely

interesting points that merit further investigation.

In conclusion, the qPCR method using one-plus-one template

references reported here for JAK2V617F allele quantification

represents a cost-effective tool that is particularly appropriate for

measuring the critical AB associated with the transition to the

homozygosity state, which is of prognostic value in classical MPN

cases.

Supporting Information

Figure S1 JAK2 V617F MT::WT 1::1 reference PCR
construction strategy. A. gDNA. The first series of PCR

amplifications was performed to obtain products (i), (ii) and (iii)

from genomic DNA substrates (references in the gDNA-construct

section of the main text). The second series produced (iv) and (v)

from PCR substrates (i) plus (ii) and (ii) plus (iii), respectively. The

third series produced the full-length gDNA JAK2 V617F MT::WT

1::1 reference construct. The primers and DNA substrates for

PCR amplification are indicated. B. cDNA. The first series of

PCR amplifications was performed to obtain products (i’), (ii’) and

(iii’) from complementary DNA (randomly primed, reverse-

transcribed total RNA) substrates (references in the cDNA

construct section of the main text). The second series produced

(iv’) from substrates (i’) plus (ii’) and (v’) from substrates (ii’) plus

(iii’). The third series produced the full-length cDNA JAK2 V617F

MT::WT 1::1 reference construct by fusing PCR products (iv’) and

(v’). The primers and DNA substrates for each PCR amplification

are indicated.

(PPT)

Figure S2 cDNA and gDNA JAK2 V617F MT::WT 1::1
PCR construction steps and MT/WT analysis by DNA
sequencing and BsaXI restriction enzyme digestion. A.
Agarose gel electrophoresis of all the PCR products and the final

product, the JAK2 MT/WT 1::1 gDNA construct. (1) amplimer of

JAK2 gDNA V617F MT-arm (453 bp), (2) amplimer of JAK2

gDNA V617 WT-arm (453 bp), (3) DNA-spacer (473 bp, F8 gene

part of IVS22), (4) fusion amplimer of (1) (MT-arm), plus (3)

(spacer) (775 bp), (5) fusion amplimer of (2) (WT-arm), plus (3)

(spacer) (781 bp), (6) final fusion amplimer of (4) (MT-arm+spacer)

plus (5) (WT-arm+spacer) (1083 bp). B. Agarose gel electropho-

resis of all the PCR products and the final product, the JAK2 MT/

WT 1::1 cDNA construct. M indicates 100-bp ladder molecular

marker. (1) amplimer of JAK2 cDNA V617F MT-arm (371 bp), (2)

amplimer of JAK2 cDNA V617 WT-arm (371 bp), (3) DNA-

spacer (473 bp, F8 gene part of IVS22), (4) fusion amplimer of (1)

(MT-arm) plus (3) (spacer) (752 bp) and (5) final fusion amplimer

of (4) (MT-arm+spacer) plus (spacer+WT-arm) (1023 bp). The

final cDNA and gDNA constructs (i.e., A. [6] and B. [5]) were

cloned and DNA sequenced. C and D show the relevant DNA

sequences of the WT-arm (upper panel) and MT-arm (lower

panel) of the gDNA and cDNA recombinant plasmids, respec-

tively. E. Agarose gel electrophoresis showing the BsaXI

restriction analysis of both constructs: (1) undigested gDNA, (2)

BsaXI-digested gDNA, (3) undigested cDNA and (4) BsaXI-

digested cDNA.

(PPT)

Figure S3 Experiments to check the structural specific-
ity of the gDNA (A) and cDNA (B) reference plasmids.
The experimental results are shown by the agarose gel

electrophoresis analysis of the PCR products. The annealing

temperatures used in the PCR amplification and the combined

primer pairs are indicated at the top and bottom of each gel image,

respectively.

(PPT)

Figure S4 JAK2V617F and JAK2WT DNA standard curves.
A. cDNA. The upper curves show the PCR amplification cycle

versus the fluorescence (530 nm) from triplicates of serial dilutions

(i.e., 1025, 1026, 1027 and 1028) of the JAK2 cDNA MT:WT 1:1

plasmid. The lower graphs show the corresponding log-trans-

formed standard curves of the cDNA-plasmid concentration

(arbitrary units, AUc associated with a specific dilution of the

same plasmid) versus the crossing points for the JAK2V617F

mutation (left) and JAK2WT (right), as indicated. Eff. indicates the

efficiency of the real-time PCR amplification. Note that standard

curves share the same cDNA-plasmid concentration units (AUc);

therefore, these units may be added or canceled in relative

quantification equations. B. gDNA. The upper curves show the

PCR amplification cycle versus the fluorescence (530 nm) from

triplicates of serial dilutions (i.e., 1023, 1024, 1025, 1026 and

1027) of the JAK2 gDNA MT:WT 1:1 plasmid. The lower graphs

show the corresponding log-transformed standard curves of the

gDNA-plasmid concentration (arbitrary units, AUg associated

with a specific dilution of the same plasmid) versus the crossing

point for the JAK2V617F mutation (left) and JAK2WT (right), as

indicated. Eff. indicates the efficiency of the real-time PCR

amplification. Again, the standard curves share the same plasmid

concentration units (AUg); therefore, these may be added or

canceled in relative quantification equations.

(PPT)

Figure S5 Correlation analysis between qPCR results
using gDNA and cDNA as substrates. There was a

significant correlation between the allelic burden and expression

levels of the JAK2V617F mutation (Spearman P,0.0002). Four

cases with increased JAK2V617F RNA expression levels (outliers)

are indicated.

(PPT)

Methods S1.

(DOC)
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