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As a noted medicinal mushroom, Ganoderma lucidum (G. lucidum) has been reported to
have a number of pharmacological effects such as anti-tumor and liver protection.
Compared with the common ethanol reflux method, supercritical CO2 extraction has
obvious advantages in obtaining antitumor extracts from G. lucidum fruiting body such
as short extraction time, low temperature and no solvent residue. However, Using high-
pressure supercritical CO2 without entrainer to obtain the antitumor extracts fromG. lucidum
and studying their anti-hepatoma effect have not been reported. In this study, high-pressure
supercritical CO2 extracts obtained under 65, 85, and 105MPa pressure named as G65,
G85, G105 respectively and ethanol reflux extract (GLE) were used to investigate their anti-
hepatoma activity and the underlyingmolecular mechanism. The total triterpenoid content of
G85 was significantly higher than that of G65 and GLE, but did not differ significantly from
that of G105byUVand high-performance liquid chromatography. GLE,G65, andG85 could
inhibit cell proliferation, arrest cell cycle in G2/M phase, and induce apoptosis in two liver
cancer cell lines (QGY7703 and SK-Hep1), of which G85 had the strongest effect. The
results showed that the potency of their cytotoxicity of the high-pressure supercritical CO2

extracts on human hepatoma carcinoma cells in vitro was consistent with their total
triterpenoid content. G85 exhibited significant anti-hepatoma effect with low toxicity In
vivo. Further mechanistic investigation revealed that the anti-tumor effect of these extracts
was associated with their inhibition of Ras/Raf/MEK/ERK signaling pathway. Our findings
suggest that the high-pressure supercritical CO2 extraction of G. lucidum fruiting body can
be used to obtain a triterpenoid-rich anti-tumor agent, which may have potential clinical
significance for the treatment of human hepatoma.
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INTRODUCTION

Ganoderma lucidum (Leys. ex Fr.) Karst. (G. lucidum), also
known in China as Lingzhi, is a precious traditional Chinese
medicine which has been used for more than 2000 years (Li Z.
et al., 2020). Its medicinal information was first shown in the book
of Shen Nong Ben Cao Jing (Shennong Materia Medica) written
in 100 B.C. in China. G. lucidum is registered in the Chinese
Pharmacopoeia for the efficacy of replenishing qi, tranquilizing
the mind, and relieving cough and asthma (Chinese
Pharmacopoeia Commission, 2015). In the past few decades, it
has been reported thatG. lucidum has anti-cancer (Li et al., 2013a;
Guo et al., 2018; Zhao et al., 2018; Zhu et al., 2018; Acevedo-Díaz
et al., 2019), immunomodulatory (Ishimoto et al., 2017),
antioxidant (Kan et al., 2015; Bhardwaj et al., 2016),
antidiabetic (Pan et al., 2013; Ma et al., 2015), antimicrobial
(Gaylan et al., 2018; Naveenkumar et al., 2018), hepatoprotective
(Chatterjee and Acharya, 2016), and anti-inflammatory (Cai
et al., 2016) effects. Since it has been proved to improve
quality of life in cancer patients, G. lucidum preparation is
widely used in adjuvant therapy for cancer as a traditional
Chinese medicine (Bao et al., 2012; Jin et al., 2016). To date,
triterpenoid and polysaccharides are considered to be the main
anti-tumor components of G. lucidum (Ahmad et al., 2020). The
ethanol reflux extraction method is commonly used for
industrially extraction of triterpenoids from the fruiting body
of G. lucidum, but it needs longer extraction time and generates
organic solvent residue (Zhang et al., 2011). In comparison,
supercritical CO2 fluid extraction has obvious advantages
including short extraction time, low extraction temperature
and no solvent residue. It has a good development prospect in
the food or pharmaceutical industry (Molino et al., 2018; Jiao
et al., 2020). Due to the non-polar nature of CO2, supercritical
CO2 with entrainer was used to extract triterpenoids from the
fruiting body of G. lucidum at 24 MPa (Lu et al., 2012). Since
higher extraction pressure can increase the density of
supercritical CO2, which enhances its ability to extract
liposoluble components, our team has extracted triterpenoid
and sterols from G. lucidum fruiting body by the technology
of high-pressure supercritical CO2 extraction without entrainer
(Hua et al., 2018). However, the effects of different extraction
pressures on the triterpenoid content of G. lucidum and the anti-
tumor effect of the extracts was not clear. In the present study, we
used high-pressure supercritical CO2 extraction technology to
investigate the effect of supercritical CO2 under different
extraction pressures on the total triterpenoids content of the
extracts. And we further studied the anti-tumor effect of the
extracts on human hepatoma cells QGY7703 and SK-Hep1. Our
results suggest that within a certain range, the extraction pressure
is directly proportional to the triterpenoids content and the anti-
tumor effect of supercritical CO2 extract of G. lucidum
fruiting body.

Human hepatoma is a common type of human cancer. It is
also a significant cause of cancer-related death throughout the
world. Aberrant activation of the Ras/Raf/MEK/ERK pathway
has been shown to be involved in the pathogenesis and
progression of human hepatoma (Gao et al., 2015). Although

it was reported that G. lucidum extract inhibited liver cancer
growth by arresting cell cycle in G2 phase and inhibiting protein
kinase C (Lin et al., 2003). However, to date, the effect of high-
pressure supercritical CO2 extracts of G. lucidum on the Ras/Raf/
MEK/ERK signaling pathway in liver cancer cells has not been
reported. In the present study, the high-pressure supercritical
CO2 extracts of G. lucidum fruiting body were evaluated for their
effects on QGY7703, SK-Hep1 cells and the Ras/Raf/MEK/ERK
signaling pathway, which laid a foundation for finding drugs to
treat liver cancer.

MATERIALS AND METHODS

Materials and Reagents
The fruiting body of G. lucidum was collected from Fujian
Xianzhilou Biological Science and Technology Co., Ltd.,
Fuzhou, China. The fungus was identified as G. lucidum
(Curtis: Fr.) Karst. (Polyporaceae), and a voucher specimen
(no. GL-20140309) has been deposited at the Pharmacognosy
Laboratory, School of Pharmacy, Fujian Medical University. The
standards of ganoderic acid A, ganodermanontriol and Oleanolic
acid are provided by China National Institute of Pharmaceutical
and Biological Products.

MTT [3-(4, 5-dimethyl thiazole-2)-2, 5-diphenyltetrazolium
bromide] was purchased from Sigma, St Louis, MO, United
States. Primary antibodies against Caspase-7, caspase-3,
caspase-9, cleaved caspase-9, PARP, cleaved PARP, Ras, C-Raf,
p-C-Raf, MEK, ERK, p-MEK, p-ERK and GADPH were obtained
from cell signaling Technology, Inc., Danvers, MA, USA.
Horseradish peroxidase (HRP) labeled sheep anti-rat/anti-
rabbit IgG (secondary antibody), BCA protein quantitative kit,
protease inhibitor, phosphatase inhibitor, flow cytometry
apoptosis detection kit were all purchased from Roche
Diagnostics, Basel, Switzerland. SPF BALB/C nude mice were
purchased from Shanghai SLAC Laboratory Animal Co., Ltd.,
Shanghai, China (certificate No. 2015000560044).

Preparation and Analysis of Extracts
High-pressure supercritical CO2 extraction of G. lucidum fruiting
body was carried out as described in the literature (Hua et al.,
2018). Briefly, the G. lucidum fruiting body fine powder
1 kilogram was charged into the supercritical fluid CO2

extracting apparatus (Uhde High Pressure Technologies
GmbH, Hagen, Germany). The extraction was carried out
under different pressures (30, 65, 85, 105 MPa). The extraction
conditions also included 50°C of temperature, 4.0 h of extraction
time and 12 L/h of CO2 flow rate. The extracts were collected
from the separation kettle and dried at 65°C. The supercritical
CO2 extracts obtained at 65, 85, and 105 MPa were named G65,
G85, and G105, respectively. However, under 30 MPa extraction
pressure of supercritical CO2 without ethanol entrainerthe the
extract could not be obtained. G. lucidum extract (GLE) was
obtained from G. lucidum fruiting body fine powder 1 kilogram
by ethanol through heating reflux in a water bath.

The total triterpenoid contents of G. lucidum extracts (G65,
G85, G105, and GLE) were determined by Varian Cary
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50 ultraviolet-visible spectrophotometry according to the report
previously with some modification (Wu et al., 2016). Briefly,
the methanol solution of each extract (200 μl, 20 mg/ml) was
evaporated in a water bath and mixed with the vanillin-glacial
acetic acid (5%, w/v, 0.3 ml) and 1.2 ml of perchloric acid. The
mixture was incubated at 70°C for 15 min, cooled for 5 min in
an ice water bath and mixed with 8.5 ml of glacial acetic acid.
After 15 min, the absorbance was read at 550 nm. Oleanolic
acid was used as a reference standard while the total
triterpenoid content was expressed as an oleanolic acid
equivalent through the calibration curve for oleanolic acid.

The HPLC analysis of G. lucidum extracts, ganoderic acid A
and ganodermanontriol were determined by the following
method. The samples were dissolved in acetonitrile solution
and filtered by 0.45 μm membrane. 20 μl supernatant was
injected into the HPLC system. Chromatographic
conditions: LC-20AD liquid chromatograph (Shimadzu
Corporation, Kyoto, Japan) with Kromasil C18 column (4.6
× 250 mm, 5 μm). Mobile phase: acetonitrile (B) - 2% acetic
acid water (A), gradient mode : 0 min, A: 65%, B: 35%; 10 min,
A: 63%, B: 37%; 30 min, A: 61%, B: 39%; 35 min, A:55%, B:
45%; 50 min, A:38%, B: 62%; 90 min, A:0%, B: 100%. The flow
rate was 1.0 ml/min. The column temperature was 30°C. The
detection wavelength was 254 nm.

Cell Culture and Treatment
The two human hepatoma cancer cell lines (QGY7703 and SK-
Hep1) were originally obtained from American type culture
collection (ATCC). Cells were maintained in DMEM medium
containing penicillin (50 U/ml), streptomycin (50 U/ml) and 10%
fetal bovine serum (FBS; Germany PAN biotechnology Co., Ltd.)
at 37°C in a humidified incubator containing 5% CO2.

The cells were treated with 31.25, 62.5, 125, 250, and 500 μg/ml
of each G. lucidum extract. Each G. lucidum extract was dissolved
in dimethyl sulfoxide (DMSO). The final concentration of DMSO
in each well was less than 0.1% (v/v).

Cytotoxicity and Colony Formation Assay
The cells were cultured in a 96-well plate at a density of 4×103
cells/well, and then incubated with or without G. lucidum extract.
The cell viability was determined using an MTT assay to evaluate
the cytotoxicity of the extract (Xu et al., 2018).

The colony formation assay was conducted with the previous
method (Shi et al., 2018). QGY7703 and SK-Hep1 cells were
seeded in 12-well plate at 5 × 104 cells per well. After 12 h of
treatment with G. lucidum extract, the cells were resuspended.
Then, each well was seeded with 500 cells per well in 12-well plate,
and cultured in a cell culture box for 14 days to form colony. The
cells were washed with PBS, fixed with paraformaldehyde and
then stained with 0.5% (v/v) crystal violet. The colony formation
was captured via a stereomicroscope (model SZX16) from
Olympus, Tokyo, Japan.

Western Blotting
QGY7703 and SK-Hep1 cells (3 × 106 cells/well in 10 cm2 plate)
were treated with 150 μg/ml G lucidum extract or DMSO for 48 h.
Then, total protein was extracted. 20 μg protein was loaded and

separated by SDS-PAGE and transferred to polyvinylidene
difluoride membranes according to previously procedures (Li
et al., 2019). After blocking with 5% non-fat milk at room
temperature for 2 h, the membranes were incubated with the
indicated primary antibodies overnight at 4°C. The membranes
were then washed three times and incubated with peroxidase-
conjugated goat anti-rabbit or anti-mouse secondary antibodies,
the immunoreactivity was visualized using an ECL Kit
(Amersham Pharmacia Biotech, Piscataway, NJ, United States).

Cell Cycle and Apoptosis Analysis
Cells (3 × 105) were seeded in 6-well plate and treated with G.
lucidum extracts for 24 h. The cells were harvested, fixed with
3 ml ice-cold 75% ethanol at 4°C for 1 h and stained with 50 µg/ml
of propidium iodide (PI). Cell cycle analysis was performed on a
flow cytometer from Becton-Dickinson, San Jose, CA as
previously described (Yoshioka et al., 2017).

Cells (3 × 105) were seeded in 6-well plate and treated with
G. lucidum extract for 24 h. Cells were washed with ice-cold
PBS, resuspended in 100 µl of binding buffer (1% bovine
serum albumin in PBS) and stained with fluorescein
isothiocyanate (FITC)-Annexin-V (BD Biosciences, San
Jose, CA). The cells were incubated for 15 min at room
temperature in the dark. Subsequently, 200 µl of binding
buffer containing 20 µg/ml PI was added immediately prior
to flow cytometry. The cells were analyzed with FACSCanto
cytometer and FACSDiva software (V.5.0.2) from BD
Biosciences, San Jose, CA. Early and late apoptosis or
necrosis were evaluated (Lu et al., 2019).

Anti-Tumor Experiment of Extracts in
Xenografts Model
G85 was dissolved in a mixture of ethanol and 0.5%
carboxymethyl cellulose saline (1:9, V/V). The dosage of G85
were 300 and 75 mg/kg by gavaged on the basis of preliminary
experiments.

Athymic nude mice (BALB/c-nu, 6–8 weeks of age; male,
body weight: 20.0 ± 2.0 g) were obtained from Shanghai SLAC
laboratory animal Co., Ltd. (Shanghai, China) and randomly
divided into six groups: negative control (gavage daily with
vehicle), positive control (intraperitoneal injection 30.0 mg/kg
cyclophosphamide: every 2 days) and G85 treatment (gavage
daily with 75 and 300 mg/kg). Mice in each group were
inoculated with about 20 mm3 volume of SK-Hep1 solid tumors
on the right forearm. When the tumor grew to 100 mm3, then the
mice were administrated for 43 days, their body weight and tumor
volume was measured every three days. At the end of experiment,
tumors were excised and weighed (Huang et al., 2014). All animal
experiments were approved by the Laboratory Animal Welfare &
Ethics Committee, Fujian Medical University (grant number
FJMU IACUC 2017-0093).

Statistical Analysis
All data were presented as the mean ± SD. Student’s t-test was
used to valuate the mean difference between the two groups. p <
0.05 was considered significant.
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RESULTS

Chemical Analysis of the Extracts
The extraction yield of G65, G85, G105, and GLE was 3.82%,
4.81%, 5.66%, and 5.28% respectively. Though the extraction
yield of G65 and G85 was lower than that of GLE, the total
triterpenoid content of G65 and G85 was higher than that of
GLE. It was worth noting that the total triterpenoid content of
G85 was 1.34 times that of GLE. Althought the extraction yield
of G105 was highest among the all extracts, there was little
difference in the total triterpenoids content between G85 and
G105, which suggested that the increase of extraction pressure
could improve the extraction yield, however, when the pressure
was over 85 MPa, the content of total triterpenoids tends to
reach saturated state (Figure 1A). When the extraction pressure
was too high, the solubility of impurities could increase, while
the solubility of the target extract did not change much, which
led to a decrease in the proportion of active substances in the
extract.

HPLC chromatogram of the extracts (Figure 1B) showed that
the retention time of chemical components in the extracts was
mainly distributed in the two periods: 0–40 and 60–90 min.
Compared with G65 and GLE, the number and area of
chromatographic peaks of G85 within a retention time of
60–90 min was significantly increased. However, there was no
significant difference between G85 and G105 in the number and
area of chromatographic peaks. As representative triterpenoids in
the extracts of G. lucidum, ganoderic acid A and
ganodermanontriol were determined with HPLC (Figures
1B,C). The results showed that all extracts especially in G85
and G105 contained ganoderic acid A (retention time 21.05 min)
and ganodermanontriol (retention time 64.33 min). From the

chromatogram, it was obvious that the content of ganoderic acid
A and ganodermanontriol of G85 was higher than that of GLE
and G65 but was basically the same as that of G105.

Antiproliferative Effect of the Extracts on
Hepatoma Carcinoma Cells Enhanced With
the Increase of Extraction Pressure
We found that the total triterpene content increased with the
increase of extraction pressure, so does the anti-tumor effect of
the extract also enhance? Therefore, we compared the anti-tumor
effect in vitro among different high-pressure extracts and ethanol
reflux extract. Cell viability was measured after treatment with
different concentrations of GLE, G65, G85, and G105 for 72 h in
the human hepatoma cells (QGY7703 and SK-Hep1). The
viability of QGY7703 and SK-Hep1 cells treated with G85 was
found to be significantly lower than that treated with G65 and
GLE, respectively (Figure 2A), whereas the viability of QGY7703
and SK-Hep1 cells treated with G105 was not clearly different
from that treated with G85 (data not shown). The IC50 of GLE,
G65 and G85 on QGY7703 cells were 200.90 ± 12.58, 172.32 ±
7.59, and 75.34 ± 0.63 μg/ml respectively, while those on SK-Hep1
cells were 255.05 ± 3.07, 189.45 ± 18.67, and 141.12 ± 5.09 μg/ml,
respectively (Figure 2B). These data showed that the order of
cytotoxicity of extracts on hepatoma carcinoma cells was G85 >
G65 > GLE, and colony formation of the extracts on QGY7703
and SK-Hep1 cells also revealed the similar antiproliferative
effects (Figures 3A,B). The results indicated that the
antiproliferative potency of the high-pressure supercritical CO2

extracts on human hepatoma carcinoma cells in vitro was
consistent with their triterpenoid content, suggesting that with
the increase of extraction pressure, the triterpenoid content of the

FIGURE 1 | The chemical analysis of the extracts. (A) The total triterpenes content of G. lucidum extracts (B) HPLC chromatograms of G. lucidum extracts (C)
HPLC chromatograms of reference substance. 1) ganoderic acid A, 2) ganodermanontriol. Data were shown as mean ± SD (n � 3), *p < 0.05 vs GLE, #p < 0.05 vs G65,
NS means no significant difference.
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FIGURE 2 | The cytotoxicity of G. lucidum extracts on human hepatoma carcinoma. (A) QGY7703, SK-Hep1 cells were treated with GLE, G65, and G85 for 72 h
and cell viability measured by MTT and expressed as a percentage of vehicle control. (B) The IC50 value of G. lucidum extracts on QGY7703, SK-Hep1 cells after
exposure of 72 h (n � 3). Data were shown as mean ± SD (n � 3), **p < 0.01 vs GLE, ##p < 0.01 vs G65.

FIGURE 3 | The antiproliferative activity of G. lucidum extracts on human hepatoma carcinoma in vitro. (A) QGY7703 and SK-Hep1 cells were treated with GLE,
G65, and G85 for 12 h, and cultured 14 days to form colony. (B) The colony number of QGY7703 and SK-Hep1 cells treated with GLE, G65, and G85 for 14 days. Data
were shown as mean ± SD (n � 3), *p < 0.05, **p < 0.01, vs control. #p < 0.05, ##p < 0.01, vs G85.
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extracts increased, and the antiproliferative activity of the extracts
also enhanced.

Extracts Arrested Cell Cycle in G2/M and
Induced Apoptosis on Human Hepatoma
Carcinoma Cells
Compared with vehicle control, QGY7703 and SK-Hep1 cells
treated with GLE, G65, and G85 (150 μg/ml) for 24 h displayed
obvious cell cycle arrest in the G2/M phase. The increase of cell
population in the G2/M phase was accompanied by a
concomitant decrease of cell population in the S and G0/G1
phases. However, among these three extracts, G85 had the most
significant effect on cell cycle arrest, particularly for SK-Hep1
cells (Figure 4).

QGY7703 and SK-Hep1 cells were treated with GLE, G65, and
G85 (150 μg/ml) for 24 h and analyzed for apoptotic cell death
using an Annexin-V: FITC Apoptosis Detection Kit. The results
showed that GLE, G65, and G85 all induced apoptosis and
necrosis in SK-Hep1 cells and QGY7703 cells, among which
G85 showed the strongest cytotoxicity. The apoptosis induction
of G85 on QGY7703 cells was significantly stronger than that of
SK-Hep1 cells, while the necrosis effect of G85 on SK-Hep1 cells
was more obvious. The above results suggested that cell necrosis
and apoptosis caused by the extract accounted for their decrease
of cells viability (Figure 5A). Western blot analysis revealed that
G85 could significantly down-regulate caspase 3 and 7 in both cell

lines, and decrease caspase 9, increase the cleaved caspase 9 in
QGY7703 cells, which was consistent with its more significant
apoptosis induction in QGY7703 cells (Figure 5B). It has been
reported that excessive activation of PARP can cause tumor cell
necrosis (Sosna et al., 2014). G85 significantly downregulated
PARP and upregulated cleaved PARP, which suggested that G85
could induce necrosis on hepatocellular carcinoma cells,
especially on SK-Hep1 cells.

Extracts Significantly Inhibited the Ras/Raf/
MEK/ERK Signaling Pathway
The Ras/Raf/MEK/ERK signaling pathway is involved in multiple
activities in the cell cycle and is usually in an activated status in
most advanced hepatocellular carcinoma cases (Gao et al., 2015),
and plays critical roles in prevent apoptosis (McCubrey et al.,
2006). The inhibition of this signaling pathway may effectively
suppress the growth of hepatocellular carcinoma cells, which has
been evidenced by many recent studies (Zhang et al., 2016; Zhou
et al., 2017). Therefore, we assessed the effect of the extracts on
Ras/Raf/MEK/ERK signaling pathways by Western blot. As
expected, after QGY7703 and SK-Hep1 cells exposed to the
150 μg/mL extracts for 48h, protein levels of Ras/Raf/MEK/
ERK observably decreased, while the phosphorylation of Raf,
MEK and ERK were inhibited by G85 to a greater extent than by
GLE and G65 (Figure 6), which was consistent with their
inhibition of proliferation and induction of apoptosis of

FIGURE 4 |G. lucidum extracts arrested cell cycle inG2/M. (A)QGY7703 andSK-Hep1 cells treatedwithGLE,G65, andG85 (150 μg/ml) for 24 h, ethanol fixation and
PI single staining were performed, and cell cycle was detected by flow cytometry. (B) Percentage of QGY7703 and SK-Hep1 cells in different cell cycle phases was shown.
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human liver cancer cells. These data implied that the cytotoxicity
of extracts on hepatocellular carcinoma cells may be associated
with inhibition of the Ras/Raf/MEK/ERK signaling pathway.

This data suggested that high-pressure supercritical CO2

extracts of G. lucidum fruiting body, especially G85, may have
potential clinical value in the treatment of human hepatoma.

G85 Significantly Inhibited Tumor Growth in
SK-Hep1 Cell Xenograft Model
Given G85 had the highest content ofG. lucidum triterpenoid and
the strongest anti-tumor activity in vitro among high-pressure
supercritical CO2 extracts ofG. lucidum fruiting body, we selected

G85 to test its anti-tumor effect on SK-Hep1 cells in vivo. In the
previous study, we found that the triterpenoid extract of G.
lucidum had a protective effect on acute liver injury induced
by carbon tetrachloride and alcohol in mice at a dose of 1 g/kg (Li
et al., 2013b), indicating that the triterpenoid extract of G.
lucidum has liver protective effect in this dosage. In this study,
we chose 75 and 300 mg/kg doses of G85 based on the
preliminary experiment to observe its anti-tumor effect in vivo.

SK-Hep1 human liver cancer xenograft model was established
to assess the anti-tumor effect of G85 in vivo at two doses (75 and
300 mg/kg i.g., qd). CTX (30 mg/kg i.p., q2d) was used as a
positive control. The results demonstrated that G85 inhibited
tumor growth in the SK-Hep1 xenograft model in a dose-

FIGURE 5 | Effect of G. lucidum extracts on QGY7703 and SK-Hep1 cells apoptosis. (A) QGY7703 and SK-Hep1 cells were treated with GLE, G65 and G85
(150 μg/ml) for 24 h and analyzed for apoptotic and necrotic cell death using an Annexin-V: FITC Apoptosis Detection Kit. (B)QGY7703 and SK-Hep1 cells were treated
with GLE, G65, G85 (150 μg/ml) for 48 h. The expression of Caspase 9, 3, and 7, PARP, cleaved Caspase 9 and cleaved PARP were determined by western blot. Data
were shown as mean ± SD. *p < 0.05 (cleaved PARP),**p < 0.01 (apoptosis rate), ##p < 0.01 (necrosis rate), vs control.
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dependent manner (Figures 7A,B). Compared with the vehicle
group, 75 and 300 mg/kg doses of G85 showed tumor inhibition
by 28.2% and 55.4%, respectively. Compared with the control
group, the body weight of mice in each dose group of G85 showed

no significant change, while that in CTX group was significantly
lower than the control, indicating that CTX has certain toxicity
on mice, while G85 in this dose range has no obvious toxicity on
mice (Figures 7C,D).

FIGURE 6 | G. lucidum extracts significantly inhibited Ras/Raf/MEK/ERK signaling pathway. QGY7703 and SK-Hep1 cells were treated with GLE, G65, and G85
(150 μg/ml) for 48 h. The expressions of Ras, c-Raf, p-c-Raf, MEK, p-MEK, ERK, and p-ERK were determined by western blotting. The western blot density was
analyzed, and the values of each protein were normalized with the values of the internal reference protein GADPH, and further compared with the control group. Data
were shown as mean ± SD. *p < 0.05, vs control.

FIGURE 7 | The antitumor effect of G85 in the SK-Hep1 cell xenograft model in vivo. (A) The tumor growth curve, drawn according to the average percentage
change of the tumor volume (B) The tumor weight of SK-Hep1 xenograft at the end of treatment in each group (n � 8). (C) The curve of mouse body weight measured
every 3 days (D) Data of body weight before and after course of treatment and tumor inhibition at the end of treatment. Data were shown as mean ± SD.*p < 0.05, **p <
0.01, vs control.
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DISCUSSION

There are many methods to extract triterpenoids from G.
lucidum, such as solvent extraction methods (Ruan et al.,
2014), ultrasonic extraction methods (Oludemi et al., 2018)
and microwave extraction methods (Fu et al., 2010). Some
researchers also used supercritical CO2 extraction technology
to extract triterpenoids from G. lucidum spore powder (Li
et al., 2016). The principle of supercritical CO2 extraction
technology is that when CO2 is in a critical state, it has the
characteristics of weak intermolecular force and high density,
which makes CO2 in the critical state have high mass transfer
rate, strong permeability, and no interphase effect. These
advantageous characteristics help to improve the solubility
of the medium and save energy. At the same time, the critical
CO2 has unusually high compressibility. Near the critical
point, slight changes in pressure or temperature cause
obvious changes in density of CO2, so that the dissolution
of CO2 can be changed simply by adjusting the temperature or
pressure of the system to improve the selectivity of extraction
(Khaw et al., 2019). Therefore, increasing the solubility of
critical CO2 by increasing the extraction pressure can become
the research direction of process optimization. However, the
effect of supercritical CO2 extraction pressures on the content
of triterpenoid and anti-tumor activity in G. lucidum extract
remains to be explored. In this study, we analyzed the
differences in composition of G. lucidum extract obtained
with supercritical CO2 at different pressures. The G.
lucidum extract could be collected only When the extraction
pressure was up to 65 MPa. With the extraction pressure
increasing to 85 MPa, the total triterpenoid content of G85
was significantly higher than that of G65. However, as the
pressureat up to 105 MPa, the total triterpenoid content of the
extract was only slightly higher than that of G85. Therefore,
the optimal pressure of supercritical CO2 extraction for
triterpenoids has a certain range. Appropriate high pressure
such as 85 MPa in this work for supercritical CO2 extraction is
beneficial to the enrichment of triterpenoids in supercritical
extract. It is well known that triterpenoids are one of the main
anti-tumor active components of G. lucidum (Li, et al., 2019).
The triterpenoid content of G85 is relatively high in our
extracts, which may account for be the its the most strong
antitumor activity in the extracts.

Some researchers had divided the G. lucidum extract into
neutral and acidic components, and found that the neutral
component had strong tumor cytotoxicity (Lu et al., 2012; Li P.
et al., 2020). We also separated the neutral component(G85NC)
and the acid component(G85AC) from G85. The cytotoxicity
assay showed that G85NC had more strong activity than
G85AC in QGY7703 cells, and its IC50 value was only
0.15 times that of G85AC (Supplementary Figure S1).
Taken together, we found that the anti-tumor active fraction
of G85 mainly existed in the neutral component (G85NC),
which was consistent with the results of previous studies (Gao
et al., 2006; Chen et al., 2017). However, which compounds in
neutral component of G85 play a major role for the anti-tumor
effect is worth further study.

G. lucidum extract has been shown to have anti-tumor effect in
various cell lines and animal models (Qu et al., 2014; Wang et al.,
2016). There are several events involving in the anti-tumor effect
of G. lucidum extracts such as blocking cell cycle (Zolj et al.,
2018), inducing apoptosis and autophagy (Cheng and Xie, 2019),
inhibiting tumor metastasis and angiogenesis (Li et al., 2012). The
Ras/Raf/MEK/ERK signaling pathway is one of the vital pathways
regulating cell proliferation and apoptosis in tumor cells,
therefore its inhibition may be accout for suppression of cell
growth and sensitivity to apoptosis for tumor cells (McCubrey
et al., 2006; Wen et al., 2019). Ganoderan, one of the components
of G. lucidum polysaccharides, was reported to regulate the
growth, motility and apoptosis of non-small cell lung cancer
cells through the Ras/Raf/MEK/ERK signaling pathway (Wang
et al., 2019). In our study, we first found that G85, a triterpenoid-
rich extract with high-pressure supercritical CO2 from G.
lucidum, could significantly inhibit the proliferation and
induce apoptosis of liver cancer cells via suppression of Ras/
Raf/MEK/ERK signaling pathway. G85 may have potential
clinical value in the treatment of human hepatoma and be
worth further study.

CONCLUSION

Within a certain range, the extraction pressure is directly
proportional to the triterpenoids content and anti-tumor effect
of Ganoderma lucidum supercritical CO2 extract. The
Ganoderma lucidum extract G85 obtained with high-pressure
supercritical extraction at 85 MPa has high triterpenoid content
and strong anti-tumor effect. The anti-tumor effect of G85 was
associated with its inhibition of Ras/Raf/MEK/ERK signaling
pathway in liver cancer cells. Therefore, the high-pressure
supercritical CO2 extraction of Ganoderma lucidum fruiting
body can be used to obtain a triterpenoid-rich anti-tumor
agent, which may have potential clinical value in the treatment
of human hepatoma.
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