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Abstract
The link-prediction problem is an open issue in data mining and knowledge discovery,

which attracts researchers from disparate scientific communities. A wealth of methods have

been proposed to deal with this problem. Among these approaches, most are applied in

unweighted networks, with only a few taking the weights of links into consideration. In this

paper, we present a weighted model for undirected and weighted networks based on the

mutual information of local network structures, where link weights are applied to further

enhance the distinguishable extent of candidate links. Empirical experiments are conducted

on four weighted networks, and results show that the proposed method can provide more

accurate predictions than not only traditional unweighted indices but also typical weighted

indices. Furthermore, some in-depth discussions on the effects of weak ties in link predic-

tion as well as the potential to predict link weights are also given. This work may shed light

on the design of algorithms for link prediction in weighted networks.

Introduction
The problem of link prediction attempts to uncover missing links and predict the emergence of
future links in complex networks based on the available information, such as observed links
and nodes’ attributes [1–3]. Because of its broad applications in various domains, the study of
link prediction has become a research hotspot. In some biological networks, such as protein-
protein interaction networks and metabolic networks [4, 5], the discovery of interaction links
is usually expensive. Therefore, accurate predictors can be applied for one to seek the most
promising latent links, which will cost less than blindly checking all possible interaction con-
nections [6, 7]. With the overload of information nowadays, the dependence of people on
information filtering systems, such as recommender systems, is increasing [8, 9]. In this sense,
link prediction can serve as a significant technique in recommender systems, such as e-com-
merce recommendation [10] and friendship recommendation [11, 12]. Moreover, the tech-
nique of link prediction has been successfully applied to evaluate network evolving models [13,
14], and also to identify spurious links [6]. Recently, the link-predictability problem was pro-
posed to characterize the extent of links in a network could be predicted [15]. Accordingly, this
can help us understand the organization of real networks.
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Plenty of link prediction methods based on network structures have been proposed in the
past years [16–20]. Among various approaches, Common Neighbors (CN) is the simplest one,
which assumes that two nodes are more likely to form a link if they have more common neigh-
bors. However, CN simply counts the number of common neighbors but ignores their different
contributions on the connection likelihood. Hence, many variants of CN have been put for-
ward to further boost the prediction accuracy by improving the discriminative extent of candi-
date links, such as Adamic-Adar (AA) [16] and Resource Allocation (RA) [17], where a
common neighbor with low degree is advocated via assigning more weight on it. Based on the
Bayesian theory, a local naïve Bayes model [18] was presented to differentiate the role of differ-
ent common neighbors. In addition, node centrality (degree, closeness and betweenness) was
also applied to make common neighbors more distinguishable [19]. Recently, Tan et al. [20]
reexamined the role of common neighbors from the perspective of information theory, and the
contributions of common neighbors are differentiated by the mutual information of local
structures.

Most of previous studies on link prediction focused on unweighted networks but ignored
the naturally existed link weights. Up to now, little literature is available on link prediction in
weighted networks. Murata and Moriyasu [21] proposed the variants of CN, AA and RA as
weighted indices for predicting the emergence of communications between users in social net-
works. It was revealed that proximities between nodes can be estimated better by using both
graph proximity measures and the weights of existing links. In some networks, especially in
social networks, weak ties may play a more important role than strong ties [22, 23]. Lü and
Zhou [24] investigated the role of weak ties in link prediction and suggested that emphasis on
the contributions of weak ties can remarkably enhance the prediction accuracy. Sá and Prudên-
cio [25] studied the relevance of using link weights to improve supervised link prediction.
Results proved that the prediction accuracy could be improved by using weights on the links.

In this paper, a weighted mutual information model is developed by gaining the benefits
from both structural properties and link weights. In our model, the mutual information is
adopted to estimate the effect of network structures on the connection likelihood. Different
from the estimation of mutual information in Ref [20], we employ a more rigorous theoretic
way here. Besides, the weights of links are applied to further emphasize the discriminative reso-
lution of candidate links. Empirical experiments on four real-world weighted networks reveal
that the proposed method improves the prediction accuracy substantially compared with not
only traditional unweighted indices but also typical weighted indices. In addition, we also give
some in-depth discussions on the role of weak ties in link prediction as well as the potential to
predict link weights. We hope this work will provide some inspirations about how to incorpo-
rate the weights for link prediction in weighted networks.

Materials and Methods

Data and Problem Description
Four weighted networks from disparate fields are considered in our experiments. 1) Celegans:
the neural network of the nematode worm C. elegans, where a node stands for a neuron, a link
joins two neurons if they have synaptic contacts, and the weight represents the number of syn-
apses between two neurons [26]. This network has 297 neurons and 2148 synaptic contacts. 2)
USAir: the network of US air transportation, where the weight of a link is the frequency of
flights between two airports [27]. This network contains 332 airports and 2126 airlines. 3) Bay-
wet: the network which contains the carbon exchanges in the cypress wetlands of south Florida
during the wet season [28], where a node represents a taxon, and an edge denotes that a taxon
uses another taxon as food with a given trophic factor (feeding level). This network has 123
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nodes and 2106 edges. 4) Bible: the lexical network with the nouns in King James Bible and
information about their occurrences [28], where a node stands for a noun and a link indicates
that two nouns appear together in the same verse. The weight on a link represents how often
two nouns occurred together. This network contains 1773 nodes and 9131 edges.

In this paper, only an undirected weighted network G(V, E,W) is studied, where V, E and
W denote sets of nodes, links and link weights, respectively. Note that,Wxy =Wyx, whereWxy

stands for the weight on link (x, y). Multiple links and self-loops are not allowed here. The task
of link prediction is to discover missing links or predict future links. To do this, for each non-
existent node pair, namely a link (x, y) 2 U − E, where U stands for the universal set, we assign
a score sxy to quantify the connection likelihood of nodes x and y. A higher score means higher
probability that nodes x and y will form a link. All the non-existent links are sorted by their
scores in descending order, and the links with highest ranks are most likely to appear.

To validate the prediction performance of a predictor, the observed links, E, are randomly
divided into two parts: training set ET, is regarded as given information, and probe set EP, is
only used for testing. Clearly, we have ET [ EP = E and ET \ EP = ø. In this paper, the training
set always contains 90% of observed links, and the rest constitutes the probe set. We apply a
standard metric called Precision to quantify the accuracy of prediction, which is defined as the
ratio of true missing links in the predicted link set, i.e., if top L links are treated as predicted
links while Lr of which are in the probe set, then the value of Precision equals to Lr/L.

Weighted Similarity Indices Based on Local Information
In most real-world networks, links are naturally weighted. The weight of a link may represent
different meanings in different networks, such as the number of synapses and gap junctions in
neural networks, the carbon flow between species in food webs or the amount of traffic load
along connections in transportation networks. Murata and Moriyasu [21] studied the way to
extend similarity indices from unweighted networks to weighted networks. Based on this
method, the weighted cases of CN, AA and RA (named as WCN, WAA andWRA, respec-
tively) are defined as [21, 24]

sWCN
xy ¼

X
z2Oxy

ðWxz þWzyÞ; ð1Þ

sWAA
xy ¼

X
z2Oxy

Wxz þWzy

log ð1þ SzÞ
; ð2Þ

sWRA
xy ¼

X
z2Oxy

Wxz þWzy

Sz
; ð3Þ

where Oxy represents the common neighbor set of node pair (x, y), which can be written as Oxy

= {z : z 2 Γ(x) \ Γ(y)}. Γ(x) stands for the set of neighbors of node x.Wxz is the weight of link
(x, z). Sz denotes the strength of node z, i.e., the sum of weights of links directly connected with
node z, which is defined as Sz = ∑z02Γ(z) Wzz0.

For some networks, weak ties may play a more important role than strong ties in link pre-
diction [24]. In order to investigate the role of weak ties in predicting missing links, Lü and
Zhou [24] introduced a free parameter, α, to control the relative contributions of weak ties to
the similarity measures. The indices WCN, WAA andWRA with parameters (denoted as
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WCNα, WAAα and WRAα, respectively) are

sWCNa
xy ¼

X
z2Oxy

ðWa
xz þWa

zyÞ; ð4Þ

sWAAa
xy ¼

X
z2Oxy

Wa
xz þWa

zy

log ð1þ SzÞ
; ð5Þ

sWRAa
xy ¼

X
z2Oxy

Wa
xz þWa

zy

Sz
; ð6Þ

where Sz ¼
P

z02GðzÞW
a
zz0 . Note that, when α = 0, Sz is the degree of node x, and the indices

degenerate to the unweighted forms, namely CN, AA and RA. On the other hand, when α = 1,
the indices are the simply weighted cases, as shown in Eqs (1)–(3).

Results

Weighted Mutual Information Model
Considering a pair of disconnected nodes (x, y), our task is to determine a prediction measure
that uses not only the structural properties of common neighbors of this node pair but also
weights on corresponding links. As reported in literature [18, 19], different common neighbors
may have different contributions on the connection likelihood. Here we investigate the role of
common neighbors from the perspective of mutual information [20, 29–32]. First of all, for the
sake of brevity, some definitions about self-information and mutual information are given,
respectively.

For two events (or random variables) X and Y, the conditional probability mass function is
p(x|y) (x 2 X, y 2 Y), and the marginal probability mass functions are p(x) and p(y), respec-
tively. The mutual information of two outcomes xi and yj (xi 2 X, yj 2 Y) can be derived as

Iðxi; yjÞ ¼ log
pðxijyjÞ
pðxiÞ

¼ � log pðxiÞ � ð� log pðxijyjÞÞ
¼ IðxiÞ � IðxijyjÞ;

ð7Þ

where I(xi|yj) is the conditional self-information, which indicates the uncertainty of the occur-
rence of outcome xi given that outcome yj happens, and I(xi) is the self information that quanti-
fies the uncertainty of outcome xi.

The mutual information measures how much the uncertainty about one event can be
reduced by giving the outcome of the other event. Therefore, if two events are independent
from each other, the mutual information equals to zero.

Now consider the link-prediction problem. From the perspective of information theory, the
estimation of connection likelihood between a pair of nodes can be treated as calculating the
information of the event that two nodes are connected. More specifically, for a non-connected
node pair (x, y), we use L1

xy to denote the event that nodes x and y are connected. If the common

neighbor set Oxy is available, then the link likelihood can be estimated by�IðL1
xyjOxyÞ [20, 32].

According to the definitions of information, IðL1
xyjOxyÞ can be written as

IðL1
xyjOxyÞ ¼ IðL1

xyÞ � IðL1
xy;OxyÞ; ð8Þ
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where IðL1
xy;OxyÞ is the mutual information between the event that node pair (x, y) has one link

and the event that node pair’s common neighbors are given. IðL1
xyÞ can be calculated through

the prior probability

pðL1
xyÞ ¼

MT

M
; ð9Þ

whereMT = |ET| andM ¼ jVjðjV j�1Þ
2

. | � | denotes the cardinality of the set. Since the prior proba-
bilities pðL1

xyÞ are the same for every pair of nodes, here we define the connection likelihood as

sxy ¼ IðL1
xy;OxyÞ: ð10Þ

If the elements of Oxy are supposed to be independent from each other, then

IðL1
xy;OxyÞ ¼

X
z2Oxy

IðL1
xy; zÞ: ð11Þ

Instead of estimating IðL1
xy; zÞ by averaging the mutual information over all node pairs con-

nected to node z as presented in Ref [20], according to the definition Eq (7), IðL1
xy; zÞ can be cal-

culated more accurately through

IðL1
xy; zÞ ¼ IðL1

xyÞ � IðL1
xyjzÞ; ð12Þ

where IðL1
xyjzÞ is the conditional self-information of the event that node pair (x, y) have one

link given that their common neighbor z is available. To calculate IðL1
xyjzÞ, we need to obtain

pðL1
xyjzÞ. Generally speaking, pðL1

xyjzÞ can be estimated by the clustering coefficient of node z,

Cz, which is defined as

pðL1
xyjzÞ ¼ Cz ¼

N4z

N4z þ N^z
; ð13Þ

where N4z and N^z are the numbers of connected and disconnected node pairs who share the
common neighbor z, respectively.

Altogether, we can obtain

sxy ¼
X
z2Oxy

IðL1
xy; zÞ

¼
X
z2Oxy

ðIðL1
xyÞ � IðL1

xyjzÞÞ

¼
X
z2Oxy

ð� log pðL1
xyÞ þ log pðL1

xyjzÞÞ

¼
X
z2Oxy

� log
MT

M
þ log

N4z

N4z þ N^z

� �
:

ð14Þ

Note that, if nodes x and y do not own any common neighbor, IðL1
xy; zÞ equals to zero. Clearly,

if Cz = 1 for all nodes, then sxy degenerates to CN. Therefore, according to the clustering coeffi-
cient Cz, different common neighbors offer different contributions on the connection
likelihood.

Next, we will introduce how to enhance the accuracy of link prediction with link weights. In
particular, CN-based unweighted indices have poor performance in low clustering networks
[18]. In this case, additional information is needed to break the bottleneck. In WCN, WAA
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andWRA, the weights of links connecting common neighbors to the corresponding node pair
are used to facilitate link prediction. Under this motivation, we add a weight function f(Wxz,
Wzy) in Eq (14) to combine the benefits from both structural properties and link weights, and
obtain

sWMI
xy ¼

X
z2Oxy

f ðWxz;WzyÞIðL1
xy; zÞ: ð15Þ

The proposed model is called Weighted Mutual Information (WMI). Although the expression
of WMI model is similar to that of local naïve Bayes model [18], they are inspired by different
motivations. The former is motivated by the combination of the benefits from both structure
information and link weights, while the latter focuses on only network structures and tries to
drill down the structure information. Here we apply Eqs (1)–(3) as the weight functions, and
get the WMI forms of WCN, WAA andWRA, respectively:

sWMI�WCN
xy ¼

X
z2Oxy

ðWxz þWzyÞIðL1
xy; zÞ ð16Þ

sWMI�WAA
xy ¼

X
z2Oxy

Wxz þWzy

log ð1þ SzÞ
IðL1

xy; zÞ ð17Þ

sWMI�WRA
xy ¼

X
z2Oxy

Wxz þWzy

Sz
IðL1

xy; zÞ ð18Þ

Besides, in order to emphasize the role of weak ties in link prediction, we define the parame-
ter-dependent versions of Eqs (16)–(18) as follows.

sWMI�WCNa
xy ¼

X
z2Oxy

ðWa
xz þWa

zyÞIðL1
xy; zÞ ð19Þ

sWMI�WAAa
xy ¼

X
z2Oxy

Wa
xz þWa

zy

log ð1þ SzÞ
IðL1

xy; zÞ ð20Þ

sWMI�WRAa
xy ¼

X
z2Oxy

Wa
xz þWa

zy

Sz
IðL1

xy; zÞ ð21Þ

In order to distinguish the parameter-dependent versions Eqs (19)–(21) from the non-
parameter ones Eqs (16)–(18), we call the latter pure WMI-based indices in the following
discussions.

Experimental Results
Table 1 presents the comparison of our WMI model and other several typical unweighted
methods under the measure of Precision. As literature [2, 18–20, 24] suggested, the top L is set
100 in our experiments. According to the simulation results, without considering the fact of
weak ties, the pure WMI-based indices achieve much higher prediction accuracy than the cor-
responding basic unweighted forms, namely CN, AA and RA, for Celegans and Baywet. In Bay-
wet, the Precision value of WMI-WRA is even improved by nearly 10% compared with RA. In
addition, we also give the comparison of our WMI model to the Local Naïve Bayes model
(LNB) proposed in paper [18]. LNB-CN, LNB-AA and LNB-RA are the LNB forms of CN, AA
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and RA, respectively. Compared with the LNB model, pure WMI-based indices provide com-
petitive prediction accuracy in Celegans and Baywet. Especially in Celegans, as the clustering
coefficient is low (0.292, the lowest among the four networks), the LNB model can’t improve
the discriminative resolution of candidate links [18]; while with the help of weights on corre-
sponding links, the WMI model makes them more distinguishable. Moreover, a comparison
with node centrality based method [19] is also given in Table 1. Since the DC-CN index has the
best overall performance among the node centrality based approaches, we only compare its
optimal version with our model. From the results, except for USAir, our model shows competi-
tive prediction accuracy with the DC-CN index. Further more, if we consider the parameter-
dependent versions Eqs (19)–(21) which take the role of weak ties into consideration, the pre-
diction accuracy is enhanced substantially, and our WMI-based indices can achieve the best
performance in Celegans, Baywet and Bible.

From above results, it demonstrates that link weights could be applied to facilitate link pre-
diction. In addition, the fact of weak ties needs to be emphasized in some networks, because
weak ties may play a more significant role than strong ties in the prediction [24].

In order to further explore the role of weak ties in link prediction, the performances of
parameter-dependent WMI-based indices with different α on four real-world networks are
presented in Fig 1. And the optimal values of α are given in Table 2. From the results, we can
find that the WMI-based indices obtain the best Precision values when α is smaller than 1 in
USAir, Baywet and Bible, except for WMI-WRAα in Baywet. That means the link weights may
not show the real strength of ties. Sometimes, the weak ties have a higher strength than their
weights suggest. On the other hand, in Celegans, the optimal values of α are all greater than 1
for the WMI model, which on the contrary indicates that in some networks the role of weak
ties can be as weak as their weights indicate. These results agree with the findings in Ref [24],
which used different link prediction indices. This fact reveals that the role of weak ties is an
essential characteristic of networks themselves, rather than the detailed link prediction
method.

Table 1. Comparison of WMI-basedmethods with other typical unweighted indicesmeasured by Pre-
cision (top-100) on four networks. Each value is obtained by averaging over 100 independent runs of ran-
dom division of training set and probe set. The abbreviations WMI-WCN*, WMI-WAA* andWMI-WRA*
represent highest Precision values obtained by Eqs (19)–(21), respectively. The optimal values of α are pre-
sented in Table 2. The best performance in each network is marked by bold font.

IndicesnNets USAir Celegans Baywet Bible

CN 0.606 0.14 0.092 0.447

LNB-CN 0.621 0.14 0.11 0.539

WMI-WCN 0.498 0.177 0.099 0.398

WMI-WCN* 0.65 0.198 0.162 0.55

AA 0.625 0.14 0.093 0.571

LNB-AA 0.641 0.14 0.109 0.747

WMI-WAA 0.549 0.173 0.103 0.466

WMI-WAA* 0.667 0.196 0.164 0.706

RA 0.645 0.133 0.093 0.872

LNB-RA 0.643 0.133 0.107 0.916

WMI-WRA 0.59 0.159 0.192 0.912

WMI-WRA* 0.654 0.165 0.198 0.924

DC-CN* 0.668 0.143 0.094 0.876

doi:10.1371/journal.pone.0148265.t001
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Fig 1. The performances of WMI-based methods and other three weighted indices with different α on the four real-world networks.

doi:10.1371/journal.pone.0148265.g001

Table 2. Optimal values of parameter α subject to the highest Precision values in four networks.

IndicesnNets USAir Celegans Baywet Bible

WCN* -0.41 1.41 0.18 0

WMI-WCN* -0.4 1.71 0.21 -4.16

WAA* -0.40 1.44 0.25 -2.34

WMI-WAA* -0.41 1.95 0.32 -0.82

WRA* -0.24 1.56 0.98 0.4

WMI-WRA* -0.1 1.76 1.82 0.68

doi:10.1371/journal.pone.0148265.t002
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Finally, the performances of our WMI-based indices are compared to other weighted indi-
ces given by Eqs (1)–(6) and the reliable-route based methods [33]. As the results shown in
Table 3, except for Celegans, all the pure WMI indices achieve better prediction accuracy than
corresponding indices (i.e., WCN, WAA andWRA). Compared with the reliable-route based
methods, namely, rWCN, rWAA and rWRA, the WMI model has better performance in all
example networks except for Bible. Since the weighted indices given by Eqs (4)–(6) are parame-
ter-dependent, which consider the role of weak ties as well, the results with different parameter
α are also shown in Fig 1. From the results, we can conclude that the parameter-dependent
WMI-based indices have consistent tendency with their basic weighted forms (i.e., WCNα,
WAAα and WRAα) in four real-world networks. In USAir, Baywet and Bible, the WMI model
overwhelms its corresponding basic weighted forms almost at any α values, especially in
USAir. Note that when α = 0, the example networks are all turned into unweighted forms, i.e.
every link has the same weight. That’s to say, compared with their basic weighted forms, the
parameter-dependent WMI-based indices also have a better performance in unweighted net-
works according to Fig 1. If only consider the optimal results given by Table 3, we can find that
except Celegans, the WMI-based indices achieve better prediction accuracy than their counter-
parts. In Celegans, the WMI-based indices also have nearly the same performance with their
counterparts, and WMI-WCN� achieves the best performance among sixteen indices. Alto-
gether, the WMI-based indices overwhelm the compared weighted indices.

Our experiments are conducted on a desktop computer with 8GB RAM and a Intel (R)
Core (TM) i5-3470 CPU @ 3.20 GHz quad-core processor. To illustrate the computing effi-
ciency of each predictor, we summarize their detailed computation time on four real-world
networks in Table 4. The results indicate that the WMI based methods overwhelm the DC-CN
index, and have relative high computing time but remain similar time scale to other
unweighted and weighted methods.

In conclusion, the WMI model has better performance over other methods on weights net-
works and experiences reasonable time complexity.

Table 3. Comparison of WMI-basedmethods with other typical weighted indicesmeasured by Preci-
sion (top-100) on four networks. Each value is obtained by averaging over 100 independent runs of random
division of training set and probe set. The abbreviations WCN*, WAA*, WRA*, WMI-WCN*, WMI-WAA* and
WMI-WRA* represent the highest Precision values shown in Fig 1 (please refer to detailed α values in
Table 2). The best performance in each network is marked by bold font.

IndicesnNets USAir Celegans Baywet Bible

WCN 0.462 0.167 0.046 0.347

rWCN 0.115 0.133 0.059 0.429

WMI-WCN 0.498 0.177 0.099 0.398

WCN* 0.637 0.189 0.141 0.447

WMI-WCN* 0.65 0.198 0.162 0.55

WAA 0.533 0.178 0.053 0.359

rWAA 0.030 0.136 0.067 0.669

WMI-WAA 0.549 0.173 0.103 0.466

WAA* 0.655 0.197 0.153 0.594

WMI-WAA* 0.667 0.196 0.164 0.706

WRA 0.578 0.163 0.191 0.838

rWRA 0.134 0.128 0.072 0.817

WMI-WRA 0.59 0.159 0.192 0.912

WRA* 0.647 0.167 0.191 0.887

WMI-WRA* 0.654 0.165 0.198 0.924

doi:10.1371/journal.pone.0148265.t003
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In practice, the choice of α in Eqs (4)–(6) and (19)–(21) still remains a problem. However,
as we discussed above, if the strong ties have a significant role than weak ties, it’s a good choice
to set the value of α as 1 directly. For instance, in Celegans, all those methods perform well
when incorporating weights with α = 1. Conversely, if the weak ties need to be emphasized, the
selection of α is usually not easy. A widely applied approach is to divide the training set into
two parts, and select one part as the validation set to search for an appropriate α. In Table 5, we
randomly divide the original network into three parts: training set, validation set and test set,
with a proportion 80%, 10% and 10% of the size of original network, respectively, and obtain
the estimated optimal α values. Then we calculate the RMSD of the Precision values with the
estimated and optimal α, respectively. From the results, we can find that the differences by
applying the estimated values of α are small and acceptable, compared to using the optimal α
in Table 2. Therefore, it’s practical to employ this method to achieve an eligible α value.

Table 4. Comparison of the computing efficiency of sixteen methods on four real-world networks.
Each value is the average time in seconds for 100 independent runs.

IndicesnNets USAir Celegans Baywet Bible

CN 0.0134 0.0142 0.00484 0.239

WCN 0.0288 0.0297 0.0106 0.502

rWCN 0.043 0.042 0.017 0.75

LNB-CN 0.0606 0.06 0.023 1.08

WMI-WCN 0.0897 0.0902 0.0389 1.53

AA 0.108 0.106 0.0431 1.92

WAA 0.124 0.121 0.0528 2.21

rWAA 0.142 0.139 0.0573 2.59

LNB-AA 0.161 0.156 0.0628 2.91

WMI-WAA 0.191 0.185 0.0748 3.38

RA 0.207 0.201 0.0822 3.76

WRA 0.229 0.22 0.0894 4.15

rWRA 0.246 0.24 0.0925 4.53

LNB-RA 0.265 0.259 0.102 4.85

WMI-WRA 0.295 0.288 0.115 5.31

DC-CN 0.313 0.304 0.121 5.69

doi:10.1371/journal.pone.0148265.t004

Table 5. Estimated optimal values of parameter α subject to the highest Precision values validated by
the validation sets in four networks, respectively. The original network is divided into three parts: training
set, validation set and probe set. The proportions are 80%, 10% and 10%, respectively. RMSD is the root
mean-square deviation of the Precision values with estimated α values and optimal α values in Table 2,
respectively, in each network.

IndicesnNets USAir Celegans Baywet Bible

WCN* -0.07 1.26 0.18 0

WMI-WCN* -0.21 1.54 0.23 -1.82

WAA* 0 1.44 0.27 -0.79

WMI-WAA* -0.05 1.18 0.37 -0.99

WRA* 0.41 1.61 2.75 0.48

WMI-WRA* 0.47 1.66 3.34 0.6

RMSD 0.025 0.006 0.002 0.008

doi:10.1371/journal.pone.0148265.t005
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Discussion
According to the empirical experiments, it demonstrates that the weak ties play different roles
in different networks. For instance, the role of weak ties is more important than the role of
strong ties in USAir, while on the contrary in Celegans. In Ref [24], a motif analysis of example
networks is applied to elaborate the role of weak ties in link prediction. Here we try to get an
in-depth understanding of the effects of weak ties from a different point of view.

Among the similarity-based methods that incorporate link weights, one latent assumption
is that the weights quantify the similarities or affinities between nodes. In other words, larger
weights indicate closer relationship between nodes. For example, in Celegans, the weight of a
link stands for the number of synapses between a neuron pair. If two neurons have many syn-
aptic contacts, we believe that they have a close relationship with each other. Therefore, the
weights describe the similarities between nodes positively. Under this condition, from Eqs (1)–
(3) and (16)–(18), it can be concluded that if larger weights are assigned on the links connect-
ing the common neighbors to candidate node pairs, the higher probability of the existence of
links can be achieved. In this way, such weights are positively correlated with the connection
likelihoods of links. Therefore, the role of weak ties should be depressed, while the role of
strong ties, on the contrary, need to be advocated. As a result, the role of weak ties in Celegans
is as weak as indicated by the results in Table 2.

However, not all the weights of networks exhibit similarities between nodes. It dependents
on the network background. Specifically, the weights may represent dissimilarities between
nodes, such as differences or distances. For instance, the weights in a power system network
may stand for the distances between power stations. If two stations are far away from each
other, the probability of the existence of a link between them is small. Under this situation, the
weights are negatively correlated with the similarities of node pairs, and ulteriorly, negatively
correlated with the connection likelihoods of links. In this case, if we directly apply such
weights in Eqs (1)–(3) or (16)–(18) for link prediction, the results are worse than their
unweighted cases accordingly, and this phenomenon is elucidated as the effects of weak ties on
link prediction in Ref. [24]. Hence, in order to provide more accurate predictions, we should
emphasize the role of weak ties as in Eqs (4)–(6) and (19)–(21). Consequently, the “revised
weights” contribute positively to the connection likelihood. In USAir, the weight of a link rep-
resents the traffic flow between two airports. It’s indicated that the role of weak ties is more sig-
nificant than strong ties in this network. Given that most airports are local ones and only a few
are hubs connecting different local airports, if two local airports have higher frequent flights to
the same hub airport, then the probability of direct flight between these two local airports are
lower. In this way, the weights of USAir are negatively correlated with the connection likeli-
hoods of links. Consequently, the role of weak ties in such a network is emphasized as indicated
in Table 2.

Altogether, if the weights are positively correlated with the similarities of node pairs, the
role of weak ties is depressed. Otherwise, the role of weak ties should be advocated.

Moreover, our model can also be used to predict the weights of missing links, which is also a
significant task of link prediction in weighted networks. If the weights have a positive correla-
tion with the connection likelihoods of links, we can use our model to get a score for each link,
and then use the positive correlation between weights and scores to predict the missing weights
(such as the method proposed in Ref [33]). On the contrary, if the weights denote the dissimi-
larities between nodes, the parameter α employed in Eqs (4)–(6) and (19)–(21) attempts to
“modify” the weights to obtain a positive correlation with the similarities between nodes. After
this modification, the method proposed in Ref [33] can then be applied to predict the “revised”
weight, and finally the original weight can be predicted.
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Conclusion
In this paper, we propose a weighted mutual information model for link prediction in weighted
networks, which combines the benefits from both structural properties and link weights. To
test our method, empirical experiments are carried out on four real-world networks. The com-
parisons are made from two aspects. On the one hand, comparing to unweighted indices, with-
out considering the fact of weak ties, the pure WMI-based indices can overwhelm their basic
unweighted forms and achieve competitive performance with the LNB model in Celegans and
Baywet. In addition, by taking the weak ties into consideration, the WMI model always per-
forms the best in most networks. On the other hand, compared with other weighted indices,
the WMI model also overwhelms them in most networks. Furthermore, experiments on four
real-world networks demonstrate that the WMI model enjoys reasonable computing time.
Altogether, we conclude that the WMI model is effective in link prediction of weighted
networks.

The presented unweighted indices extract information from CN-based structures, and they
perform well in high clustering networks, such as Bible. However, when the network has low
clustering, these unweighted indices based on only structure information perform poorly. In
this case, our model could handle this situation well by additional weight information of links.
Although our model has some advantages over previous methods, it may cost more time to
search for a reasonable parameter value when the role of weak ties needs to be addressed. Fur-
ther investigation and improvements include but not limited to following aspects. The pro-
posed model combines the weight information and structure information in a brief way.
Therefore, more efficient ways need to be explored. In addition, since the weights of links may
not show the real strength of ties, we may try to reconstruct a weighted network where original
link weights are replaced by the values that estimate the tie strength more accurately, which
will facilitate the weighted indices for capturing similarities between nodes.
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