
cancers

Review

Roles of TrkC Signaling in the Regulation of
Tumorigenicity and Metastasis of Cancer

Wook Jin

Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine,
Gachon University, Incheon 21999, Korea; jinwo@gachon.ac.kr

Received: 14 November 2019; Accepted: 7 January 2020; Published: 8 January 2020
����������
�������

Abstract: Tropomyosin receptor kinase (Trk) C contributes to the clinicopathology of a variety of
human cancers, and new chimeric oncoproteins containing the tyrosine kinase domain of TrkC occur
after fusion to the partner genes. Overexpression of TrkC and TrkC fusion proteins was observed in
patients with a variety of cancers, including mesenchymal, hematopoietic, and those of epithelial cell
lineage. Both microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were involved in the
regulation of TrkC expression through transcriptional and posttranscriptional alteration. Aberrant
activation of TrkC and TrkC fusion proteins markedly induces the epithelial-mesenchymal transition
(EMT) program, growth rate, tumorigenic capacity via constitutive activation of Ras-MAP kinase
(MAPK), PI3K-AKT, and the JAK2-STAT3 pathway. The clinical trial of TrkC or TrkC fusion-positive
cancers with newly developed Trk inhibitors demonstrated that Trk inhibitors were highly effective in
inducing tumor regression in patients who do not harbor mutations in the kinase domain. Recently,
there has been a progressive accumulation of mutations in TrkC or the TrkC fusion protein detected
in the clinic and its related cancer cell lines caused by high-throughput DNA sequencing. Despite
given the high overall response rate against Trk or Trk fusion proteins-positive solid tumors, acquired
drug resistance was observed in patients with various cancers caused by mutations in the Trk kinase
domain. To overcome acquired resistance caused by kinase domain mutation, next-generation Trk
inhibitors have been developed, and these inhibitors are currently under investigation in clinical trials.
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1. Introduction

Trk proteins (Trk or NTRKs) are identified as members of tropomyosins fused to a tyrosine
kinase domain and are single-pass transmembrane receptors. Trk proteins are activated by their
neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3
(NT-3), and neurotrophin 4/5 (NT4/5). TrkA, TrkB, and TrkC, encoded by NTRK1, NTRK2, and NTRK3,
respectively, and neurotrophins, exhibit specificity in interactions with the specific receptors. TrkA
preferentially binds NGF, and TrkB binds BDNF and neurotrophin-4/5, and TrkC physiologically binds
to neurotrophin-3 as high-affinity transmembrane receptors for neurotrophins [1,2]. Moreover, a small
peptide between the second immunoglobin-like C2 type 2 region and the transmembrane domain
of Trk proteins affects ligand-binding specificity [3–5]. Neurotrophins and their-specific receptors
regulate survival, growth, differentiation, and apoptosis in the peripheral and central neuronal systems.
Activation of the Ras/MEK/MAPK pathway, PI3K/AKT pathway, and phospholipase C-gamma (PLCγ)
signaling by Trk activation is crucial for neuronal survival [2,6,7].

The reduction of TrkC expression has been observed in neurodegenerative diseases, including
Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s diseases (HD). The selective degeneration
and dysfunction of cholinergic basal forebrain neurons of the nucleus basalis is a feature of AD that
mainly correlates with severe cognitive impairment. TrkC (58%) is well expressed in numerous NB
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of Meynert neurons in control brains, but these expressions were significantly reduced by about
two-fold during progression (29.6%) in AD brains [8], and TrkC expression reduced considerably in
cholinergic NB neurons during the progress of AD [9–11]. Moreover, TrkC expression, as well as
NT-3, is remarkably expressed in the adult substantia nigra pars compacta, but reduced expression
of TrkC in the SN of PD patients induced abnormal accumulation of α-synuclein as the hallmark of
PD [12]. Moreover, TrkC expression restores long-term striatal depression on corticostriatal synaptic
plasticity in the 3-NP-treated animal model of HD. TrkC activates the neuronal survival pathways,
including the Ras/MEK/MAPK and PI3K/AKT pathways. Hence, TrkC-mediated activation of the
Ras/MEK/MAPK and PI3K/AKT pathways promotes cellular functions such as proliferation, growth,
and survival in cancer [13], raising the possibility that the role of TrkC protein provided from studies
in the sympathetic nervous system may contribute to disease pathology.

2. Incidence of TrkC Expression in Cancer Development

In addition to the functional role of TrkC in the neuronal system, overexpression of TrkC is
observed in many human tumors (Table 1). The involvement of TrkC in a variety of human cancers was
first reported in studies on TrkC expression in neuroblastoma and glioma. Neuroblastoma is the most
common extracranial solid tumor that occurs early childhood, and over 60% of the neuroblastomas are
metastatic. It accounts for approximately 15% of pediatric cancer deaths [14]. In neuroblastoma, TrkC is
highly expressed in 25% of primary neuroblastomas and is often accompanied by TrkA [15]. Moreover,
a subset of stage IV neuroblastomas exhibits high-level NT-3 and TrkC co-expression [16]. In glioma,
TrkC was up-regulated in 91.8% of glioma patient samples [17], and high-grade gliomas showed a more
positive immunoreactivity than low-grade gliomas in NT-3 and TrkC expression [18]. Furthermore, TrkC
was up-regulated in 86% of medulloblastomas and 68% of non-cerebellar primitive neuroectodermal
(PNET) tumors (17 glial tumors, three ependymal tumors, and one teratoid tumor) [19].

TrkC is identified in several other types of human cancers as well. In the case of breast cancer,
two studies have reported the incidence of TrkC in these tumor types. TrkC was more significantly
overexpressed in basal-like breast cancer cells than in luminal cancer cells, and TrkC expression
was elevated in 82% of breast cancer patients [20]. Hepatocellular carcinoma (HCC) represents
approximately 90% of primary liver cancer and is the second main cause of cancer-related deaths in the
world [21]. TrkC is overexpressed significantly in HCC cells, and its elevated expression was found to
be correlated with the unmethylated TrkC promoter [22].

Moreover, TrkC expression was observed in 86% of tumors, in which TrkC molecules were
present as alternatively spliced isoforms [23]. TrkC expression was also observed in primary and
metastatic melanoma cells [24]. TrkC expression caused by immunoreactivity was observed in 62.5%
of melanomas of various stages, and its expression significantly increased 58% of melanoma that
progressed from in situ lesions, 91% of papillary dermal invasions, 57% of melanomas which invaded
the deeper dermis, and 31% of melanomas which metastasized to sites other than the compound
nevi [25]. Furthermore, there was an increase by 66% in the observed expression of TrkC in ductal
pancreatic tissue compared to in normal adjacent tissue [26,27]. The occurrence of TrkC was observed at
similar levels in prostate cancer specimens obtained from patients both with and without neoadjuvant
hormonal therapy [28]. Moreover, TrkC expression was identified in lung cancer and leukemia. TrkC
receptor was not detected in lung adenocarcinomas and bronchioloalveolar carcinomas, but was
observed in 35% of well-differentiated squamous cell carcinomas within large size tumor cells, and
in 55% of small cell lung cancers (SCLC) [29]. TrkC was significantly overexpressed in leukemia
subtypes such as Lymphoblastic Leukemia, Acute Myeloid Leukemia (AML), and Chronic Lymphocytic
Leukemia (CLL) [30]. Additionally, in gastric cancer (GC), high expression of TrkC was significantly
correlated with distant metastasis, lymph node metastasis, distant metastasis, or recurrence of the
disease [31].

Finally, during progression from typical thyroid C cell hyperplasia to the later stages of medullary
thyroid carcinoma (MTC), substantial changes of TrkC were detected by using immunostaining. TrkC
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expression was not detected in healthy thyroid C cells, but moderate or strong TrkC immunostaining
was identified in 87% of MTC tumors. Also, TrkC expression in MTC cell induces tumorigenic ability
and primary tumor formation in nude mice [32].

2.1. The Functional Role of Long Noncoding RNA and microRNA in TrkC Expression

Recent reports have demonstrated that miRNAs and lncRNAs are involved in the regulation of
TrkC expression. miRNAs are 20–22 nucleotide long non-coding RNA molecules, which regulate gene
expression at the post-transcriptional level. The expression of full-length TrkC is markedly reduced by
miR-151-3p and miR-185. Also, expression of the truncated TrkC isoform was considerably reduced
by miR-128, miR-485-3p, miR-765, and miR-768-5p [33]. Moreover, miR-9, miR-125a, and miR-125b
were able to decrease cell growth, and truncated TrkC isoform was the target of miR-8, miR-125, and
miR-125b in the repression of human neuroblastoma or medulloblastoma cell proliferation [34,35].

Additionally, lncRNAs are involved in the transcription of proteins directly and indirectly via
transcriptional and posttranscriptional alteration, and are a potential therapeutic target of cancer [36].
Long noncoding RNA participates in the regulation of TrkC expression. Elevated expression of
PVT1-214 is significantly associated with clinicopathological characteristics and poor survival of
GC patients, and induces tumorigenic ability of GC by increasing TrkC expression via inhibition of
miR-128 [37]. Another long noncoding RNA LINC00978 was markedly upregulated in GC patients
and associated with poor survival outcome of GC patients. In addition, LINC00978 expression induces
metastatic potential and inhibits apoptosis of cells. Moreover, LINC00978 promoted tumorigenicity
and proliferation of cancer cells through inhibition of reduction of TrkC expression by miR-497 [38].
In contrast, TrkC was one of the target genes of LINC00052, and down-expression of TrkC increases
the aggressiveness and proliferation of SMMC7721 cells. Also, LINC00052 suppresses the expression
of the truncated isoform of TrkC by forming complementary base pairing with miR128, miR-485-3p,
and miR-765 [39].

2.2. Somatic Mutations of TrkC in Cancer

Progressive accumulation of mutations can cause cancer or other diseases, and most tumors carry
1000 to 20,000 somatic point mutations, which has been reported in high-throughput DNA sequencing
analyses of cancer cell genomes [40,41], with these mutations leading to constitutive activation of
signaling circuits [42]. Thus, we now know about the mutation of TrkC identified in colorectal cancer
(CRC) cell lines by mutational analysis of the tyrosine kinome, which was suggested to be a pathogenic
mutation (G608S, I695V, R731Q, K732T, L760I) [43]. Also, TrkC has a nonsynonymous somatic mutation
in pancreatic (H599Y, G608S, E322K) [44–46], breast (R678Q) [47], lung (H677Y, R721F) [48], and gastric
(T149R, K746T, E543D) cancers [49]. Moreover, somatic mutations have been identified in 454 sites of
TrkC, including the kinase domain, in 36 various cancer types (Table 2), and somatic mutation of the
TrkC gene mainly occurs through missense mutations (Figure 1A). Around 25% of human cutaneous
squamous cell carcinoma contains missense mutations in TrkC, and these missense mutations were also
detected in ~7.8% of human lung adenocarcinomas and ~7% uterine endometrial carcinoma patients
(Figure 1B). However, the origin of TrkC mutations remains unknown, but patients of various cancer
types have a spectrum of many different TrkC mutations, including modifications of the tyrosine
kinase domain.
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The overall frequency of mutated TrkC in cancer types. cSCC [50], DM [51], CM: TCGA Dataset, 145 
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Figure 1. Somatic mutation frequency of TrkC in patients of 36 various cancer types. (A) Total of 530
mutations in TrkC, including 454 missense mutations, 70 truncating mutations, three inframe mutations,
and discovered in patients of various cancers. Specifically, 177 of 530 mutations identified in the
tyrosine kinase domain of TrkC. LRRNT: Leucine-rich repeat N-terminal domain, LRR1; Leucine-rich
repeat region 1, LRR2: Leucine-rich repeat region 1, LRRCT: Leucine-rich repeat C-terminal domain,
Ig-like C2: Immunoglobulin-C2-set domain, TM: transmembrane domain. (B) The overall frequency
of mutated TrkC in cancer types. cSCC [50], DM [51], CM: TCGA Dataset, BCC: [52], LA: [53], EC:
TCGA Dataset, VV-SCC: [54], NSCLC: [55], UTUC [56], CTCL: [57], AS: TCGA Dataset, CRC: [58], GC:
TCGA Dataset, CSCC: TCGA Dataset, EAC: [59], HNC: TCGA Dataset, RMS: [60], PAC: [61], DLBCL:
TCGA Dataset, HCC: TCGA Dataset, AC: Ampullary carcinoma [62], UCS: TCGA Dataset, BUC: TCGA
Dataset, RCC: TCGA Dataset, PA: [63], CC: [64], GC: [65], PDTC & ATC: [66,67], OSC: TCGA Dataset,
BC: [68], CCRCC: TCGA Dataset, CLL: [69], DG: [70].
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Table 1. Detected TrkC in multiple histologies.

Cancer Name Frequency Ref.

Neuroblastoma 14/55 (25%) [15]
Glioma 215/234 (91.8%) [17]

Medulloblastomas 17/26 (85%) [19]
Non-cerebellar primitive neuroectodermal (PNET) tumors 21/31 (67.7%) [19]

Breast cancer 14/17 (82.4%) [20]
Invasive ductal carcinoma 118/236 (49.6%) [71]
Hepatocellular carcinoma 44/51 (86%) [21]

Melanoma 40/64 (62.5%) [25]
Pancreatic cancer 31/47 (66%) [26,27]

Squamous cell carcinoma 3.5/10 (35%) [29]
Small cell lung cancers 4.4/8 (55%) [29]

Thyroid cancer 21.8/25 (87%) [32]

Table 2. Mutation of TrkC in patients of Cancer types.

Cancer Name Mutation (%) Protein Change Ref.

Ampullary
Carcinoma (AC) 1.88 S136G, E211A, P796L [62]

Angiosarcoma (AS) 4.17 P577L, G235E TCGA

Oligodendroglioma
(ODG) 0.68 Q808 * [72]

Bladder Urothelial
Carcinoma (BUG) 2.94 D609N, S477 *, L53F, E398K, G727 *, Q119E, E360K TCGA

Breast Carcinoma
(BC) 0.75 H349R, E810Q, G545A, L574V, E412K, N714K, P210T,

A555V, K424T, G547R, V413M, Q177H, L108R, H254Y [68]

Cervical Squamous
Cell Carcinoma

(CSCC)
3.04 A122T, F162S, L384M, D476N, L5V, R153Q, F162L TCGA

Chronic
Lymphocytic

Leukemia (CLL)
0.33 A647T [69]

Colorectal
Adenocarcinoma

(CRC)
4.17

F450L, L653I, S113A, R745Q, L115R, T777M, G608S,
T149M, I759M, V217I, S117N, K181N, C782R, Q206H,

T777M, T149M, K746R, K125N, R791Q, R745Q, Y456H,
E86D, N191D, D624Y, Q159H, R201H, T730S, V97M,

R745Q, G487D, R535M, R130H, T149M, A631D, D527G,
Q586 *, V97M, R791W, G497R, Q145H, T332M, R130H,
R791W, R814Q, A664T, K746T, R89H, Q119H, K346R

[58]

Cutaneous
Melanoma (CM) 20

E762K, P509H, E211 *, H370N, P577S, L157F, E778K,
D167N, R793 *, E318K, R542Q, E810K, H658Q, D697N,
G235E, G356E, G633V, D584N, S359F, G356R, E590K,
D576N, Y834N, R735C, G757R, R153L, G623E, R153L,
W771 *, L299I, D242N, V217F, V37A, H423N, V726L,
R116W, K768E, G178E, G727E, R735C, L152F, G339R,
E819K, M667I, E86 *, Q773 *, W243L, Q255 *, P417L,

D836H, T831I, P401S

TCGA

Cutaneous
Squamous Cell

Carcinoma (cSCC)
25.64 P577S, H264Y, D576N, Q773 *, E778K, G767E, A548V,

D584N, L152F, D61G, G828E, K797E [50]

Cutaneous T-Cell
Lymphoma (CTCL) 4.65 P577S, S741N [57]
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Table 2. Cont.

Cancer Name Mutation (%) Protein Change Ref.

Desmoplastic
Melanoma (DM) 20 H128Y, P329L, E351K, S701F [51]

Diffuse Glioma
(DG) 0.38 I488T, L282R, I488V [70]

Diffuse Large
B-Cell Lymphoma

(DLBCL)
2.08 D98N TCGA

Endocervical
Adenocarcinoma

(EA)
1.94 E546K TCGA

Esophageal
Adenocarcinoma

(EAC)
3.97 V687G, G487S, R46W, L115P, A826V [59]

Gallbladder Cancer
(GC) 3.13 I817M [65]

Head and Neck
Carcinoma (HNC) 2.51 H632Y, Q159K, S77 *, T253N, Q531R, A636V, H423N,

Y705N, K367N, R326L, C362S, C231F, H729N, TCGA

Hepatocellular
Carcinoma (HCC) 2.47 G233S, Q145R, D527G, S701T, H622N, F395Y, E318D TCGA

Cholangiocarcinoma
(CC) 2.78 V451I [64]

Lung
Adenocarcinoma

(LA)
7.83

L282M, P7R, H658N, H370N, L384M, N454S, S39R,
Y188H, C320F, G545C, A380D, R121I, R814L, N718Y,
P796S, G605L, G666C, G757V, N137K, P417H, R306H,
M292I, T420S, H677Q, L639I, L827M, Y376C, P120H,

S775 *, G487R, V97L, G67V, H84Y, G828V, K602N, P526Q,
V779F, N382I, Y821F, K551N, N218H, E740K, R169L,
P120H, T500S, S184R, D428H, S28Y, P330Q, T777K,
K181N, A380D, F603I, R814L, E314D, S309I, P526Q,

K397N, H394Q, K621N, G652V, G233V, I212T, P383A,
R535M, N52K, F147L, V704F, G608C, V221L, W754C,
E357D, Y604F, G463 *, E398Q, Y834F, R138L, Y821C,

M202L, D240H, Q515H, K461R, V799L, Q773K, M464I,
H729Y, E512K, P120H, V324A, Q172H, V273L, R343L,
K346N, R121I, R459G, T506A, D495E, R343W, S741I,

L364P, S4C, P509T, P612A, A435E, T230S, E314Q, H84N,
G642 *, N338Y, T707K, D801N, V241A, G279A, G487S,

F123L, S296R, L629F, G649C, A581P, Y744F, R343L,
D635N, P738H, R735H, T563N

[53,55]

Pancreatic
Adenocarcinoma

(PA)
1.83 R153Q, V29M, R306H, K746T, E322K, Q643K, E223Q [61]

Papillary Renal Cell
Carcinoma (PRCC) 1.41 L270V, E179G, T490K, G104 * TCGA

Plasma Cell
Myeloma (PCM) 0.98 R745W, E351D [73]

Prostate
Adenocarcinoma

(PA)
1.13 D609N, G497R, V640A, F747S, R793Q, P417L, T93M,

P509S, T777M, T332M [63]

Clear Cell Renal
Cell Carcinoma

(CCRCC)
2.86 D609N, R735H TCGA
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Table 2. Cont.

Cancer Name Mutation (%) Protein Change Ref.

Rhabdomyosarcoma
(RMS) 2.3 Y709F [60]

Ovarian Serous
Cancer (OSC) 0.69 P304L, L827F, D584E TCGA

Skin Cancer,
Non-Melanoma

(Basal Cell
Carcinoma; BCC)

8.19
S741N, S751R, G608I, E475K, R745W, Q673H, E590D,

M99I, P467L, S117R, Q255 *, L760F, K381E, E154D,
G696E, M202I, Q655R, R735C, K346R

[52]

Squamous Cell
Carcinoma of the

Vulva/Vagina
(VV-SCC)

6.67 G437 * [54]

Gastric cancer (GC) 3.18
H486N, H521N, K181R, T490M, L115P, R326H, R201H,
D277G, W335R, S117T, R787H, R791W, L197F, A435E,

L17 *
TCGA

Thyroid Cancer
(TC) 0.85 R630W, N294T [66,67]

Upper Tract
Urothelial

Carcinoma (UTUC)
4.71 D499N, D527Y, R153Q, R326H [56]

Uterine
Endometrioid

Carcinosarcoma
(UCS)

7.18

T261S, F617L, C523Y, T390I, M202I, K346N, R459W,
P832S, A681T, D537Y, Y456H, R222 *, E598 *, R793Q,
K111N, A96T, A580V, R222Q, E357D, H482Y, L187P,
P55S, K125N, E556K, R47Q, S117N, A664T, G114R,

G699D, I511T, S65N, K397N, I508T, E86D, N816S, E412K,
V97M, G233D, G374D, Y352C, Q159H, A387T, E58K,
D836A, V217A, D75N, M700I, R518C, E322K, D703N,

S151N, F772L, V221I, L712P, E287D

TCGA

Esophageal
Carcinoma (EC) 2.43 D277G, W335R, S117T, K181R, R791W, H486N, H521N,

L197F, R787H, T490M [59]

*: nonsense mutation; TCGA: TCGA database.

2.3. TrkC Fusion in Cancer

In most NTRK3 fusion proteins, the 3′ region of NTRK3, which contains the tyrosine kinase
domain fused with the 5′ region of the partner gene, is expressed in cancer. ETV6-NTRK3 is known as
a chimeric oncoprotein, which occurs in various cancer types, including mesenchymal, hematopoietic,
and epithelial cell lineages. ETV6-NTRK3 was initially cloned and identified in five (100%) out
of five congenital fibrosarcomas (CFS) and a pediatric spindle cell malignancy [74,75] in the case
report of AML [76,77]. ETV6-NTRK3 expression was also identified in five of six cellular mesoblastic
nephroma (CMN) [75,77] and 10 of 11 CMN [78], an infantile spindle cell tumor of the kidney. However,
the expression of ETV6-NTRK3 was not detected in classical CMN and Wilm’s tumor, as there is
recurrent chromosomal translocation (t(12;15)(p13;q25)). This rearrangement generates a gene fusion
encoding the Helix-Loop-Helix Domain (HLH) of the ETV6 (TEL, ETS family transcription factor)
linked to the tyrosine kinase (PTK) domain of TrkC [79].
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In breast cancer, ETV6-NTRK3 is expressed in 12 (92%) of 13 patients with human secretory breast
carcinoma (SBC), a rare subtype of IDC, and the resulting ETV6-NTRK3 protein functions as a chimeric
protein with potent transforming activity in fibroblasts [80]. Moreover, secretory breast carcinomas
are triple-negative and express basal markers, while secretory breast carcinomas with ETV6-NTRK3
protein belong to the basal-like breast carcinomas [81,82]. Moreover, ETV6-NTRK3 was identified in
CRC [83,84], glioma [85,86], spitz tumor [87], lung adenocarcinoma [88], infantile fibrosarcoma [88,89],
gastrointestinal stromal tumor [88,90], thyroid carcinoma [91,92], uterine sarcoma [86], and sinonasal
adenocarcinoma [93]. ETV6-NTRK3 expression was detected in 75% of lung adenocarcinomas, 70%
of infantile fibrosarcomas, and 49% of gastrointestinal stromal tumors [88]. Moreover, ETV6-NTRK3
was identified in 26% of papillary thyroid carcinomas [91,92], and interestingly, the prevalence in the
rearrangement of ETV6-NTRK3 was associated with exposure to radiation based on a case study of
patients who suffered from the Chernobyl accident. The rearrangement of ETV-NTRK3 significantly
increased to 14.5% in radiation-related papillary thyroid carcinomas (PTCs) from an occurrence of 2%
in sporadic PTCs [91]. The results of this study suggest that ETV6-NTRK3 may represent another type
of chromosomal rearrangement associated with the robust growth pattern of PTC in patients exposed
to radiation [91].

Additional NTRK3 fusion proteins, occurring in small numbers, have been identified in various
cancer types. AKAP13-NTRK3 was identified in a rare case of low-grade glioma [94], and BTBD1-NTRK3
was induced in high-grade astrocytoma [85]. Another TrkC fusion, EML4-NTRK3, was identified in rare
cases of several types of cancers, including uterine and vaginal sarcomas [95], dermatofibrosarcoma [96],
infantile fibrosarcoma and congenital mesoblastic nephroma [97], infantile fibrosarcomas [98], and
glioblastoma [84]. Moreover, the expression of EML4-NTRK3 induces the tumorigenic ability of
NIH3T3 fibroblast cells in vivo and in vitro [99]. Interestingly, the majority of the TrkC fused to the 3′

region of HOMER2 contains WASP homology region 1 (WH1) and a coiled-coil domain. Moreover,
TrkC combined with STRN or STRN3 as paralog of STRN includes a coiled-coil domain. STRN, a
calmodulin-binding protein member, is a partner of ALK protein, and its fusion protein, which was
identified in thyroid and lung carcinoma [100,101], leads to constitutive activation of ALK tyrosine
kinase via dimerization mediated by the coiled-coil domain of STRN [100]. Moreover, most of the TrkC
fusion proteins contain a coiled-coil domain, including STRN, STRN3, TFG, TPM4, HOMER2, MYH9,
MYO5, and EML4 (Figure 2). There is a possibility that ligand-independent constitutive activation
of tyrosine kinase domain of the TrkC fusion protein is mediated by the coiled-coil domain of the
partner gene product. TrkC fusion partners have been recently identified in a wide range of cancer
types (Figure 2 and Table 3).
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Figure 2. Diagram of TrkC fusion proteins identified in various cancers. In most TrkC fusion proteins,
the carboxy-terminal of the TrkC protein, including the tyrosine kinase domain, fused with inframe to
the amino-terminal binding partner. Nucleotide sequences indicate the breakpoint. CC: Coiled-coil,
CC: Coiled-coil, HLH: Helix loop Helix, LRRCT: Leucine-rich repeat C-terminal domain, LRRNT:
Leucine-rich repeat N-terminal domain, RRM: RNA recognition motif, BTB: protein-protein interaction,
BACK: BTB and C-terminal Kelch, PB1: Phox and Bem1p, SH2: Src Homology 2, SH3: Src Homology 3,
MYSc: Myosin motor, UBCs: Ubiquitin-conjugating enzyme E2, WH1: WASP homology region 1, ZnF:
Zinc-binding, and TM: Transmembrane.

Table 3. Identification of TrkC fusion protein in cancer.

Fusion Protein Chromosomal
Location

Recurrent
Chromosomal
Translocation

Tumor Type

AFAP1-NTRK3 4p16.1 t(4;15)(p16;q25) Glioblastoma [84]

AKAP13-NTRK3 15q25.3 t(15;15)(q25;q25) Lung adenocarcinoma [102], Low-grade
glioma [94]

BTBD1-NTRK3 15q25.2 t(15;15)(q25;q25) Glioma [85]

CPEB1-NTRK3 15q25 t(15;15)(q25;q25) Glioma [85]

EML4-NTRK3 2p21 t(2;15)(p21;q25)

Uterine and vaginal sarcomas [95],
Dermatofibrosarcoma [96], Infantile
fibrosarcoma and Congenital mesoblastic
nephroma [97,99], Infantile fibrosarcomas [98],
Glioblastoma [84].
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Table 3. Cont.

Fusion Protein Chromosomal
Location

Recurrent
Chromosomal
Translocation

Tumor Type

ETV6-NTRK3 12p13.2 t(12;15)(p13;q25)

Congenital fibrosarcomas [74,75], Acute
myeloid leukemia [76,77], Cellular mesoblastic
nephroma [75,77,78], Secretory breast
carcinoma [81,82], Colorectal cancer [83,84],
Glioma [85,86], Spitz tumor [87], Lung
adenocarcinoma [88], Infantile
fibrosarcoma [88,89], Gastrointestinal stromal
tumor [88,90], Thyroid carcinoma [103], Uterine
sarcoma [86], Sinonasal adenocarcinoma [93],
thyroid carcinomas [91,92], Mammary analog
secretory carcinoma [104]

FAT1-NTRK3 4q35.2 t(4;15)(q35;q25) Cervical squamous cell carcinoma (TCGA
Dataset), [105]

HNRNPA2B1-NTRK3 7p15.2 t(7;15)(p15;q25) Multiple myeloma [106]

KHDRBS1-NTRK3 1p35.2 t(1;15)(p35;q25) Pediatric cutaneous congenital skin cancer [107]

LYN-NTRK3 8q12 t(8;15)(q12;q25) Head and Neck squamous cell carcinoma
(TCGA Dataset), [87,108]

MYH9-NTRK3 22q12.3 t(22;15)(q12;q25) Spitz tumor [87]

MYO5A-NTRK3 15q21.2 t(15;15)(q21;q25) Spitzoid tumor [87], Epithelioid melanocytic
tumor [109]

NTRK3-HOMER2 15q25.2 t(15;15)(q25;q25) Soft tissue sarcoma [110]

NTRK3-SCAPER 15q24.3 t(15;15)(q24;q25) Epithelioid melanocytoma [111]

TPM4-NTRK3 19p13.12 t(19;15)(p13;q25) Sarcoma [84]

ZNF710-NTRK3 15q26 t(15;15)(q26;q25) Glioblastoma [84]

RBPMS-NTRK3 8p12 t(8;15)(p12;q25) Glioma [112], Uterine Sarcoma [113], Thyroid
carcinoma [66]

SPECC1L-NTRK3 22q11.23 t(22;15)(q11;q25) Uterine sarcoma [86]

SQSTM1-NTRK3 5q35.3 t(5;15)(q35;q25) Thyroid Cancer [114,115], Non-small-cell lung
cancer [86,116]

STRN-NTRK3 2p22.2 t(2;15)(p22;q25) Fibrosarcoma [117], Uterine sarcoma [118]

STRN3-NTRK3 14q12 t(14;15)(q12;q25) Fibrosarcoma [117]

TFG-NTKR3 3q12.2 t(3;15)(q12;q25) Solitary fibrous tumor [119,120]

UBE2R2-NTRK3 9p13.3 t(9;15)(p13;q25) Multiple myeloma [106,121]

VIM-NTRK3 10q13 t(10;15)(q13;q25) Thyroid carcinoma [86]

VPS18-NTRK3 15q15 t(15;15)(q15;q25) Colon Adenocarcinoma (TCGA Dataset) [105]

2.4. The Biological Function of TrkC in Cancer

Four principal mechanisms mediate aberrant activation of receptor tyrosine kinase (RTK) in
human cancers: autocrine activation, chromosomal translocations, overexpression, or gain-of-function
mutations [122] and activation of signals by overexpression of oncogenes including RAS, RAF, and
MYC would result in correspondingly increased tumorigenicity of cancer cells [123]. For example,
the epidermal growth factor receptor (EGFR) was overexpressed in many cancers, and it was leading to
overexpression and constitutive activation of EFGR tyrosine kinase activity [124,125]. Moreover, ErbB2,
an EFGR family receptor, is highly overexpressed in various cancer types, including breast cancer, and
promotes tumor progression via ligand-independent constitutive activation, while the overexpression
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correlates with poor prognosis [126,127]. As per previous reports, the primary mechanism of action by
overexpression of TrkC occurs through increased TrkC activity without NT-3. Overexpression of TrkC
in human MTC cells exhibited an increased growth rate, tumorigenic capacity, and primary tumor
formation in vivo relative to control cells before ligand addition and after NT-3 addition, consistent
with the fact that TrkC is phosphorylated before ligand addition [32]. Moreover, overexpression of
TrkC in MCF10A breast cancer cells or RIE-1 normal intestinal epithelial cells increases the metastatic
ability without treatment with NT-3 [20,128].

Auto-activation of RTKs recruited and activated a wide range of downstream signaling proteins
via interaction with SH2 or PTB (phosphotyrosine binding domain) domain-containing signaling
proteins [122,129]. Recent studies have reported that the tyrosine kinase domain of TrkC and
ETV6-NTRK3 interacts with the SH2 domain of the Src and PTB domain of IRS-1. Ligand-independent
PTK activation of ETV6-NTRK3 and TrkC in breast and colon cancer leads to constitutive activation of
the Ras-MAP kinase (MAPK) mitogenic pathway and the phosphatidylinositol 3-kinase (PI3K)-AKT
pathway, as well as upregulation of cyclin D1 mediating cell survival [111,113], In addition, its activation
by TrkC and ETV6-NTRK3 is mediated via activation of c-Src by using complex formation [130,131].
IRS-1 functions as an adapter protein, linking ETV6-NTRK3 and TrkC for constitutive activation of
downstream signals. After ETV6-NTRK3 associates with IRS-1, ETV6-NTRK3 recruits GRB2 and
p85 and activates Ras-MAPK and PI3K-AKT pathways. However, mutation of the PTB activation
loop tyrosine of ETV6-NTRK3 defects IRS-1-mediated transformation-associated pathways, including
Ras-MAPK and PI3K-AKT in NIH3T3 cells by completely blocking phosphorylation of IRS-1 via failure
to associated with IRS-1. These results indicate that the C-terminus, including the PTK domain of TrkC,
is essential for transforming activity in multiple cell lineages [131,132].

Metastases produced by cancer cells are formed by a complex succession of an invasion-metastasis
cascade from invading local epithelial cells in the surrounding extracellular matrix (ECM) to reinitiate
neoplastic growths at metastatic sites [42]. In this cascade, the EMT induces a significant loss in
junctional E-cadherins, which are essential cell-to-cell adhesion proteins that prevent dissociation of
epithelial cells. Through activation of the EMT, the epithelial cells acquire mesenchymal features, which
include motility, invasiveness, and heightened resistance to apoptosis [133]. Moreover, constitutive
RTK activation and loss of E-cadherin lead to stabilization of the mesenchymal status of cancer cells
and maintain continuous EMT-inducing heterotypic signaling from the tumor microenvironment [134].
TrkC enhances the metastatic potential of cancer via the induction of EMT in breast and colon
cancers. TrkC induces JAK2 and STAT3 expression, but kinase-dead mutant of TrkC does not induce
expression of these proteins. These results have revealed the constitutive activation of the JAK2-STAT3
signaling pathway triggered by the activation of tyrosine kinase of TrkC. Moreover, TrkC induces JAK2
stabilization through the suppression of JAK2 ubiquitination via inhibition of the JAK2-SOCS3 complex
formation, activation of the EMT program through Twist-1 expression and the EMT transcription factor
(EMT-TFs), and activation of the IL6/JAK2/STAT3 pathway [20,128].

Additionally, analysis has found that ETV6-NTRK3 upregulates genes that are associated with cell
motion, membrane invagination, and regulation of cell proliferation, and also downregulates genes
involved in cell adhesion [135].

The overexpression and activation of STAT1 were observed in several human cancers [136] and
overexpression of STAT1 acquired chemoresistance and radioresistance in breast and lung cancers
by suppressing the cytotoxic response and inducting prosurvival genes [137–139]. Interestingly,
ETV6-NTRK3 attenuated STAT1 acetylation through STAT1 phosphorylation by direct interaction
and eventually increased the activity of NF-κB by promoting nuclear translocation of NF-κB, through
inhibition of the STAT1-NF-κB complex formation [135].
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Transforming growth factor (TGF-β) is a multifunctional cytokine that functions as a potent growth
inhibitor of epithelial cells and as a promoter of tumor progression. The property of growth inhibition
by TGF-β depended on the signaling through cyclin-dependent kinase (CDK) inhibitors [140]. Recent
results have highlighted the importance of PTK activation of TrkC that inhibits the growth inhibitory
activity of TGF-β. Both TrkC and ETV6-NTRK3 directly interacted with TGF-β type II receptor and
inhibited phosphorylation of TGF-β type II receptor, and eventually blocked both TGF-β-induced
Smad2/3 phosphorylation and TGF-β growth inhibitory activity. Moreover, inhibition of the tyrosine
kinase activity of TrkC or ETV6-NTRK3 restored TGF-β tumor suppressor activity [141,142].

Bone morphogenetic proteins (BMPs) closely resemble a bifunctional TGF-β in cancer cell
regulation. TrkC blocks the BMP tumor suppressor activity through the suppression of bone
morphogenetic protein 2 (BMP-2)-induced Smad1 phosphorylation and transcriptional activation
by directly interacting with the BMP type II receptor [143]. Additionally, loss of REST function
(transcription factor) as a tumor suppressor was identified in colon adenocarcinoma, lung cancer, and
breast cancer. Moreover, the loss of REST expression in breast cancer significantly correlated with
recurrence and poor survival of breast cancer patients. Additionally, the TSPY2/REST complex induces
transcriptional repression of TrkC and restores the tumor inhibitory activity of TGF-β [144,145].

2.5. Targeted Therapies for Trk or Trk Fusion Protein

Trks are specifically intriguing due to the resulting chimeric oncoproteins which occur in various
cancer types, and these fusion proteins are driven by ligand-independent constitutive activation,
eventually activating downstream signaling pathways involved in proliferation, tumorigenicity, and
the EMT in human cancers (Figure 3). This result is the reason why drug companies are developing
small molecular inhibitors of TRK to treat cancer, arthritis, or pain-induced disease. Several inhibitors
of Trk have been developed for the treatment of Trk or Trk fusion protein-mediated adult and pediatric
solid tumors and hematologic malignancies.

2.5.1. Larotrectinib

Larotrectinib (Vitrakvi, LOXO-101, Loxo Oncology Inc., Stamford, CT, USA and Bayer, Leverkusen,
Germany) was first approved by the Food and Drug Administration (FDA) in November 2018 for
pediatric, adult solid tumors that have Trk and Trk fusion protein without a known acquired resistance
mutation, have no satisfactory alternative treatments, or have not progressed following treatment [146].
Larotrectinib is a small molecule which is orally-administered, and the most selective Trk tyrosine
kinase inhibitor with half-maximal inhibitory concentration (IC50) levels in a low nanomolar range
between 5–11 nmol/L and no activity against other kinase and non-kinase targets. It functions by
inhibiting the autophosphorylation of Trk via binding to the ATP-bind site of Trk [146,147].
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isoform can enhance and activate downstream of TRK signaling, including PLCγ/IP3/DAG [1,148,149],
RAS/MAPK [1,79,132,148], PI3K/AKT [1,79,132,148], and JAK/STAT signaling [20,135], resulting in the
promotion of survival, aggressiveness, chemoresistance, and generation of CSCs of cancer.

Larotrectinib is highly effective in inhibiting the proliferation of primary cancer cells, derived
from patients harboring Trk fusion proteins. The IC50 was less than 100 mmol/L for CUTO-3.29
cells harboring MPRIP–NTRK1 and less than 10 nmol/L for KM12 cell harboring TPM3–NTRK1 or
MO-91 cell harboring ETV6–NTRK3. Moreover, Larotrectinib inhibits tumor growth in a xenograft.
Moreover, a phase I study of Larotrectinib for a woman with soft-tissue sarcoma metastatic to the
lung demonstrated a marked improvement in multiple pulmonary metastases and almost complete
tumor disappearance of the most extensive tumors [110]. Several clinical trials have assessed the
efficacy and safety of Larotrectinib. The effectiveness of Larotrectinib was evaluated in 55 patients
with Trk fusion-positive tumors, including TrkA (45% of the patients), TrkB (2%), and TrkC (53%),
and with a recommended phase 2 dose of 100 mg twice daily in adults. The overall response rate
(ORR) of patients according to the assessment was 75% (95% CI, 61–85). The complete response rate
and the partial response rate was 22% and 53% of the ORR, respectively. At least 15% of the patients
showed adverse events during treatment, which led to a dose reduction of Larotrectinib [88]. Moreover,
Larotrectinib in a phase 1 trial significantly induced tumor regression in more than 90% of pediatric
patients with solid tumors. Moreover, the efficacy of Larotrectinib for pediatric patients with TRK
fusion cancers in phase 2 trials showed reductions in cancer occurrence. In total, 14 of 15 patients with
Trk fusion-positive tumors in each of the Trk fusion proteins. TrkA (46% of the patients), NTRK2 (6.7%),
and NTRK (40%) showed objective responses at a median of 1.7 months. The maximum tolerated
dose was estimated to be 100 mg/m2 of Larotrectinib [150]. Furthermore, the clinical trial of children
with locally advanced TRK fusion sarcoma demonstrated that Larotrectinib induces a high response
rate, including a reduction in the tumor [151]. In the case of a pediatric patient with ETV6-NTRK3
positive secretory breast cancer, treatment with Larotrectinib achieved an almost complete response
and induced substantial tumor regression [152]. Additionally, the overall response rate (ORR) of
ETV6-NTRK3 positive patients was 85% (95% CI, 64–96) [153].

2.5.2. Entrectinib

The FDA approved Entrectinib (Rozlytek, Gnentech Inc., South San Francisco, CA, USA) as a new
Trk inhibitor for pediatric and adult solid tumors that have Trk, ROS proto-oncogene 1 (ROS1), and
anaplastic lymphoma kinase (ALK) fusion proteins without a known acquired resistance mutation,
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and for tumors which are metastatic or for adults with metastatic NSCLC which are ROS1-positive.
Entrectinib is a potent oral small-molecule inhibitor of Trk, ROS1, and ALK with IC50 values of 0.1 to
2 nM [154].

Entrectinib has been examined in several clinical trials. ALKA-372-001 phase I Trial showed that
Entrectinib has a significant antitumor response in TrkA-positive CRC, ALK-rearranged neuroblastoma,
and ROS1-, or ALK-positive NSCLC patients [155]. Moreover, the efficacy was assessed in patients
with solid tumors with a Trk gene fusion in other phase trials (STARTRK-1 and STRATRK-2). 96% of
the patients received 600 mg orally, once daily, had metastatic disease, and all the patients had Trk
fusion proteins detected by Next-Generation Sequencing (NGS) and nucleic acid-based test. The ORR
of patients according to the assessment was 57% (95% CI, 43–71), and the ORR by Trk fusion partners
showed ENT6-NTRK3 (68%), TPM3-NTRK1 (50%), and TPP-NTRK1 (100%). Moreover, Entrectinib
shows a partial response to LMNA-NTRK1 and SQSTM1-NTRK1 fusion proteins [156].

2.5.3. Resistance to Larotrectinib and Entrectinib as Trk Inhibitor

Although there was a high overall response rate to Trk fusion proteins-positive solid tumors,
acquired drug resistance was identified as a progressive disease after the administration of Trk inhibitors.
The emergence of amino acid substitution in Trk represents a significant resistance mechanism against
the Trk inhibitor. In the case of a patient with ETV6-NTRK3-positive mammary analog secretory
carcinoma (MASC), treatment with Entrectinib showed a dramatic and durable response with an 89%
reduction in tumor burden but revealed further disease progression in the right lower lobe of the lung.
The NTRK3 G623R mutation mediated this case of resistance to Entrectinib. This alteration interfered
with Entrectinib binding and conferred dramatically reduced sensitivity to Entrectinib inhibition,
thereby increasing the IC50 value more than 250-fold. Moreover, NTRK3 G623R mutation conferred
an increase in the IC50 value more than 500-fold for Larotrectinib and TSR-011 [157]. Additionally,
LMNA-NTRK1-positive patients with metastatic colorectal cancer showed a remarkable response to
Entrectinib, followed by resistance to Entrectinib mediated by NTRK1 G595R and G667C mutations
and these mutations also showed immense resistance to Larotrectinib and TSR-011 [158].

Additionally, 11% of the patients showed further disease progression during the treatment with
Larotrectinib after reported objective response or stable disease. Moreover, in tumor samples from
10 patients, amino acid substitution of the kinase domain was observed involving the solvent front
position (TrkA G595R or TrkC G623R), the gatekeeper position (TrkA F589L), and the xDFG position
(TrkA G667S or TrkC G696A) which eliminates unfavorable interactions by preventing inhibitor
binding. As a result of this, eight out of 10 patients identified acquired resistance to Larotrectinib.
Moreover, more than one mutation was identified in three patients [88]. These findings suggest that
the biochemical characterization of more than 370 TrkC mutations, including a protein tyrosine kinase,
is required to determine the potential mechanism of primary resistance to Trk inhibitors.

2.6. Next-Generation of Trk Inhibitor

Repotrectinib (TPX-0005) and LOXO-195 were developed to overcome acquired drug-resistance
mutations, including solvent front and xDFG mutations of the kinase domain.

In terms of cell viability, Repotrectinib had a more potent IC50 value (<0.2 nmol/L) compared
to that of Larotrectinib and Entrectinib. Moreover, TrkA G595R, TrkB G639R, TrkC G623R, and TrkC
G623E exhibited a dramatic reduction in sensitivity to inhibition by Larotrectinib and Entrectinib,
but Repotrectinib has a 42- and 62-fold increase, respectively, in the IC50 value compared to
Larotrectinib and Entrectinib. Moreover, treatment with Repotrectinib for ETV6-NTRK3 and TrkC
G623E mutation-positive patient with MASC showed a rapid and dramatic response to the drug and
achieved regression within a few days of treatment [159].

LOXO-195 is another next-generation Trk kinase inhibitor designed to overcome recurrent
resistance mediated by mutation of the gatekeeper position and the kinase domain (solvent front and
xDFG). Treatment with LOXO-195 showed low inhibitory activity against TrkA G595R, TrkC G628R,
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and TrkA G667C, with IC50 values between 2.0 and 9.8 nmol/L. Moreover, LOXO-195 treatment of 2
patients who acquired resistance to Larotrectinib through TRKA G595R, and TRKC G623R, respectively,
showed at least 90% inhibition of TRK target coverage at Cmax and 50% inhibition at Cmin of target
pharmacokinetic thresholds (Cmax, Cmin). Furthermore, LMNA-NTRK1-positive colon cancer patients
with TrkA G595R mutation displayed a rapid clinical response to therapy with LOXO-195. Moreover,
ETV6-NTRK3 and TrkC G623R-positive pediatric patients with infantile fibrosarcoma showed visible
tumor regression in the head and neck region [160]. Additionally, LOXO-195 is currently being
evaluated in a Phase 1/2 trial. Of 29 evaluable patients via Phase I or FDA expanded access single
patient protocol, 10 of these patients (34%) had a confirmed complete or partial response, and the ORR
of patients with Trk kinase mutation according to the assessment was 45%. Moreover, nine out of
20 patients (45%) with a previous resistance to Larotrectinib treatment showed a complete or partial
response to LOXO-195 [161].

3. Conclusions

TrkC and TrkC fusion proteins are associated with a variety of human cancers and play essential
roles in the progression and metastasis of human cancers. The development of Larotrectinib and
Rozlytek as Trk inhibitors has demonstrated a high overall response rate to Trk or Trk fusion
proteins-positive solid tumors. However, acquired drug resistance was identified as a progressive
disease by mutation, including mutations in the gatekeeper position and the kinase domain (solvent
front and xDFG), still remains challenging, although Repotrectinib (TPX-0005) and LOXO-195 were
developed to overcome kinase domain mutations and possesses potent and selective activity against
TRKA G595R, TrkA G667C, and TRKC G623R.

In patients of various cancer types, more than 530 different mutations of TrkC are identified,
including a mutation in the tyrosine kinase domain (Figure 1A). These findings imply that mutations
of TrkC in the kinase domain may lead to constitutive activation of TrkC, and this can lead to acquired
resistance to first-generation or next-generation Trk inhibitors. To resolve this possibility, further
studies will be required to determine the functional role of the TrkC mutation.
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