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Abstract: Colorectal cancer (CRC) is a major health burden worldwide due to its high morbidity,
mortality, and complex etiology. Fusobacterium nucleatum (Fn), a Gram-negative anaerobe found
in 30% of CRC patients, promotes CRC carcinogenesis, metastasis, and chemoresistance. Effective
antimicrobial treatment is an unmet need for the rising CRC burden. Antimicrobial peptides (AMPs)
represent a new class of antimicrobial drugs. In our previous study, we did the structure-activity
study of Jelleine-I (J-I) and identified several halogenated J-I derivatives Cl-J-I, Br-J-I, and I-J-I. To
determine whether those J-I derivatives can be a new therapy for bacterial-associated CRC, here we
tested the antibacterial activities of these AMPs against Fn and their effects on CRC development.
We found that Br-J-I showed the highest anti-Fn activity and Br-J-I may target membrane-associated
FadA for Fn membrane disruption. More importantly, Fn promoted the growth of CRC cells-derived
xenograft tumors. Br-J-I suppressed Fn load, colon inflammation, and Fn-induced CRC growth.
Of note, Br-J-I induced better anti-CRC effects than common antibiotic metronidazole and Br-J-I
sensitized the cancer-killing effect of chemotherapy drug 5-fluorouracil. These results suggest that
Br-J-I could be considered as an adjunctive agent for CRC treatment and AMPs-based combination
treatment is a new strategy for CRC in the future.

Keywords: colorectal cancer; fusobacterium nucleatum; antimicrobial peptides; adjunctive therapy;
antimicrobial treatment

1. Introduction

Colorectal cancer (CRC) is the most common malignant tumor of the digestive tract
and the second leading cause of cancer-related deaths worldwide [1]. Lifestyle factors,
such as prevalence of obesity, hyperlipidemia, physical inactivity, unhealthy diet, alcohol
consumption, cigarette smoking, and dysbiosis, contribute to the increasing incidence
and mortality of CRC [2,3]. Even though recent advances in early detection screenings
and treatment options have reduced CRC mortality in developed nations, its incidence is
steadily rising in both developed and developing nations [2]. The International Agency
for Research on Cancer (IARC) estimates that the global burden of colorectal cancer will
increase by 56% between 2020 and 2040 [1]. Furthermore, a rising incidence of early-onset
CRC is emerging and poses a bigger global public health threat [4]. Early diagnosis of CRC
is not very common, and most patients are diagnosed at an advanced stage. Advanced
CRC is a significant cause of cancer mortality and the prognosis of advanced CRC is poor.

The ideal treatment for CRC is to achieve complete removal of the tumor and metas-
tases, which mostly requires surgical intervention. However, most patients diagnosed with
advanced state of CRC are not suitable for surgery. Chemotherapy is the most widely
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utilized tumor treatment and it helps to improve the disease-free survival and overall
survival of patients. However, most chemotherapeutic drugs are associated with adverse
effects due to their non-specific toxicities toward various types of rapidly proliferating
and dividing cells in the body, such as hematopoietic stem cells in the bone marrow [5].
Furthermore, CRC often relapses after therapy and patients with relapsed/refractory CRC
consistently exhibit even worse survival [6]. Therefore, there remains an unmet need for
safe and effective treatments for CRC patients, especially for patients in advanced stages.

The human gut houses a large and complex micro-ecosystem, in which bacteria
dominate. There are about 100 trillion microbes in the adult gut system, outnumbering
human cells by 10 to 1 [7]. These microbes and the intestinal mucosal immune system
constitute a complex intestinal microecology and imbalance of this microecology may lead
to intestinal diseases and tumors. Pathogens often contribute to inflammation, which
precedes malignant transformation, and are considered as contributors to CRC. Studies
from metagenomics and next-generation sequencing found that the intestinal microecology
of CRC patients exhibits dysbiosis and the flora of tumor tissues differs from those of
paired normal tissues [8]. Those studies revealed that the amount of some bacteria is closely
related to colorectal carcinogenesis [9]. Fusobacterium nucleatum (Fn), an anaerobic gram-
negative oral commensal bacterium, was found in approximately 30% of all patients with
CRC both in the intestinal microbiota but also in tumor epithelium [10,11]. Fn is extremely
active in the altered intestinal microecology and is closely related to CRC initiation and
progression [12–14]. Fn promotes CRC formation by stimulating the production of pro-
inflammatory factors, such as IL-17 and TNF [11,15]. Virulence factors in Fn also contribute
to colorectal carcinogenesis [13]. In addition, Fn assists CRC cells in escaping immune
attack by inhibiting the cytotoxic activities of natural killer (NK) cells [16] and recruiting
tumor-infiltrating myeloid cells [17]. Currently, the bacterial associated-CRC lacks effective
bacterial-related drugs for CRC prevention and treatment.

The main treatments for abnormal intestinal flora are using biogenic, probiotics, fecal
microbiota transplantation (FMT), and antibiotics. In the clinical study, high doses of
prebiotics in a short period showed adverse effect on glucose metabolism [18]. The effects
of prebiotics on the human body remain uncertain, which may be attributed to the diet
habits and physical quality of subjects, as well as the dose of prebiotics intake. Probiotics
and FMT are risky and may pose safety concerns [19,20]. Probiotics are beneficial to the
human body by regulating intestinal flora, but they are not suitable for patients with
immune deficiency and intestinal barrier dysfunction due to the potential infection and
bacteremia induced by probiotics [21]. FMT may spread infectious bacteria from donors or
antibiotic resistance genes from symbiotic bacteria [20]. In addition, the adverse effects of
antibiotics may cause additional damage and adverse reactions in frail CRC patients [22,23].
With the extensive use of antibiotics, the emergence of a large number of antibiotic-resistant
bacteria will further increase the difficulty of treatment. There is a lack of safe and effective
treatment methods for intestinal bacteria. There is a huge space for the development of
new drugs targeting pathogenic intestinal bacteria.

Antimicrobial peptides (AMPs) form an important component of host innate immunity
in all living organisms against invading pathogens [24]. AMPs are bioactive molecules that
are induced when the host is exposed to infected microorganisms to inhibit the pathogenic
microorganisms. In recent years, AMPs have attracted extensive attention due to their low
toxicity, good antibacterial effect, and low probability of resistance development [25–28]. In
addition, peptide drugs fall in between small molecules and protein/antibody drugs with
highly targeted specificity and no immunogenicity. However, low antimicrobial activity,
poor metabolic stability, and short half-life usually limit the clinical applications of AMPs.
Jelleine-I (J-I), first isolated from the royal jelly of honeybees, is a typical amphipathic AMP
and shows broad antimicrobial spectrum [29]. We previously did the design and activity
study of J-I and found that the halogenated derivatives of J-I, including Br-J-I, Cl-J-I, and
I-J-I, showed potent antibacterial activity, increased proteolytic stability, and negligible
cytotoxicity [30]. J-I halogenated derivatives possess great potential to be developed as a
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new antibacterial agent. In this study, we studied the effects of these halogenated J-I analogs
on pathogenic intestinal flora, especially the cancer-promoting Fn, and the Fn-induced CRC
development. We tested the antibacterial activity of these halogenated J-I analogs against Fn
and the underlying mechanism. We found that, among these halogenated J-I analogs, Br-J-I
showed the best antibacterial activity against Fn, and more importantly, Br-J-I effectively
inhibited Fn-induced inflammation and CRC development. Br-J-I could be combined with
the conventional anti-CRC drug 5-FU to improve the effects of CRC treatment.

2. Results
2.1. Br-J-I Shows Potent Antimicrobial Activity against Fn

We previously designed several new analogs of AMP J-I, aiming to search for a new J-I
modifier with enhanced antimicrobial activity against some common pathogenic bacteria
and we found that the halogenated derivatives of J-I, including Br-J-I, Cl-J-I, and I-J-I
(Figure S1 and Table 1), showed potent antibacterial activity, increased proteolytic stability,
and negligible cytotoxicity [30]. To further determine the potential clinical applications of
these optimized J-I derivatives, we tested their activities on Fn, a common anaerobic gram-
negative bacterium found in patients with intestinal microbiota dysbiosis, and their effects
on the Fn-associated CRC. The MIC values and MBC values represent the antimicrobial
activity of agents against bacteria in vitro. We first tested the antimicrobial activity against
Fn of J-I and its halogenated derivatives, in which N-terminal Phe was replaced with
chlorinated, brominated, and iodinated phenylalanine, respectively (Figure S1 and Table
S1). Compared to J-I with an MIC of 160 µM, the MICs of Br-J-I, Cl-J-I, and I-J-I were 5 µM,
10 µM, and 10 µM, at least 10-fold increase in the anti-Fn potency (Table 2 and Figure 1).
Among the halogenated derivatives, Br-J-I had the lowest MBC of 10 µM, compared with
the 40 µM and 20 µM for Cl-J-I and I-J-I, respectively (Table 2). MBC of J-I was higher than
320 µM. The results showed that the halogenated J-I derivatives had better antimicrobial
activity than J-I itself and Br-J-I had the best antimicrobial activity.

Table 1. Amino acid sequence of J-I, Br-J-I, Cl-J-I, and I-J-I.

Name Peptides Sequence

J-I PFKLSLHL-NH2
Br-J-I PFaKLSLHL-NH2
Cl-J-I PFbKLSLHL-NH2
I-J-I PFcKLSLHL-NH2

a, 4-Br-phe-amino acid; b, 4-Cl-phe-amino acid; and c, 4-I-phe-amino acid.

Table 2. MIC and MBC of peptides against Fn.

Name Br-J-I Cl-J-I I-J-I J-I MET

MIC 5 µM 10 µM 10 µM 160 µM 0.125 µM
MBC 10 µM 40 µM 20 µM 320 µM 0.5 µM

MET: Metronidazole.

2.2. Br-J-I Induces Membrane Disruption of Fn to Inhibit Fn

To understand how Br-J-I exerts bactericidal effect, we first tested whether Br-J-I in-
duces H2O2 formation, which is a common mechanism contributing to the death of bacteria.
Compared with positive control that kills bacteria by H2O2, Br-J-I did not alter intracellular
level of H2O2 in Fn (Figure 2A). Then, we measured membrane integrity of Fn after treat-
ment with Br-J-I, which is a common bacterial disruption mechanism for AMPs [31–33].
NPN is a hydrophobic fluorescent probe and its fluorescence intensity is weak in a hy-
drophilic environment, unless in a hydrophobic phospholipid membrane environment.
NPN does not normally go to the inside of cells, because it cannot penetrate the cell outer
membrane. When the outer membrane is damaged, NPN can access the cellular phospho-
lipid membrane and fluoresce strongly. In contrast to background control fluorescence,
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strong NPN fluorescence was detected 1 min after Br-J-I addition and reached equilibrium
(Figure 2B). Br-J-I induced increase of NPN fluorescence in a dose-dependent manner. To
further detect the effect of Br-J-I on the membrane integrity, propidium iodide (PI) was used
to stain the DNA of Fn in the presence of increasing concentrations Br-J-I and quantitated
by flow cytometry. PI is membrane impermeable unless cell membranes are damaged.
When PI binds to DNA, it produces strong red fluorescence. Br-J-I treatment significantly
increased red fluorescent PI of Fn (Figure 2C). In addition, Fn was co-stained with lipophilic
membrane-selective fluorescent dye FM4–64 and membrane permeable nucleic acid dye
AO in the absence or presence of Br-J-I. In the absence of Br-J-I, FM4–64 was co-stained with
AO (Figure 2D,E). When Br-J-I was present, fluorescence of FM4–64-stained Fn membrane
was decreased (Figure 2D,E), thereby loss of co-staining of FM4–64 with AO, indicating
that Br-J-I induced disruption of membrane integrity. The result suggested Br-J-I kills Fn by
disrupting its membrane integrity. To further understand the mechanism of Br-J-I induced
membrane disruption, we subsequently did molecular docking analysis between Br-J-I and
structurally available bacterial membrane proteins with potential oligomerization domains.
We found that Fusobacterium adhesin A (FadA), as the unique protein of Fusobacterium, is a
potential binding target of Br-J-I. Br-J-I binds to the oligomerization domain of FadA with
the binding free energy of −3.8 kcal/mol, and interfacial residues between them form three
hydrogen bonds: one between S5 of Br-J-I and Y18 of FadA, the second one between K2 of
Br-J-I and N111 of FadA, and the third one between H7 carboxyamide group of Br-J-I and
E25 of FadA (Figure 3A). Br-J-I fits in an amphipathic groove of FadA with hydrophobic
surface in the center and negative charged surface on the edge of groove (Figure 3B). FomA
is a major outer-membrane protein of Fn [34] and AlphaFold prediction showed that FomA
is structurally similar to multi-stranded anti-parallel beta-barrel containing a pore that aids
the diffusion of small hydrophilic molecules across the outer membrane of Gram-negative
bacteria [35,36]. Molecular docking revealed that Br-J-I interacts with FomA with the
binding free energy of −6.6 kcal/mol (Figure S2). FomA has heat-modifiable oligomeric
and conformational properties [34] and binding of Br-J-I to FomA may contribute to FomA
stability and membrane permeability for Fn demise. FadA locates in the outer membrane of
Fn and the molecular docking results suggest that Br-J-I likely targets FadA oligomerization
motif and induces FadA oligomerization within membrane to permeabilize the membrane.

2.3. Br-J-I Exhibits Little Cytotoxicity to Colon Epithelial Cells and CRC Cells

Since Br-J-I displays potent anti-Fn activity, its cytotoxicity toward mammalian cells
is one of the important factors that cannot be ignored. We used MTT assay to determine
the cytotoxicity of Br-J-I to colon epithelial cells and colon cancer cells. As shown in
Figure 4A–E and Figure S3, after 72 h incubation, Br-J-I, with the concentration up to
16 × MIC, did not show any significant observable effect on the viability of colon cancer
cells HCT116, Lovo, HT29, MC38, and human colon epithelial cells NCM460. The results
showed that Br-J-I had negligible cytotoxicity to human colon epithelial cells and colon
cancer cells. This presents an advantage: that we can apply a dosage that specifically kills
Fn, but with no cytotoxicity to mammalian cells.

2.4. Br-J-I Suppresses the Tumor-Promoting Effect of Fn

The effect of Br-J-I on cell proliferation of human colon cancer cells with Fn was
determined by cell counting. HCT116 cells were co-cultured with Fn in the absence or
presence of Br-J-I and the cell numbers were counted at 24 h, 48 h, and 72 h of incubation. Fn
alone increased the cell proliferation of HCT116 cells and the cell numbers were dramatically
increased from 24 h to 72 h (Figure 5A–C). When Br-J-I was present at 2.5 µM, 5 µM, and
10 µM, the Fn increased cell proliferation of HCT116 cells was significantly suppressed, to
a level similar to that of the control group without Fn (Figure 5A–C). Of note, Br-J-I alone
did not affect cell proliferation even at higher concentrations, as shown in Figure 4A. These
results indicate that Fn enhanced the HCT116 proliferation and this effect was suppressed
by Br-J-I.
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nucleatum (Fn). Effects of Br-J-I (A), Cl-J-I (B), I-J-I (C), J-I (D), and Metronidazole (MET) (E) on
the growth of Fn after 24 h treatment of different concentrations of AMPs or positive control MET.
Each experiment was repeated at least three times independently. All values are represented as
mean ± SEM. **** p < 0.0001, vs. Control.

2.5. Br-J-I Inhibits the Growth of CRC Induced by Intratumoral Fn in Mice Engrafted
with HCT116

To detect the effects of Br-J-I on the CRC tumor growth induced by Fn in vivo, CRC
cells HCT116 were engrafted into mice and when tumors were formed, Fn was intratu-
morally colonized and different doses of Br-J-I were intraperitoneally administrated into
mice every three days. Compared with the control group, Fn increased the CRC growth
rate, evidenced by 100% increases in tumor size and tumor weight (Figure 6A,B). Both
Br-J-I (10 mg/kg) and positive control metronidazole (MET, 40 mg/kg) suppressed the
tumor-promoting effects of Fn and the tumor-inhibitory role of Br-J-I was better than that of
MET (Figure 6A,B). In agreement with this, tumor proliferation marker Ki-67 was stained
more in the Fn-treated CRC xenograft tumors, less in the group of Fn plus Br-J-I or group
of Fn plus MET (Figure 6C). These results indicated that Br-J-I effectively inhibits the CRC
tumor-promoting effect of Fn.

Fn load of the tumor tissues of CRC mice with Fn colonization was quantitated to
further analyze whether Br-J-I suppresses the CRC growth by directly blocking Fn in
tumors. As shown in Figure 6D, Fn-specific RNA was not detected in tumor tissues of
CRC mice without Fn inoculation. After Fn inoculation, Fn-specific RNA in tumor tissues
of CRC mice was dramatically increased. When Br-J-I was administrated, Fn-specific
RNA was significantly reduced in tumor tissues of CRC mice with Fn colonization, similar
to metronidazole (MET). In addition, Br-J-I inhibited the expression of the key Fn gene
FadA within CRC xenografts (Figure 6E). These results suggest that Br-J-I suppresses the
increased growth of CRC tumors enhanced by Fn.
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Figure 2. The mechanism of antibacterial activity of Br-J-I. (A) The effect of Br-J-I on the levels of
intracellular hydrogen peroxide within Fn. (B) Dose dependent outer membrane permeabilization
of Fn by Br-J-I. Time course of fluorescence of NPN bound to inner phospholipid membrane of
Fn induced by different concentrations of Br-J-I. (C) Flow cytometry analysis of PI uptake of Fn
induced by different concentrations of Br-J-I. (D) Confocal microscopic image of Fn co-stained with
AO and FM4-64 with different concentrations of Br-J-I, scale bar: 25 µm. PBS was used as a negative
control. (E) Quantitation of FM4-64 fluorescence intensity in C. PBS was used as a negative control.
Each experiment was replicated at least three times independently. All values are represented as
mean ± SEM. **** p < 0.0001, vs. Fn group.

2.6. Br-J-I Inhibits Fn-Induced Inflammation

Bacteria-induced inflammation is closely related to CRC progression [37,38]. To further
examine the inhibition of Fn by Br-J-I, H&E staining was used to determine the effect of
Br-J-I on the Fn-induced inflammation in vivo. Fn administration altered colon histology
and damaged the gut barrier (Figure 7A). When Br-J-I was administrated, the inflammation
of colon tissues in CRC mice xenografts with Fn colonization was reduced compared to the
Fn group (Figure 7A). To further verify the effect of Br-J-I on the inhibition of Fn-induced
inflammation, the expression of key inflammatory cytokines TNF-α and IL-1β in the tumors
and colon tissues of CRC mice xenografts was quantitated. As shown in Figure 7B–E,
the expression of genes encoding the proinflammatory cytokines TNF-α and IL-1β in
tumors and colon tissues were dramatically increased after Fn inoculation. Br-J-I decreased
the expression of Tnf and IL1b mRNA in both tumors and colons of CRC mice with Fn
colonization. The Br-J-I exhibited more Tnf inhibitory effect than MET, while Br-J-I and
MET showed similar inhibitory effects on IL1b. These results indicated that Br-J-I inhibits
Fn-associated CRC growth by directly suppressing Fn and Fn-induced inflammation.
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that contain the groups of interest are shown. FadA is shown in an α-carbon rainbow cartoon from
blue in N-terminus to Red in C-terminus. The potential interfacial residues for Br-J-I in FadA are
shown in lines and Br-J-I are in sticks. N, O, and C atoms of side chains are colored blue, red and
gray, respectively. Aromatic ring is in green and Br is in orange. (B) Surface representation of FadA
illustrating the Br-J-I binding pocket. Hydrophobic, positively charged, and negatively charged
surfaces are colored gray, blue, and red, respectively. Molecular docking was carried out by Vina
docking software, and the interactions between ligand and receptor were analyzed and presented
by PyMOL.
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Figure 5. Effects of Br-J-I on the proliferation of human colon cancer cells co-cultured with Fn. Cell
number analysis of human colon cancer cells HCT116 co-cultured with or without Fn in the presence
of different concentrations of Br-J-I (0, 2.5, 5, and 10 µM) at 24 h (A), 48 h (B), and 72 h (C) to determine
cell proliferation. Each experiment was independently performed three times. All data were shown
as mean ± SEM. *** p < 0.001, **** p < 0.0001, vs. Fn group. #### p < 0.0001, vs. Control.

2.7. Br-J-I Improves Intestinal Mucosa Tight Junction (TJ) in HCT116 Cell-Engrafted Mice with
Intratumoral Fn Colonization

Intestinal mucosa plays an important role in the absorption of nutrients and drugs.
The intestinal mucosal barrier is closely related to the TJ, including the expression of key TJ
proteins Claudin and ZO-1 [39]. To further test whether Br-J-I affects intestinal mucosal
barrier, the effect of Br-J-I on the expression of TJ proteins Claudin and ZO-1 was detected.
After inoculation with Fn, the expression of mRNAs encoding TJ proteins Claudin and ZO-1
were reduced significantly (Figure 8A,B). Br-J-I administration rescued the expression of
Claudin and Zo-1mRNAs in intestinal tissue of CRC mice within Fn colonization, to a level
similar to the control without Fn, indicating the improvement of intestinal barrier by Br-J-I.
The results suggest that Br-J-I enhances the intestinal mucosal barrier by up-regulating the
expression of key TJ proteins. Compared with MET, Br-J-I exhibited better anti-Fn effects
in vivo and improved the intestinal mucosal barrier.

2.8. Br-J-I Synergizes with 5-FU to Exert the Antitumor Effect

Br-J-I does not act directly on the tumor cells, it inhibits the CRC progression induced
by Fn and Fn-associated cancer-promoting inflammation. The 5-FU-based chemotherapy
is a common treatment for CRC. However, clinical outcomes of 5-FU for CRC patients
need to be improved, due to the emergence of relapse and refractory in CRC patients [40].
The effect of Br-J-I combined with 5-FU chemotherapy on the antitumor activity against
CRC cells co-cultured with Fn was detected. At the concentration of 5 µM, 5-FU exhibited
little cytotoxicity against HCT116 cells (Figure 9A,B). In line with Figure 5A–C, Br-J-I alone
inhibited the tumor proliferation induced by Fn, shown as about 20% decrease in viability
by MTT assay at 10 µM. When combined with Br-J-I, the cell proliferation of HCT116 cells
was further reduced by about 40%. The Q values of the combination of Br-J-I (20 µM) with
5-FU (5 µM) were over 1.15, indicating a strong anti-tumor synergistic effect. The results
suggested that the combination of Br-J-I and 5-FU exerts a better antitumor effect.
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Figure 6. Effect of Br-J-I on the growth of the HCT116-xenograft tumors with intratumoral Fn colo-
nization. Tumor volume (A) and tumor weight (B) of HCT116-derived tumors from the CRC mice
inoculated with Fn in the presence of Br-J-I (10 mg/kg) or MET (40 mg/kg). (C) Immunohistochem-
istry of Ki-67+ cancer cells in the HCT116-tumor xenografts after the treatments of Br-J-I (10 mg/kg)
and MET (40 mg/kg), respectively. Scale bar: 100 µm (Top), 4-fold magnification of top (Bottom).
(D) Quantification of Fn-specific RNA in the tumors of CRC mice with or without Fn colonization
in the presence of Br-J-I (10 mg/kg) and MET (40 mg/kg), respectively. (E) QPCR of FadA RNA in
tumors of mice engrafted with HCT116 cells with Fn colonization and Br-J-I treatment. All values
are represented as mean ± SEM. * p < 0.05, *** p < 0.001, vs. Fn group. ### p < 0.001, #### p < 0.0001,
vs. Control.
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Figure 7. Effect of Br-J-I on the Fn-induced inflammation in vivo. (A) H&E staining of colon tissues
of HCT116-xenograft-bearing mice to examine the gut inflammation and barrier. Scale bar: 100 µM
(Top), 4-fold magnification of top (Bottom). (B–E) Quantification of the expression of genes encoding
the proinflammatory cytokines TNF-α (B,D) and IL-1β (C,E) in the tumors (B,C) and the colon
tissues (D,E) of the CRC cells-engrafted mice with or without Fn colonization in the presence of Br-J-I
(10 mg/kg) and MET (40 mg/kg). All values are represented as mean ± SEM. * p < 0.05, ** p < 0.01,
**** p < 0.0001, vs. Fn group. ## p < 0.01, #### p < 0.0001, vs. Control.
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cultured with Fn were treated with 5-FU (5 µM) alone or in combination with different concentrations
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Fn group.

3. Discussion

At present, the clinical treatment of CRC mainly focuses on the tumors or the host
itself, and the efficacy of the treatments is far from satisfactory. The existing treatment
option cannot meet the needs of various CRC patients. Fn has been found to be abnormally
increased in tumor tissues of CRC patients, which is one of the driving forces for the
initiation and development of CRC [10,41,42]. However, safe and efficient treatment
options for intestinal bacteria are very scarce, and the development of novel agents targeting
intestinal bacteria is in urgent need.

AMPs are a kind of bioactive peptide produced in organisms, widely existing in in-
sects, plants, and animals. As an important part of the innate immune defense, AMPs have
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the potential to be developed as new antimicrobials [43]. AMPs have a broad spectrum
of antimicrobial activity and they usually kill microbes by disrupting cell membranes,
through which they are less likely to develop resistance. AMPs often have low cytotoxicity
to mammalian cells. In addition, AMPs have potent antitumor effects [44]. Due to these
advantages, including potent antimicrobial activity, low toxicity, and difficulty in develop-
ing resistance, AMPs have become one of the hot spots in the research and development of
novel antimicrobial agents.

In this study, AMPs were used to study the effects on the growth of CRC by regulating
intestinal bacteria. The clinical studies have shown that the intestinal flora abnormally
increased in CRC patients are mainly Gram-negative bacteria [11,12,14]. Our previous
studies showed that AMP J-I derivatives, Br-J-I, Cl-J-I, and I-J-I showed potent antibacterial
activity against Gram-negative bacteria [30]. In addition, these peptide analogs have very
low cytotoxicity and good selectivity. In this study, the antibacterial activities of these
peptide analogs against Fn were detected. The results showed that Br-J-I had the best an-
tibacterial activity among these J-I derivatives. Subsequently, the antimicrobial mechanism
of Br-J-I was studied. By studying membrane integrity, we found that the fluorescence
of membrane-selective dye FM4–64 was decreased, indicating that Br-J-I disrupted the
integrity of the bacterial cell membrane. Therefore, after Br-J-I treatment, extracellular
fluorescent probe, such as PI, can permeate Fn and bind with DNA to produce strong
fluorescence. The results showed that Br-J-I killed Fn by inducing the cell membrane
disruption, which was consistent with the images of scanning electron microscopy of Br-J-I
and other J-I derivatives against Escherichia coli (E. coli) in our previous study [30]. Electron
microscopy revealed that addition of Br-J-I induced the formation of protrusions in the
bacterial membrane and, eventually, disassembled the bacterial membrane [30]. In in vitro
assay, we did not see the oligomerization property of Br-J-I and Br-J-I is not likely a trans-
membrane helix due to its short length and its amino acids distribution. Br-J-I could target
bacterial membrane proteins and upon the binding of Br-J-I, the confirmational changes and
oligomerization of complex could mediate the formation of bacterial membrane protrusions.
FadA locates in the outer membrane of bacteria, which is a potential binding target of Br-J-I
by molecular docking analysis. Br-J-I might target FadA oligomerization motif and induce
FadA oligomerization within the membrane to permeabilize the membrane. Moreover,
recent studies have proved that Gram-negative bacteria such as Fn and E. coli are closely
associated with the initiation and development of CRC [14]. Our previous studies showed
that Br-J-I exhibited potent antibacterial activity against E. coli [30]. High cytotoxicity is one
of the factors limiting the widespread application of antibacterial agents. Although some
antibiotics have excellent antibacterial activity, their high toxicity to host cells is unsuitable
for frail and vulnerable CRC patients. In addition, the cytotoxicity of Br-J-I on human
colon epithelial cells, human colorectal cancer cells, and murine colon cancer cell lines was
minimal, and no significant cytotoxicity was found even at high doses (>8 MIC). These
results suggest that Br-J-I will be tailor-made for CRC.

Fn promoted the proliferation of CRC cells, while the treatment of Br-J-I significantly
rescued the proliferation of CRC cells by inhibiting Fn. The in vivo studies verified that Fn
promoted the growth of CRC tumors and when Br-J-I was administrated, it significantly
hindered the growth of CRC tumors by inhibiting Fn. We further quantified Fn load in
the tumor tissue and showed that Br-J-I significantly reduced Fn load in the xenograft
tumors in mice within Fn colonization. Consistently, the expression of FadA in tumors
and colons was also reduced by Br-J-I. These results indicated that Br-J-I inhibited the
Fn-induced growth of CRC tumors by directly blocking Fn. Moreover, our results showed
that Br-J-I blocked the production of proinflammatory cytokines induced by Fn. This has
important implications for the treatment of CRC, because CRC growth can be inhibited by
suppressing the proinflammatory cytokines [38,45,46].

Br-J-I has potent antimicrobial activity and no cytotoxicity to CRC itself, and it sig-
nificantly inhibits the growth of CRC promoted by Fn, suggesting that Br-J-I counteracts
the adverse effects of Fn on CRC through its antimicrobial activity against Fn. The results
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indicated that the effect of Br-J-I on CRC tumors was mainly due to an indirect effect.
5-FU-based chemotherapy is a common treatment for CRC. Resistance to 5-FU often also
emerges and clinical outcomes of 5-FU for CRC treatment is urgently needed for improve-
ment [47]. At the concentration of 5 µM, 5-FU exhibited little cytotoxicity against HCT116
cells. After combination with Br-J-I, the cell viability of HCT116 cells was dramatically
reduced by more than 40%. This suggests that Br-J-I sensitizes the cytotoxicity of 5-FU and
Br-J-I synergizes with 5-FU to exert a better antitumor effect. Therefore, Br-J-I could be an
ideal adjunctive therapy for CRC.

4. Materials and Methods
4.1. Synthesis and Purification of AMPs

AMPs were synthesized by a stepwise solid-phase method on rink amide 4-methyl-
benzhydryl amine (MBHA) resin by N-9-fluorenylmethoxycarbonyl (Fmoc) chemistry,
as described [48]. AMPs were purified by reverse phase high-performance liquid chro-
matography (RP-HPLC) (Waters 600, Milford, MA, USA) and gradient elution by 20–80%
CH3CN/H2O with µBondapak C18 19 mm by 300 mm column [30]. The purity of these
peptides is more than 95% determined by NMR.

4.2. Minimum Inhibitory Concentration (MIC) Assay

MICs of J-I and its halogenated derivatives against Fusobacterium nucleatum (Fn) (ATCC
25586) were determined by the Clinical and Laboratory Standards Institute microdilution
method [30]. Fn was cultured in brain heart infusion broth (BD Difco, Cockeysville, MD,
USA) at 37 ◦C under the anaerobic workstation (Don Whitley Scientific, Bingley, UK).
Bacteria were cultured to logarithmic growth phase and adjusted to the inoculum size of
3 × 108 colony-forming units (CFU)/mL. Bacterial inoculum was incubated with various
concentrations of AMPs or positive control metronidazole (MET) at 37 ◦C for 24 h. Each
experiment was independently replicated at least three times.

4.3. Minimum Bactericidal Concentration (MBC) Assay

MBC of J-I and its halogenated derivatives were determined based on their MIC. The
mixture with peptide analogs at different concentrations above the MIC was added to agar
plates and then incubated at 37 ◦C. After 24 h, the number of CFU was observed [30]. The
concentration that decreased the viability of Fn by ≥99.9% was defined as MBC of J-I and
its halogenated derivatives.

4.4. Outer Membrane (OM) Permeability

The effect of Br-J-I on the OM permeability of Fn was determined by hydrophobic
fluorescent probe N-Phenyl-1-naphthylamine (NPN, Aladdin, Shanghai, China) as previ-
ously described [30]. Fn was washed and suspended with PBS. The bacterial inoculum was
adjusted to the OD 600 nm (OD600) of 0.5 ± 0.02 and divided into two groups: (1) peptides
groups (100 µL Fn solution + 50 µL peptide+ 50 µL NPN); (2) Control group (100 µL Fn
solution + 50 µL PBS + 50 µL NPN). The concentration of peptides is 1 × MIC to 8 × MIC.
NPN fluorescence was continuously monitored for 13 min using a multifunctional mi-
croplate reader (Molecular Devices, Shanghai, China) with the excitation and emission
wavelength of 350 nm and 420 nm, respectively.

4.5. Flow Cytometric Analysis

Fn was washed and suspended in PBS. The OD600 of bacterial inoculum was adjusted
to 0.4 and treated with Br-J-I with the concentrations from 1 × MIC to 4 × MIC at 37 ◦C.
After 5 min, the mixture was washed and suspended in PBS, followed by addition of 1 µL
propidium iodide (PI, 1 mg/mL) for 15 min [49]. The effect of AMPs on the membrane
permeability of Fn was conducted by using flow cytometer (Becton Dickinson and Company,
Franklin Lakes, NJ, USA).
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4.6. Laser Scanning Confocal Microscopy (LSCM)

Fn was washed and suspended in PBS with an OD600 of 0.4. The bacterial solution
was treated with Br-J-I at the concentrations from 1 × MIC to 4 × MIC at 37 ◦C. After 1 h,
the mixture was washed and resuspended in PBS containing 1 µL membrane-selective red
fluorescent dye FM4-64 (1 µg/mL) and cell-permeant nucleic acid binding dye acridine
orange (AO, 1 µg/mL) to stain the nucleic acids for 15 min. The fluorescence imaging was
conducted by LSCM (Leica TCS SP8, Nussloch, Germany).

4.7. Binding Mode Prediction

The sequence and structure of the peptide was drawn by ChemDraw software to obtain
the 2D structure of the peptide and the 2D structure of the peptide was then imported
into Chem3D software to transform it into a 3D structure of the peptide according to the
default parameters of the software [50]. The 3D structure of the peptide was used for the
molecular docking analysis. The binding model of Br-J-I with Fn was predicted as formerly
described [51]. The crystal structures of key bacterial proteins FadA (PDB: 3ETW) were
downloaded from the Protein Data Bank. The structures of FomA were downloaded from
AlphaFold prediction database with the code AF-Q47903 [36,52]. Molecular docking was
performed by Vina docking software v.1.1.2. (http://vina.scripps.edu/). The interaction
between ligand and receptor was determined by PyMOL software v1.7.2.1 (http://www.
pymol.org/2/) to obtain information on binding energy and hydrogen bond.

4.8. Cytotoxicity

The cytotoxicity of Br-J-I was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylt
etrazolium bromide (MTT) assay (Beyotime, Jiangsu, China), as previously described [53].
Human CRC cell lines HCT116 (RRID: CVCL_0291), HT29 (RRID: CVCL_A8EZ), LoVo
(RRID: CVCL_0399), and human colon epithelial cell line NCM460 (RRID: CVCL_0460)
were purchased from the Shanghai Institutes for Biological Sciences of the Chinese Academy
of Sciences. Murine colon cancer cell line MC38 was purchased from the Chinese Academy
of Medical Sciences. The cells were cultured in Dulbecco’s modified Eagle medium (Gibco,
Grand Island, NY, USA) supplemented with 10% Fetal Bovine Serum (Gibco, Grand Island,
NY, USA), penicillin, and streptomycin at 37 ◦C with 5% CO2. 1 × 104 cells were seeded
per well in a 96-well plate and cultured overnight before addition of various concentrations
of Br-J-I. After 72 h incubation with the AMPs, 20 µL MTT solution (5 mg/mL) was added
to each well and incubated at 37 ◦C for 4 h [54]. The supernatant was discarded, and 150 µL
dimethyl sulphoxide was added. The absorbance at 570 nm was detected by a microplate
reader (Molecular Devices, Shanghai, China). The experiments were repeated 3 times. All
human cell lines have been authenticated using STR (or SNP) profiling within the last three
years. All experiments were performed with mycoplasma-free cells. All cell lines used was
provided from American Type Culture Coll.

4.9. Effect of Br-J-I on Cell Proliferation

The Effect of Br-J-I on cell proliferation of colorectal cancer co-cultured with Fn was de-
termined as previously described [55,56]. Human colorectal cancer cell lines HCT116 were
seeded in a 24-well plate at a density of 1 × 104 cells per well. Cells were incubated with
Fn (multiplicity of infection of 1000) in the presence and absence of various concentrations
of Br-J-I. Cell counts for each group were conducted at 24 h, 48 h, and 72 h by Countstar
cell counter (ALIT, Shanghai, China). Each experiment was independently replicated at
least three times.

4.10. Effect of Br-J-I on the Growth of Murine CRC with Fn Colonization

The murine CRC with bacterial colonization was conducted as previously described [41,57].
Mouse experiments were performed under the National Guidelines for Animal Usage
in Research of China and the guideline of the Ethics Committee of Shanghai University
of Traditional Chinese Medicine with the approved protocol PZSHUTCM220711010. All

http://vina.scripps.edu/
http://www.pymol.org/2/
http://www.pymol.org/2/
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NU/NU nude mice were purchased from the Shanghai Slac laboratory animals center.
Human colorectal cancer cell HCT116 was subcutaneously injected into the right axilla
of 4-week-old nude mice (1 × 107 cells /100 µL PBS of each mouse) to establish the CRC
xenograft model. Mice were randomly divided into 4 groups: (a) Saline as a control
group; (b) Fn group; (c) Br-J-I (10 mg/kg) +Fn; (d) metronidazole (MET, 40 mg/kg positive
group) +Fn. Nine days after HCT116 inoculation, Fn or vehicle control was intratumorally
injected into each mouse every 3 days for 18 days. In addition, on the same day, mice
were intraperitoneally administrated with Br-J-I or MET for the selected group every
3 days for 18 days. Tumor volume = (A × B2) /2, where A and B are the length and
width and measured every 3 days. After the last administration, the mice were sacrificed
for the collection of tumors and colon tissues. Tumors and colon tissues were fixed in
10% formalin, and then embedded in paraffin. Tumor sections were stained with Ki-67
monoclonal antibody (1:200, Servicebio, Wuhan, China) and colon tissues were stained
with hematoxylin–eosin (H&E) (Solarbio, Beijing, China).

4.11. Quantification of Fn Load in the Tumors and the Expression of the Proinflammatory
Cytokines in Tumors and Colon Tissues

Quantitative real-time polymerase chain reaction (qPCR) was used to quantitate Fn
load in the tumors [10,17] and the expression of the proinflammatory cytokines in tumors
and colon tissues as previously described [41,58,59]. Total RNAs were extracted from
CRC tumors or colons using Trizol reagent (Beyotime, Shanghai, China) according to the
manufacturer’s protocol. Hifair®®IIISuperMix Plus (Yeasen, Shanghai, China) and Hieff®®

qPCR SYBR Green Master Mix (Yeasen, Shanghai, China) were used to do the reverse
transcription and qPCR, respectively, according to the manufacturer’s instructions. Relative
mRNA expression of different groups was calculated by 2(−∆∆CT) method. The sequences
of primers were listed in Table S1.

4.12. Analysis of Intestinal Permeability of Murine CRC

The effect of Br-J-I and MET on the expression of tight junction proteins Zona occludens
protein 1 (ZO-1) and Claudin in the intestinal tissue of CRC-engrafted mice inoculated with
Fn were analyzed by qPCR as described above.

4.13. Effect of Br-J-I Combined with 5-Fluorouracil

Cell viability was measured by MTT assay. HCT116 cells (5000 cells/well) were seeded
in a 96-well plate in the presence or absence of Fn (multiplicity of infection of 1000) and
treated with different concentrations of Br-J-I and 5-fluorouracil (FU) (5 µM) for 48 h.
The medium was carefully discarded, and RPMI1640 medium and 20 µL MTT solution
(5 mg/mL) were added to incubate for 4 h. The medium was discarded and replaced
with 150 µL dimethyl sulphoxide (DMSO). The absorbance was measured at 570 nm by
a microplate reader (Molecular Devices, Shanghai, China). The synergistic effect of Br-J-I
and 5-FU against HCT116 cells was estimated by Q value [60]. The Q value was calculated
by the equation: Q = E (A + B)/E(A) + E(B) − E(A) × E(B) [61], where E(A + B) means
the tumor growth inhibition rates of the combination of Br-J-I and 5-FU, E(A) and E(B)
represent the tumor growth inhibition rates of Br-J-I and 5-FU, respectively. Q < 0.85
suggests an antagonistic effect of Br-J-I and 5-FU. 0.85 ≤ Q < 1.15 suggests an additive
effect of Br-J-I and 5-FU. Q ≥ 1.15 suggests a synergistic effect of Br-J-I with 5-FU.

4.14. Statistical Analyses

Graphpad prism 8.0.2 software was used for data analysis and graphing. Statistical
significance was evaluated by one-way analysis of variance (ANOVA with Dunnett’s
post-hoc analysis). All values are expressed as mean ± SEM, and values of p < 0.05 were
considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, compared
with Fn group. #p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001, compared with the
NC group.
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5. Conclusions

In summary, the optimized AMP Br-J-I, designed by us, exhibits potent antibacterial
activity against Fn with negligible cytotoxicity. Br-J-I effectively inhibited Fn-induced
tumor-promoting effect of CRC and inflammation by directly killing Fn, which has the
potential to become a novel therapy for regulating intestinal bacterial dysbiosis and an
adjunct therapy for CRC. Several intestinal bacteria, including Fn, are abnormally active
in CRC patients, posing a great risk of colorectal carcinogenesis, cancer metastasis, and
chemoresistance. However, safe and efficient treatment options for intestinal bacteria are
very scarce in fragile CRC patients. This study provides a novel approach for the clinical
treatment of CRC, in which AMPs can be used as adjuvant therapy to eliminate the adverse
effects of pathogenic intestinal bacteria on CRC. In addition, Br-J-I synergizes with 5-FU to
exert the antitumor effect, proving that Br-J-I as adjunctive therapy would further enhance
the chemotherapy efficacy of CRC. We hope that this study will provide a new direction for
the future development of candidates for adjunctive therapy for CRC.
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