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Researchers can investigate the mechanistic and molecular basis of many physiological

phenomena in cells by analyzing the fundamental properties of single ion channels. These

analyses entail recording single channel currents and measuring current amplitudes and

transition rates between conductance states. Since most electrophysiological recordings

contain noise, the data analysis can proceed by idealizing the recordings to isolate

the true currents from the noise. This de-noising can be accomplished with threshold

crossing algorithms and Hidden Markov Models, but such procedures generally depend

on inputs and supervision by the user, thus requiring some prior knowledge of underlying

processes. Channels with unknown gating and/or functional sub-states and the presence

in the recording of currents from uncorrelated background channels present substantial

challenges to such analyses. Here we describe and characterize an idealization algorithm

based on Rissanen’s Minimum Description Length (MDL) Principle. This method uses

minimal assumptions and idealizes ion channel recordings without requiring a detailed

user input or a priori assumptions about channel conductance and kinetics. Furthermore,

we demonstrate that correlation analysis of conductance steps can resolve properties of

single ion channels in recordings contaminated by signals from multiple channels. We

first validated our methods on simulated data defined with a range of different signal-

to-noise levels, and then showed that our algorithm can recover channel currents and

their substates from recordings with multiple channels, even under conditions of high

noise. We then tested the MDL algorithm on real experimental data from human PIEZO1

channels and found that our method revealed the presence of substates with alternate

conductances.

Keywords: ion channel gating, idealization, Markov models, minimum description length, mechanoreceptors

INTRODUCTION

The analysis of discrete events in single ion channel data has been a powerful tool in
electrophysiology research since the pioneering work of Erwin Neher and Bert Sakmann,
recognized with the 1991 Nobel Prize in Medicine. However, these analyses usually entail data
modeling methods that rely on user-defined inputs, filters, event detection thresholds or subjective

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00031&domain=pdf&date_stamp=2017-04-27
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jakobdr@sund.ku.dk
https://doi.org/10.3389/fninf.2017.00031
http://journal.frontiersin.org/article/10.3389/fninf.2017.00031/abstract
http://loop.frontiersin.org/people/359122/overview
http://loop.frontiersin.org/people/76730/overview
http://loop.frontiersin.org/people/140469/overview


Gnanasambandam et al. Idealization by Minimum Description Length

criteria for event detection. These conditions present difficulties,
particularly when analyzing time series composed of currents
frommultiple ion channels, or in cases when a channel can make
a transition between one or more sub-conductance states.

Given these considerations, approaches to the analysis of
ion channel currents often involve one of two paradigms. In
one approach, Hidden Markov Models (HMMs) are used to
analyze recordings containing signals arising from one or more
ion channels (Venkataramanan and Sigworth, 2002; Qin, 2007).
Here, we assume that the ion channels generate the observed
currents by jumping between metastable conductance states.
Consequently, HMM analysis is most suitable when different
conductance states of channels can be estimated a priori; so
long as these estimates are valid, the HMM algorithm provides
maximal information about the conductance transitions and
their kinetics.

HMM is not always applicable, precisely because it requires a
priori knowledge of likely kinetic models, which can be especially
difficult to predict if currents from several channels are present
in the recording. While the HMM-based algorithms can provide
useful quantitative analyses, real laboratory data often fail to
satisfy the inherent assumptions of the model. Chief among
these assumptions or conditions is that the system should be in
a steady-state for the duration of the recording. However, the
channel kinetics and ion flux can vary with time, for example
the membrane resting potential may change during the recording
(Suchyna et al., 2009; Gottlieb et al., 2012). An alternative to
the HMM approach is to idealize the measured input sequence
using an event detection algorithm that is independent of the
kineticmodel (Colquhoun and Sigworth, 1995; Vandongen, 1996;
Carter et al., 2008; Parsons and Huizinga, 2013). Here events
are detected when the signal, or its first derivative, crosses a
certain threshold. The measured current is thus modeled as a
series of events without imposition of a particular kinetic scheme,
and can in principle account for unknown sub-states in the
recording (Vandongen, 1996). However, such methods usually
require low-pass filtering to reduce noise levels. In principle, the
optimal filtering can be deduced from the signal to noise ratio
and methods that analyze the filtered time course of conductance
transitions enable highly accurate determination of transition
points (Colquhoun and Sakmann, 1985). However when the
number of subconductance levels and their kinetics is unknown,
low pass filtering may lead to missed events.

Hotz et al. (2013) have used a jump-segmentation filter to
analyze gramicidin A channels (J-SMURF) (Hotz et al., 2013).
This method uses a statistical multiresolution analysis and detects
abrupt changes in a recording, and does not assume a specific
channel structure. The sensitivity of the method is controlled
by the user by setting a significance level, say 5%, which
corresponds to the risk of false positive segmentation. However,
only few methods enable idealization of ion-channel recordings
completely without inputs from the user.

We now test Rissanen’s Minimum Description Length
Principle (MDL) to provide an idealization algorithm based on
“structural breakpoint detection” (Rissanen, 1978; Lee, 2001;
Davis et al., 2006; Killick et al., 2012). Our aim is to provide a fast
and unbiased idealization of single channel time-series without

requiring any user-dependent inputs.We assume that the current
can be modeled stepwise as a sequence of segments of constant
amplitude, separated by abrupt (instantaneous) transitions to
some new current amplitude (Vandongen, 1996; Hotz et al.,
2013). The algorithm identifies the location of the transitions
between segments, and calculates the mean current prevailing
in each segment. Furthermore, the MDL algorithm performs
the calculation of transition locations and amplitudes without
a priori assumptions of step-size or transition kinetics, and the
current amplitude in each segment is independent of other
amplitudes occurring in the recording. To provide a post-hoc
analysis of the output data, we developed a correlation analysis in
which the conditional probability of observing pairwise adjacent
steps is used to infer the number of discrete states. Finally,
we tested the MDL algorithm on real experimental data from
human PIEZO1 channels and found that our method revealed
the presence of substates with alternate conductances.

METHODS

Cell Culture and Electrophysiology
We analyzed current records from the mechanically gated
channel PIEZO1 in transformed HEK cells maintained in
an incubator at 37◦C and 5% CO2. These cells had been
transiently transfected with 200–500 ng of hPIEZO1 cDNA using
MirusTM (TransIT-293 reagent) 1–2 days prior to performing
cell-attached patch-clamp recordings at room temperature. The
resting membrane potential of cells was maintained close to 0
mV by using a high potassium bath solution containing 150 mM
KCl, 10 mM HEPES, and 1 mM MgCl2 and CaCl2, adjusted to
pH 7.4. The pipette solution contained 150 mM KCl, 80 mM
TEA, and 10 mM HEPES at pH 7.4. Recording was performed
in the cell-attached configuration in which the final membrane
potential (Vm) of the patch would be Vc-Vp (where Vc and Vp are
the resting cell membrane potential and the command potential,
respectively). Vm would be roughly equal in magnitude and
opposite in polarity to the command potential (Vp) when resting
membrane potential is roughly 0mV, as set by the high potassium
bath. During the recordings, the patch membrane potential was
randomly stepped to voltages within the range of −100 mV to
+100 mV and pressure steps were applied to the pipette using a
high-speed pressure clamp (ALA Scientific) (Figures 6A,B). Data
sampling was at 10 kHz, with Bessel filtration at 2 kHz.

Mathematical Analysis
The basic assumption in our method is that the opening and
closing of an ion channel gives rise to instantaneous changes
in membrane current, which are superimposed on a noisy
background of the recording. Accordingly, we modeled the time
series of currents as a sequence of steps corresponding to opening
and closing of channels and additive Gaussian noise (ignoring for
the present the possibility of state-dependent noise). We define
time points at which the conductance jumps occur as break
points, and the difference in mean amplitude on each side of the
break point as step height (or step amplitude).

Consider a data set denoted as x= (x1, x2, ..., xN) consisting of
N data points. Here, we define the code length L as the length of
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the message containing the relevant information in the data. The
code length, L, need not be constant, but varies depending on
how the information in x is represented. More effective coding
schemes generally have low description length. In particular,
if x is well described by a particular model, it may be more
efficient to first encode the model parameters, and then encode
any deviations from the model (Rissanen, 1978; Lee, 2001; Davis
et al., 2006). MDL serves to rank the fitness of models of a data set
by identifying the particular model producing the shortest total
description length for the observations; in other words, the task is
to select the model providing an optimal tradeoff between model
complexity and fitting of the data.

In order to apply MDL to an ion channel recording, we first
need to calculate the lower bound of the description length of the
observed time series, x. Considering a time series segment x =

(x1, x2, ..., xN) with mean value µ, the residual sum of squares
(RSS) is defined as

RSS0 =

N
∑

i= 1

(xi − µ)2 (1)

We now consider the minimum description length for encoding
the data sequence (Rissanen, 1978; Lee, 2001). A set of N
data points with a Gaussian distribution can be most efficiently
encoded as the mean value and a list of deviations from themean.
Thus, the minimum description length of a segment described by
a single mean value is given as

L0 =
1

2
log(N) +

N

2
log

(

RSS0

N

)

(2)

In Equation (2) the first term is the description length of themean
value; the minimum number of bits required to encode the mean
value depends on the precision with which it is determined, and
that precision is determined by N, the number of data points.
The second term of the equation is the description length of
the N deviations from the mean. By convention of information
theory, base 2 logarithms (log2) are usually used to calculate code
length in units of bits. However, for the application at hand, we
are interested in comparing relative changes in code length, and
therefore prefer to use the natural logarithm, the particular base
being irrelevant.

We next consider the same sequence of data, but divided into
daughter segments at k locations defined by 2 ≤ ni ≤ N-1, and
where ni < ni+1. We then define the residual sum of squares of
the divided segment (RSSk) as

RSSk ({n1, . . . , nk}) =

k+1
∑

i= 1

Ni
∑

j= 1

(

xni−1+j − µi
)2

(3)

where ni is the i’th division point and µi is the mean value of the
Ni data points between ni−1 and ni. As above, we then calculate
the minimum description length of the divided segment as (Lee,

2001),

Lk ({ni, . . . , nk}) =
k

2
log(N) +

1

2

k+1
∑

i= 1

log (Ni)

+
N

2
log

(

RSSk
N

)

(4)

Here the first term describes the code length for the location in
the data string of the defined break points, i.e., the points at which
the segment is divided into k+1 daughter segments. The second
term describes the code length of themean value of each segment,
and the third term is the code length for the residuals. According
to the Minimal Description Length Principle, a divided segment
can be considered a better model of the data only if Lk < L0. In
our implementation, we applied Equation (4) with k= 1 or k= 2.

Step Detection Algorithm
Having come this far, the task is now to identify a set of
breakpoints minimizing the description length of a given dataset.
This is inherently a complex multidimensional optimization
problem. For typical data the number of possible segmentations
is enormous and a full search for all possible breakpoints not
feasible. We therefore search for breakpoints iteratively using
a modification of the Binary Segmentation process (Scott and
Knott, 1974; Kalafut and Visscher, 2008). In brief, we try to locate
1 or 2 breakpoints in the full segment and, if successful, we repeat
the search on each sub-segment. We first try to locate a single
break point in the time series. If this putative breakpoint fails
to reach the MDL criterion, we try to locate two break points.
Thus, our search is essentially a tertiary segmentation process
with an initial binary search step. Using numerical tests, we show
below that for the binary search, the probability of detecting
channel-like events depends on the recording length, but that this
undesirable property is circumvented with the tertiary search.

The algorithm proceeds in the following steps:

(1) Calculate L0 for the segment.
(2) Search for the optimal location for a single break point (k =

1). In other words, find n∗ as the n where RSS1 is minimized.
Thus, we define n∗ as

n∗ = argmin
(

RSS1,
{

ni|lmin < i ∧ i < N − lmin
})

(5)

where lmin is a cutoff threshold for the smallest segment
allowed. Unless otherwise stated we use lmin = 3.

(3) Apply MDL to test whether division at the optimal
breakpoint, n∗, is indeed a better model than for the entire
undivided segment:

a. Calculate L1(n
∗) using Equation (4)

b. If L1(n
∗) < L0 the segment is divided at n∗ and the

procedure is repeated from step 1 for each of the two
daughter segments.

Thus, if the single breakpoint is accepted in step 3b, the algorithm
is repeated from step 1. Otherwise, we proceed by evoking the
tertiary search noted above, thus trying to locate two breakpoints
in the segment:
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(4) Find the pair {m∗
1 ,m

∗
2} for which RSS2 is minimized.

(5) Apply MDL to test if a model with divisions at the two
breakpoints, {m∗

1 ,m
∗
2}, provides a better model than the

undivided segment:

a) Calculate L2({m
∗
1 ,m

∗
2}) using Equation (4)

b) Accept {m∗
1 ,m

∗
2} as break points if L2({m

∗
1 ,m

∗
2}) < L0

(6) If the breakpoints are accepted, we repeat the procedure from
step 1 onward for each daughter segment.

The algorithm proceeds until no sub-segment is further divisible
(into two or three parts). Ultimately, the algorithm produces a list
of breakpoints and themean value of the segments between break
points follows easily.

The number of calculations using the tertiary search in step
4 scales with N2. However, in data containing many breaks,
the binary search, i.e., steps 1–3.b of the search algorithm, is
often by itself sufficient to decompose the sequence into shorter
segments. This reduces the total computing time because the
computationally demanding tertiary search is only evoked on
shorter sub-segments later in the search (see Figure 3).

We tested a number of alternate criteria for the detection
of break points. Similar results were obtained when putative
break points were tested using the Bayes Inference Criterion
(BIC) (Schwarz, 1978), although a minimum segment length
(lmin = 10) was required to avoid false segmentation of small
segments. The Akaike Information Criterion (AIC) (Akaike,
1973) allowed many false steps, and was thus considered
inappropriate in the present application (data for BIC and
AIC are not shown). Similar observations have been reported
by Kalafut and Visscher (2008), who used BIC in their event
detection algorithm. We note that the alternate criteria BIC and
AIC both require a priori knowledge of the variance of the noise.
While this is estimable from a segment of the time series in
which no steps/transitions were apparent by visual inspection,
such a manual approach introduces bias favoring higher baseline
noise models. However, the MDL method does not require this
potentially subjective operation, and has superior performance in
terms of low number of false positives.

The step detection algorithm with MDL was implemented
in MATLAB and is available on MATLAB central file exchange
(Dreyer, 2016). It is also available as a plugin for ion-
channel analysis software QuB (https://www.qub.buffalo.edu/
download/).

Computational Complexity
The RSS of N points was computed with O(N) time complexity,
using a well-known incremental one-pass method (Chan et al.,
1983).

µi =
1

i
[(i − 1) µi− 1 + xi]

RSSi = RSSi− 1 + (xi − µi− 1)
2 − i(µi − µi− 1)

2 (6)

We derived the decrimental form, which removes a point from
the distribution by solving for µi− 1 and RSSi− 1.

µi− 1 =
1

i − 1
(iµi − xi)

RSSi− 1 = RSSi − (xi − µi− 1)
2 + i(µi − µi− 1)

2 (7)

With these methods, the optimal break point, n∗, was found with
O(N) complexity. We initialized the left-hand distribution DL

with the first lmin points, and the right-hand distributionDR with
all N points. The RSS2 of the first break point candidate is then
the sum of the left- and the right-hand incremental RSS values.
We computed the RSS2 of each subsequent candidate by adding
a point to DL and removing it from DR. The tertiary search for
the pair {m∗

1 ,m
∗
2} was implemented by evaluating, for all possible

m1, the optimal binary division of pointsm1...N , thus meeting the
criterion for O(N2) complexity.

The overall complexity of the algorithm depends on the scale
of the input data and the order in which intervals are segmented.
Considering for example the binary segmentation of an interval
sequence ABCDEFGH (i.e.,NI = 8 intervals), in the best possible
case this might be decomposed first as ABCD, EFGH, then AB,
CD, EF, GH, and finally A, B, C, D, E, F, G, H. The tree’s height, or
in other words the number of generations, is then g = log2(NI).
In the worst case, the sequence might be first decomposed into
A, BCDEFGH, then A, B, CDEFGH, and so on, and g = NI-1,
or O(NI). Since each generation involves a linear pass through
the data, the intervals will be fully split with O(gN) complexity.
If signal-to-noise ratio (SNR) is low, intervals are found by the
tertiary search, which increases the complexity to O(gN2). Thus,
in many applications, the SNR is a critical factor influencing
computational burden; when SNR is high, most steps are found
using a single point search and computation time grows like
O(gN), but when SNR is low, double point search dominates, such
that computation time grows like O(gN2).

We tested the computation time of the MDL algorithm
and compared with timing of HMM based segmentation
using “viterbi_path,” a MATLAB implementation of the Viterbi
algorithm coded by Murphy (1998). We performed the test on a
Macbook pro (2.3 GHz Intel Core i7) using the builtin MATLAB
timer functions “tic” and “toc.” Timing of the R-process JSMURF
was done by measuring the user-CPU-time using proc.time() on
the same computer as the MATLAB tests. We took care to ensure
that the process used around 100% of the resources in a single
CPU core.

Coherence Spectra
We determined the coherence of the idealized output of the
sequence with the input sequence as a function of noise
level (Figure 2). At each defined SNR, we generated five data
sequences, each consisting of 131,072 data points, using a single
Markov process. We average the coherence spectra in sections of
1,024 points with 50% overlap and Hamming window using the
MATLAB function “mscohere.”

Correlation between Neighboring Events
The outputs of our algorithm are a list of breakpoints indicating
the locations where the current is found to change abruptly,
and the step amplitudes at these locations. Since the breakpoints
and step amplitudes are determined independently, one therefore
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needs to undertake post-processing in order to analyze properties
of single channels, in particular when there are transitions
between states of various condutance.

We define the step amplitude si is defined as µi+ 1 - µi. The
precision of si compared to the true value is given by

β =
li + li+ 1

σ 2
(8)

where li+ 1 and li is the length of each of the adjacent segments
and σ 2 is the variance of the noise.

Consider a list ofM step amplitudes, s1, s2, ..., sM determined
from an ion channel recording.We denote by P(x) the probability
of observing a step of size x, and calculate this probablity as

P(x) =
n

(

sj = x± 1
2

)

M
(9)

Here, the numerator indicates the number of steps with
amplitude x and within a bin-width 1, and the denominator is
the total number of observed steps.

Our aim is to determine how often steps of amplitude x were
immediately followed by steps of amplitude y in the recording.
To this end, we therefore first define Pxy as the joint probability
of observing a step of amplitude x being immediately followed by
a step of amplitude y:

Pxy =
n

(

sj = x± 1
2

⋂

sj+ 1 = y± 1
2

)

M
(10)

Here the numerator indicates the number of steps with amplitude
x± 1/2 followed by steps of amplitude y± 1/2. The correlation
between subsequent neighboring steps was then calculated as

Cxy = Pxy − P(x)P(y) (11)

The sign of C indicates if particular transitions are over- or
underrepresented relative to an independent process, and may
thus provide physiologically relevant details of the underlying
step-generating mechanism. In particular, Cxy > 0 if the
observation “step of size x is followed by step of size y”
happens more frequently than if the observed sequence was
purely random and Cxy < 0 if it is less frequent. We used
the MATLAB function “hist3” to generate joint probability
histograms, selecting a bin width 1 in the range 5–10% of
the typical maximal amplitude. The resultant joint probability
distributions, Pxy and Cxy, were smoothed using a 2D Gaussian
kernel with a half-maximum width of 1 bin-width. If either P(x)
= 0 or P(y) = 0 (that is to say, if no events occurred with
amplitudes x ± 1/2 or y ± 1/2), the correlation is undefined.
In the analysis below we consider regions where the bin counts
in the joint probability histogram ≤ 1 as undefined and these
regions are indicated by white in the plots.

Generation of Simulated Data
We used simulated data for evaluating the basic properties of our
step detection method (Figures 1–5). As test data for quantifying
the reliability of our detection mechanism, we simulated a simple

FIGURE 1 | Evaluation of the step detection method applied to

synthetic data. (A) 1,000 data points of unit steps (upper, SNR = 3.3; lower,

SNR = 1). Input data are shown in black, MDL-idealized data are shown in

green, and true states are shown in red (note that the green and red lines often

coincide). (B) The tertiary search method provides a constant frequency of

event detection regardless of recording segment length. Markers show the

number of detected steps relative to the number of known steps as a function

of N, the number of data points in the record. Squares (green).: SNR = 3.3

Circles (blue): SNR = 1. Solid lines show results from the tertiary search, and

dashed lines show the results from the binary search. (C) Analysis of

probability of false events. Each data point shows mean number of false

events from 5,000 sequences of uniform random numbers of length N. Black:
lmin = 1, red: lmin = 3, and blue: lmin = 5. (D,E) Analysis of precision in step

estimates at SNR 3.3 and 1 respectively. Dots show precision of jump estimate

as function of observed absolute jump. We calculated the precision using the

length of the adjacent segments according to Equation (8). Red lines indicate 4

standard deviations from the target value at different levels of precision.

(Continued)
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FIGURE 1 | Continued

(F): Histogram of neighboring events at SNR 3.3. The x-axis shows 1x of
event n and the y-axis shows 1x of the following event, n + 1. (G): Correlation

of events at SNR 3.3. Detected events display same correlations of

neighboring events as a simple channel. Red indicates neighboring events

occurring more frequently than random. Blue indicates neighboring events

occurring less frequently than random. White areas indicate undefined

correlation. (H): Histogram of neighboring events at SNR 1. (I): Correlation of

events at SNR 1.

FIGURE 2 | Absolute value of coherence spectrum between input time

series and idealized time series. Purple, SNR = 1; yellow, SNR = 3.3;

orange, SNR = 10; and blue, SNR = 33. Frequency is plotted as 1/n where n
is the length of the segment. Horizontal red dashed line indicates 0.5.

FIGURE 3 | Comparison of computation time for different datasets.

SNR = 3.3; blue dots show mean and vertical lines show range between

minimum and maximum from 10 iterations. SNR = 1; orange dots show mean

and vertical lines show range from 10 iterations. SNR = 0 (uniform random

data), yellow, single iteration. Example of scaling by Viterbi algorithm

(SNR = 3.3); purple asterisk, single iteration. Black lines indicate O(N) (dashed)
and O(N2) scaling (solid).

two-state ion channel with the transition probability between
conduction states being 1/100 per time step (Figure 1). The
kinetics and noise in the test data were deliberately defined
so as to challenge the limits of our detection method. Test

FIGURE 4 | Event detection using different algorithms on simple

simulated data. (A) Top; part of the raw input data (gray) and Markov states

(black); lower panels show states detected using different methods (input data

are smoothed for easier comparison). Blue: states detected using threshold

crossing algorithm applied on low-pass filtered data. Asterisk indicates a false

detection. Green: states detected using Viterbi-algorithm as implemented in

QuB. Cyan: states detected using J-SMURF. Two asterisks indicate false

segmentations. Red: states detected using MDL-algorithm. (B) Distribution of

step-lengths in logarithmic bins. Black, step lengths of input; blue, threshold

crossing on optimally low-pass filtered data (FNy/40); green, Viterbi; red, MDL;

cyan, J-SMURF (rescaled). Black dashed lines indicate regions highlighted in

(C). (C) Close-up view of distribution of step lengths, colors as in (B).

(Continued)
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FIGURE 4 | Continued

(D) Histogram of neighboring events detected by J-SMURF. The x-axis shows

1x of event n and the y-axis shows 1x of the following event, n + 1. (E)
Correlation of events detected by J-SMURF. Red indicates neighboring events

occurring more frequently than random. Blue indicates neighboring events

occurring less frequently than random. White areas indicate undefined

correlation. (F) Histogram of neighboring events detected by J-SMURF. (G)

Correlation of events detected by MDL.

data for quantifying the false positive detections consisted of
homogeneous sequences of random numbers with a Gaussian
distribution. This process was also used for coherence spectra
(Figure 2) and timing measurements (Figure 3).

To compare our MDL-based detection methods to other
methods (Figure 4), we used simulated test data consisting of
N = 5 × 106 data points generated by a two-state Markov
Model with equal probability for each state. Here, the transition
probability of the Markov chain was 10−3 in each time-step and
the standard deviation of the Gaussian noise was equal to the
step size between Markov states, giving a SNR equal to 1. The
slightly slower transitions kinetics used for test data in Figure 4

compared to the test in Figure 1 were chosen to provide test
data for which the methods to be compared would all perform
reasonably well. The same input time series was analyzed by
the different methods. Because of the long calculation times for
J-SMURF on filtered data, J_SMURF was tested on a 106 sub
segment of the full data. The 106 segment was analyzed by J-
smurf in little more than 3 h, while attempts to analyze the
full sequence (which was five times longer) ran for more than
41 CPU hours before the process was aborted. The histograms
were rescaled for easier comparison (Figures 4B,C, cyan, and
Figures 4D,E).

We then applied MDL-detection to a simulated recording of
three independent ion-channels with a complex structure of sub-
conductance states (Figure 5). Each channel had one closed state
(C0) and 4 open states (O1, ..., O4) linked according to

k01 k12
C0 ⇋ O1 ⇋ O2

k10 k21
k13 ⇃↾ k31 k24 ⇃↾ k42

k34
O3 ⇋ O4

k43

(12)

The amplitudes from the states C0, O1,..., O4 are 0, 0.1, 0.3,
1, and 1. Thus, O3 and O4 are degenerate fully open states
whereasO1 andO2 are nearly closed states but with some residual
current. The rate constants are presented in Table 1. The rates of
transition from state O2 are relatively faster than the other rates,
thus making O2 a short-lived state.

Threshold-crossing, QuB, and J-SMURF
Analysis of Synthetic Data
We then tested the MDL method against a threshold-
crossing algorithm, the Viterbi algorithm as implemented

in QuB (Rabiner, 1989; Nicolai and Sachs, 2013), and a
jump segmentation by multiresolution filter (J-SMURF) (Hotz
et al., 2013). The test was performed under optimal detection
conditions for the competing algorithms: For the threshold
crossing algorithm, we used prior information of the unitary
steps in the process to set the detection threshold to 0.5.
We applied low-pass filtering of the time-series in order to
ensure reliability of the step detection by threshold crossing.
In the next step we tested the sensitivity of the threshold
crossing method against low-pass filtering by applying three
different filters with cutoff frequency at 1/20, 1/40, and 1/80
times the Nyquist frequency (corresponding to 1, 0.5, and
0.25 kHz if the time-series modeled a real recording sampled
at 40 kHz). Low-pass filtering was done using a digital
three pole Butterworth filter. For easier comparison with
MDL, each segment between detected steps was assigned its
own mean value based on the unfiltered data points in the
segment. The entire step-detection algorithm was coded in
MATLAB.

The same simulated data were also analyzed using the QuB
software (Nicolai and Sachs, 2013). This approach uses the
Viterbi algorithm to provide the most likely path through the
state space of the HMM given the observed data. To provide the
best possible conditions for event detection by this method we
fitted data to the same two-state Markov model that was used to
generate the test data.

In our comparison with J-SMURF we imported the Matlab
test-file into R-environment using the R.matlab package. We
first used “smuceR” from the R-package “stepR (Version 1.0)”
to detect breaks on unfiltered data (Aspelmeier et al., 2016). In
order to test jsmurf under similar conditions as in Hotz et al.
(2013) we low pass filtered the data using a 4 pole Bessel filter
with cut-off = 0.05 to obtain SNR ∼3. The filter characteristics
were used as input parameter to the jsmurf function. We found
that J-Smurf detected slightly more events than smuceR on
low pass filtered data, and results from J-Smurf are reported
here.

QuB Analysis of hPIEZO1 Channel Unitary
Current
Data containing multiple open levels which varied in amplitude
were first analyzed in QuB using the Segmental K-Means (SKM)
algorithm (Qin et al., 1996b, 1997) to idealize the events. We
used a model with one or two open states to find the levels. The
MDL algorithm was subsequently applied to the same dataset
in order to evaluate its performance against the model-based
approach. In the two-state model (SKM2), the initial estimates
of the current in the closed and open states were assigned
manually before idealizing the time series. In the three-state
model (SKM3), we included a sub-state for which we set the
starting estimate to 0.4 pA. Here, the three states were connected
linearly. SKM recognized all occurrences of the predefined states
from the entire trace; i.e., the two-state model recognized two
states (closed and open) and the three-state model recognized the
presence of three states (closed, low-conductance open-state and
high-conductance open-state).
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FIGURE 5 | Validation on complex simulation data with different levels of noise. Data simulates three identical, but independently operating channels. First

column, (A1–D1), is the case for low noise (SNR = 33); second column, (A2–D2), is for medium noise (SNR = 3.3); and last column, (A3–D3), is for high noise

(SNR = 1). (A1–A3): Gray, segment of raw data (upper line only); black, true states; red, MDL idealization. (B1–B3): Histogram of detected steps. (C1–C3): 2D

conditional histogram of neighboring steps. (D1–D3): Correlation between neighboring steps.

RESULTS

Validation on Simulated Data
We first asked how well our method resolved a simple sequence
consisting of a simulated single channel embedded in Gaussian
noise. The channel was modeled as a two-state Markov process

of unit step-size, with equal probability of being either open
or closed, and with a state transition probability of 1/100, and
the added Gaussian noise was set at SNR = 3.3 or SNR = 1
(Figure 1A top and lower panel respectively). On average, 98%
of the steps were detected at SNR = 3.3 (low noise) and only
50% at SNR = 1 (high noise). The fraction of detected steps did
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TABLE 1 | Transition kinetics of simulated complex channel used in

Figure 5.

Parameter Value (per time-step) Value (if sampled at 40 kHz)

k01 10−4 4 s−1

k10 10−4 4 s−1

k12 10−5 0.4 s−1

k21 5 × 10−3 200 s−1

k13 10−4 4 s−1

k31 2 × 10−4 8 s−1

k34 2 × 10−4 8 s−1

k43 10−3 40 s−1

k24 5 × 10−3 200 s−1

k42 5 × 10−3 200 s−1

States are described by Equation (12).

not depend on record length (Figure 1B, solid green, low noise;
solid blue high noise), whereas detection deteriorated in longer
records when using the binary search alone, in particular at high
noise levels (Figure 1B, dashed green, low noise; dashed blue
high noise).

We next asked if the algorithm would generate false positive
steps (Figure 1C). In general, false positives occur when a subset
of consecutive data points randomly has a mean value sufficiently
different from the rest of the segment to fulfill the MDL criterion.
When analyzing any data set with many segments, there will
be some finite probability that this occurs. To determine this
probability, we constructed data series with a different total
number of data points, N, but without deliberate introduction
of any steps. For segments with N > 100, the method detected
virtually no false positive steps. The probability of erroneously
dividing the segment one or more times was 6± 1% for segments
with 10 < N < 100 (Figure 1C, black). Only in segments with
N < 10 was there any appreciable risk of detecting false positive
steps. Increasing the minimum acceptable segment length, lmin,
to 3 or 5 reduced the risk of false positive steps in short segments,
but had negligible effect on event detection in longer segments
(Figure 1C; lmin = 1, black, lmin = 3, red, lmin = 5, blue).

Thus, the risk of generating false positive steps is greater
within short segments (Figure 1C). This observation has
implications for application of our method for analyzing data
with fast kinetics under high SNR. For example, 63% of the
segments of the input data in Figure 1A are shorter than 100
data points. Under conditions of high SNR, where the algorithm
is able to detect most true transitions, some of the resulting
segments can be sufficiently short to risk instances of false
positive segmentation. In order to differentiate between genuine
transitions and errors, we compared the expected precision
(Equation 8) of the transitions (based on the length of adjacent
segments) and the observed step. Under high SNR, we found that
the amplitude deviated more than expected on the basis of the
precision estimate in 5% of the identified transitions, and that
many of these occurrences had small |1x| (Figure 1D, SNR =

3.3, dots indicate observed step and estimated precision. Red lines
indicate 4 standard deviations from unity). In data with low SNR,
the algorithm does not capture the shortest segments, and false

positives will thus be rarer. Under low SNR, 4% of the transitions
lay outside the expected range (Figure 1E, SNR = 1). This was
presumably because the algorithm stopped before all segments
were detected. In biological data, where we do not always have
prior knowledge of typical step amplitudes and kinetics, we used
lmin = 3 to reduce putative false positive detections.

To verify that our method gave relevant information of the
state-transitions, we calculated the joint probability histogram
of neighboring steps. As the step generation mechanism was
by definition a two-state Markov process (simulating a single
simple channel with open and closed states), each step must
necessarily be followed by an inverse step. We found that the
conditional histogram showed exactly this predicted behavior:
the vast majority of +1 steps (transition from closed to open
state) were followed by −1 steps (transition from open to closed
states) and vice versa (Figure 1F, low noise; Figure 1H, high
noise). The correlation plot revealed the Markov structure of the
process: +1 steps correlated positively with “−1” steps, and vice
versa, whereas+1 steps correlated negatively with other+1 steps
(Figure 1G, low SNR; Figure 1I, high SNR).

The above analysis showed that the algorithm resolved long
segments, whereas sometimes missed short segments at low SNR.
To characterize further the performance of our algorithm, we
calculated the coherence spectrum between the input time series
and the idealized output (Figure 2). Coherence was nearly 1
at low frequencies (indicated as inverse segment length) but
decayed at high frequencies. At SNR = 1 (Figure 2, purple),
coherence was ∼0.5 at frequencies corresponding to segments
of length n∼100. This is consistent with our observation above
that for a process with mean segment length 100 and SNR
= 1, MDL detected roughly 50% of the segments (Figure 1B,
solid blue). The observed roll-off at higher frequencies indicates
that the idealized output failed to resolve shorter segments. At
higher SNR the roll-off occurred at higher frequencies (higher
values of 1/n), indicating that our algorithm was able to resolve
increasingly finer details of the input (Figure 2; SNR 3.3, yellow;
SNR 10, orange; SNR 33, blue). Thus, our algorithm resolves
transient details, but in a manner limited by the SNR. It follows
that our algorithm can resolve noisy data, even with SNR <

1, if the kinetics ensure that typical segments are sufficiently
long.

The Combination of Binary and Tertiary
Search Saves Computation Time
We determined the computation time for MDL to resolve data
as shown in Figure 1A on a typical laptop computer (Figure 3).
With SNR = 3.3 (as in Figure 1A upper), computation time
scaled linearly with sequence length and was uniform across 10
trials. For example, the processing time for a sequence of 500,000
data points had a mean of 7.2 s (range 6.8–8.9 s) (Figure 3, blue
circles show mean and error bars show range). With SNR = 1
(as in Figure 1A lower), the computation time was significantly
higher and more variable between trials. For example, the mean
processing time for 500,000 data points was ∼1,000 s (range
75–3,600 s) (Figure 3, red dots show mean and error bars show
range from n= 10 iterations).
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The computation time for uniform random data was even
longer, did not vary between trials, and the processing time scaled
with the square of the sequence length (Figure 3, yellow dots
computation time for a single trial). To provide a comparison
with HMM-based methods, we found the processing time for
analyzing the sequences using our MATLAB implementation
of the Viterbi algorithm to be linear and independent of SNR
(Figure 3, purple asterisks show computation time for a single
trial at SNR= 3.3).

The differences in computation time reflect which method
is most involved in the search for breakpoints. While the
binary search is fast, albeit apt to miss breakpoints in long
segments, the tertiary search is computationally expensive, but
is required to enable uniform recovery at different record lengths
(Figure 1B, compare dashed and solid). However, our approach
of combining binary and tertiary searches reduces computation
time and enables computationally efficient searches on datasets
with multiple breakpoints. However, the MDL method is much
faster than J-SMURF (Hotz et al., 2013). As a comparison, J-
SMURF, worked for more than 3 h on a data sequence containing
106 data-points. On the full 5 106 data sequence J-SMURF
worked for more than 41 CPU hours before the process was
aborted.

Comparison of Step Detection with other
Idealization Methods
Our motivation behind developing the MDL algorithm is
to enable unbiased event detection and idealization of real
electrophysiological data. The algorithm is designed to idealize
ion channel recordings without user-specified inputs, and with
the fewest possible assumptions, thus providing a versatile and
general tool. We concede that other methods of idealization
might be optimal for a particular system, thus providing
more information in a particular application. In order to
compare the fitness of other specialized methods to MDL,
we analyzed a simulation consisting of a simple two-state
Markov model emitting 0 or 1 with equal probability and
Gaussian noise with standard deviation 1 (Figure 4A). The
transition probability between states was set to 10−3 per time
step, a 10 times slower process than used above (Figures 1–
3). The distribution of step-lengths, i.e., the dwell time in each
state, followed an exponential decay function (Figures 4B,C,
black).

In this comparison of methods, we first applied threshold-
based event detection on the simulated data. The threshold was
set at 0.5, i.e., the 50% level between the two states. At the noise
level used in the test, threshold-crossing required prior low-pass
filtering of the data. For this, we used a 3-pole Butterworth low-
pass filter, and tested the effect of three levels of low-pass filtering,
i.e., at FNy/20, FNy/40, and FNy/80 (these filters correspond to 1,
0.5, and 0.25 kHz in relation to 40 kHz sampling).

The algorithm’s ability to detect short duration events using a
threshold proved to be highly dependent on the filter width, with
best sensitivity at FNy/40 (Figure 4A, dark blue, Figures 4B,C,
dark blue). With too little filtration, i.e., FNy/20, the threshold
algorithm detected many false-positive events. On the other
hand, with excessive filtration of the input data, i.e., FNy/80, there

was a penalty in the ability of the threshold-based algorithm to
detect short segments.

We next analyzed the data using QuB (Figure 4A, green). This
approach uses the Viterbi algorithm, which provides the most
likely sequence of states given an observed sequence of emissions,
and provided that the probability of observing a particular
emission from each state is known (Rabiner, 1989), without
requiring prior low-pass filtering. The overall distribution of
dwell times was similar to the input sequence (Figure 4B, green),
although the probability of detecting transitions with a dwell
time less than ∼30 time-steps was lower than for the case of
threshold-based detection (Figure 4C, compare green and dark
blue).

Next method tested was J-SMURF (Figure 4A, cyan). This
method uses a statistical multiresolution filter (Hotz et al., 2013)
to provide an estimate of transitions between conductance levels
with no a priori assumptions of levels and kinetics. We used
the default settings of the R-implementation of J-SMURF and
applied the method on data low pass filtered to obtain SNR ∼

3, as in Hotz et al. (2013). Under these conditions, computation
time for J-SMURF increased steeply with segment length and
we therefore analyzed a shorter sub-segment consisting of the
first 106 datapoints. We found that J-SMURF reliably detected
long segments, but missed shorter segments (Figure 4A, cyan,
asterisks indicate false segmentation). In the histogram of step-
lengths, we found that J-SMURF did not detect segments shorter
than 100 datapoints (Figures 4B,C, cyan. Note that the number
of detected steps by J-SMURF is rescaled to correct for the shorter
segment analyzed).

We then applied the MDL method to the data (Figure 4A,
red). Overall, MDL performed well on the test data, and
the distribution of dwell times matched the theoretical result
(Figure 4B, red) (see also Figure 2, SNR = 1, typical segments
in the input has n = 1,000 data points). The probability of
detecting segments briefer than 30 time-steps was reduced to
the same degree as seen with QuB. With MDL, there was a
slight overrepresentation of segment lengths between 60 and 100,
which we did not see with QuB (Figure 4C, compare red, with
green and black). This is presumably due to the same effect as
illustrated in Figure 1C, where short segments face a certain
risk of being erroneously sub-divided. The lower detection limits
observed by QuB and MDL are determined by the SNR of
the input data, rather than being an intrinsic property of these
methods.

Both MDL and J-SMURF detect steps without imposing a
channel structure. The distribution of neighboring steps found
using J-SMURF and MDL had a similar distribution and
correlation pattern, indicating that both methods captured the
main characteristic of the data. In the correlations we noticed
a slightly higher incidence of off-diagonal detections by J-
SMURF, presumably because of missed short events (compare
Figures 4D–G).

These simulation results show that it is possible to optimize
detection methods by taking into account prior knowledge of
the process, such as kinetics and step size. The highest temporal
resolution was found with the optimally filtered threshold-based
method, and the accuracy of detection of true amplitudes was
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highest with the HMM based method. JSMURF and the MDL-
based detection method, on the other hand, are designed to be
generally applicable. When applied to simple processes it may
provide an independent confirmation of the sorts of assumptions
and constraints used in more refined analyses. In these tests
we found that MDL is much faster and the MDL method had
superior sensitivity to detect short segments under high noise
conditions as tested here.

Detection of Sub-states in Multiple
Channels
Many types of data do not lend themselves to analysis by
conventional methods. For example, currents arising from
background channels can be present in the data recording, or
individual channels can exhibit transitions between sub-states.
In these cases, MDL-based detection is still reliable. As a test of
our algorithm on complex data of this type, we simulated the
combined output of three simultaneously active, independent,
and complex ion-channels, each as given by Equation (12).
The simulation generated output from states with long and
short dwell times and different current amplitudes. The expected
amplitude steps defined in the dataset are ± 0.1 (from C0 to
O1), ± 0.2 (from O1 to O2), ± 0.9 (from O1 to O3), and ± 0.7
(from O2 to O4). Transitions from O3 to O4 will not give a step
in current, but these two states have different transition kinetics
to the other states. We analyzed the same simulated dataset with
different levels of noise [Figures 5A1–A3 shows part of the test
data with noise (gray), original state emissions (black), MDL
idealized (red)].

The first idealization of the recordings was in a condition of
low noise (Figure 5A1, black and red traces superimposed, SNR
= 33. The MDL algorithm detected multiple steps at the same
amplitudes as defined for the channel (± 0.9, ± 0.7, ± 0.2, and
± 0.1; Figure 5B1, compare black and red). There was a small
fraction of false-positive detections clustered about the origin of
the histogram. Based on a comparison with Figure 1C, this bias
is most likely due to the favored detection of very short segments
under a condition of low noise.

The complex state transitions of the simulated channels
(Equation 12) were apparent in the joint probability histogram
of neighboring steps. This histogram depicted numerous open
events followed by closing events (Figure 5C1, along the diagonal
in the lower right quadrant). and also many closing events
followed by open events, Figure 5C1, along the diagonal in the
upper left quadrant). In addition, numerous off-diagonal events
were observed.

We see a similar pattern in the corresponding amplitude
correlation map (Figure 5D1). Here, the most highly correlated
transition was +0.7, and the second most common −0.7, and
vice versa. This result is doubtless because of the rapid flickering
between O2 and O4, as defined in the model. Events with a −0.1
step (transition fromO1 toC0) were highly correlated with a+0.1
step (transition from C0 to O1). We also found steps of −0.7
to be highly correlated with steps of +0.7 (Figure 5D1, upper
left quadrant, reflecting transitions from O4→O2 → O4) and
also with -0.2 transitions (reflecting O4 → O2 → O1), and note
that the O4 →O2 transition seemed more strongly correlated,

whereas the O3→O1 transition was less correlated. These results
presumably arise from the kinetics of transition away from O1

being slower than from O4. Therefore, in the presence of other
channels, slow transitions like O3 →O1 →O3 are not often
observed directly in step detection, because they are likely to be
interrupted by events in other channels.

We next analyzed the same simulated recording under
increased noise levels (Figure 5A2, SNR = 3.3; and Figure 5A3,
SNR = 1). As expected, the sensitivity of detection gradually
declined for small amplitude events, and the estimation
of the plateau magnitudes became more influenced by
the SNR (Compare red and black lines in lower panels of
Figures 5A2,A3,B2,B3). The joint probability histogram and
correlations between neighboring steps were remarkably
robust, and most transitions observed under very low noise
(Figures 5C1,D1) were also detected in recordings with
moderate noise (Figures 5C2,D2). At high noise, only the most
dominant amplitude events were discernable. In that condition,
it was no longer possible to clearly distinguish ± 0.7 from ± 0.9
events. Even though the detection limit was limited by noise,
it remained possible to identify C0 → O1 → O3 (Figure 5D3,
small peak at [1xn, 1xn+ 1] = [0.1, 0.9]), O1 → C0 → O1

(Figure 5D3, small peak at [1xn, 1xn+ 1] = [−0.1, 0.1]), and
O3 → O1 → C0 (Figure 5D3, small peak at [1xn, 1xn+ 1] =
[−0.9,−0.1]).

Thus, our analysis of simulated recordings predicts that the
algorithm should successfully resolve subconductance structures
even under high noise conditions and in the presence of
potentially interfering signals arising from multiple channels.

Analysis of Human PIEZO Channels
We tested the MDL method for analysis of experimental data
from human PIEZO1 ion channels. The PIEZO1 channel is a
mechanosensitive receptor that is activated bymembrane tension
(Cox et al., 2016), which can be applied experimentally by
stretching patched membranes with either positive or negative
pressure (Besch et al., 2002). This channel activates and
deactivates rapidly, tracking closely the onset and termination
of the pressure stimulus. It also shows voltage-dependent
inactivation, which is faster at hyperpolarized membrane
potentials. In our preparation we observed openings to multiple
levels during application of steady pressure; some of these
open levels may in fact represent sub-conductance states of the
channel, affording a useful test of the performance of our MDL
algorithm.

The analyzed segment lasted 140 s and contained 14 episodes
of applied stimuli, each of 5 s duration, with a 5 s relaxation
interval between the stimuli. We held the patch at five different
potentials during the recording (Figure 6A shows the voltages
and Figure 6B the suction pulse train that served as the
mechanical stimulus; Figure 6C shows the recorded current).
The drift in the baseline leakage current resulting from changes
in voltage was canceled using the baseline algorithms in QuB
(http://www.qub.buffalo.edu), whereas the MDL method was
applied to the unfiltered current trace. MDL detected the channel
opening events even though the unitary current amplitude
changed as a function of the potential applied across the patch
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FIGURE 6 | Analysis of PIEZO1 channels. (A) Membrane potential during

the recording. (B) Mechanical stimulus, dashed line indicates 0 mmHg. (C)

Analyzed current trace. Gray is unfiltered raw data; black is low-pass filtered

data. Black asterisks indicate capacity artifacts during changes in membrane

potential; the rectangle indicates the region analyzed in Figure 8. Colored

segments (red, blue, and green) are shown in detail below with the idealized

trace in black. Arrows in highlighted traces (red and green only) indicate

putative sub-state currents. (D) Histogram of channel events.

(Figure 6C, compare amplitude of steps in red, blue, and green
highlights). The MDL algorithm also detected current steps of
multiple sizes (Figure 6C, putative sub-state currents indicated
by arrows in red and green highlights). If the membrane potential
was −60 mV or more negative, the current steps appeared to
reflect openings of different duration and current (Figure 6C,
arrows in red and green highlight indicate small current events).
At low polarization (−20 mV), these events were detected only
rarely, presumably because their amplitude fell below the noise
detection limit. The algorithm detected 125, 191, 985, 230, and
632 events at −20, −40, −60, −80, and −100mV respectively.
A total of 78 events that were detected in proximity to recording

artifacts occurring at changes in holding potential were ignored
in the analysis (see asterisks in Figure 6C).

To facilitate analysis across the different voltages of the
time series, we divided the MDL-detected current steps by
the concurrent holding potential to calculate changes in
conductance, 1g. assuming channel conductance is linear.
The event amplitude histogram presented a wide range of
conductance steps with peaks at 1g = ± 28 pS, but we also
observed smaller transitions down to 1g = ± 6 pS (Figure 6D).
The relative fraction of smaller conductance steps varied with
the holding potential. Thus, at −20 and −40mV the algorithm
detected relatively few steps with amplitude lower than 28 pS.
However, higher holding potentials revealed a wide distribution
of different amplitudes, although steps at± 28 pS amplitude were
always present and appeared to be the dominant amplitude. This
is similar to previous studies showing that the chord conductance
(at−80mV) of hPIEZO1 channels in the presence of 80mMTEA
is 31 pS (Gnanasambandam et al., 2015).

We then analyzed the joint probability distribution and
correlation of neighboring steps at different holding potentials
(Figures 7A,B shows −60 mV, Figures 7C,D shows −100 mV).
The main transitions at ± 28 pS were clearly identified at all
holding potentials (Figures 7A,C shows −60 and −100 mV,
other holding potentials not shown). However, there were some
notable differences as a function of the voltage. For example, at
−60 mV the +6 pS open steps were frequently followed by a
−6 pS closing step, whereas other sub-states were infrequent.
However, at −100 mV holding potential there was a wider range
of sub-amplitude openings, including± 10 and± 16 pS.

Multiple factors must account for the details of the observed
channel kinetics, and a full characterization of hPIEZO1 channel
properties is beyond the scope of this report. For the present,
we emphasize that the unsupervised MDL idealization and our
joint probability and amplitude correlation method proved to be
sensitive to the changes in the full open amplitudes and sub-
states. Thus, our method may provide a firm foundation for
subsequent analysis using this model approach.

Several methods are already available for the analysis of
single-channel data. To get an understanding of performance of
the MDL method in comparison to the established techniques,
we analyzed a segment of the hPIEZO1 data with QuB using
the Segmental K-means (SKM) method to estimate the unitary
channel amplitudes. UnlikeMDL, this method explicitly employs
a defined 2- or 3-state model, with user-defined rates emulating
the inverses of the observed closed and open state lifetimes.
We chose an arbitrary part of the recorded segment for the
MDL analysis (Figure 8A, indicated by the rectangular inset
in Figure 6C). The segment was recorded at −60 mV holding
potential, where ± 6 and ± 28 pS were the dominant transitions
according to the analysis above (Figures 7A,B).

We first idealized the segment using SKM for a 2-state ion
channel. The idealized current trace contained 40 open or closed
events. The analysis yielded a transition between the closed state
and a single open state of 29.8 pS conductance. Visual inspection
confirmed that the idealization detected the high amplitude
openings but missed a number of smaller amplitude openings
(Figure 8B, compare SKM 2 and SKM 3 or MDL).
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FIGURE 7 | Correlation analysis of neighboring events in PIEZO1 channels recorded at −60 and −100 mV holding potentials. As in other figures, x and y
scales are arranged so that open events followed by closed events populate the lower right quadrant. (A) Distribution of neighboring events at −60 mV. The x-axis
shows 1g of event n and the y-axis shows 1g of the following event, n + 1. (B) Correlation of neighboring events at −60 mV. Red indicates neighboring events

occurring more frequently than random. Blue indicates neighboring events occurring less frequently than random. White areas indicate undefined correlations. (C, D)

same as (A,B) but for −100 mV holding potential.

When the segment was reanalyzed with SKM using a 3-state
linearly-connected model, the idealized data contained 86 events.
Now the event sizes were either 1g = ± 6.7 pS or ± 23.2
pS. The current at the fully opened state was 29.8 pS, equal to
the sum of the two main event sizes. By visual inspection, the
smaller event size appeared to reflect opening to the same sub-
conductance state discussed above (see arrows in highlighted
parts of Figure 6C).

We then idealized the data segment using the MDL method,
which detected 61 events and proved to be sensitive tomost of the
visually-observed openings to both the sub-state and the fully-
open state. The apparent amplitude of the events was roughly the
same as for the 3-state SKM approach, although MDL appeared
slightly conservative, in failing to capture some possible small
amplitude events detected by the 3-state model (Figure 8B).

DISCUSSION

Analysis of currents from a membrane patch containing an
unknown number of channels in the presence of a noisy
background or leakage current is challenging, regardless of
the applied algorithm. The various available methods all have
different strengths and weaknesses. Most of the currently used

methods require some degree of user-dependent input and
supervision, through selection of a low-pass filter followed by
application of an event-detection threshold, or a priori Markov
models. While such methods can have good performance in
analyzing records with a few simple channels, there is currently
no way of accommodating complicated records, which may
contain events of differing amplitudes and kinetics. While the
HMM based methods use a kinetic model to estimate the
individual channel current amplitudes, the observed amplitudes
are relatively insensitive to the magnitude of the transition rate
constants (Qin et al., 1996a). For dealing better withmultichannel
currents from identical channels, the MAC (macroscopic)
algorithm in QuB (Milescu et al., 2005) is robust for estimating
transition kinetics, the number of active channels in the pool, and
the mean jump size arising from an arbitrary stimulus (Bae et al.,
2013).

Here we show that the Minimum Description Length
principle (MDL) enables idealization of patch recordings in a
user-independent manner. We find that this method can be
applied to raw data without the need to correct baselines, and
has good performance even in cases where event amplitude
changes during the recording (Figures 6, 7). We provide proof
of this principle based on three main findings. First, we applied
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FIGURE 8 | Comparison of MDL and SKM analysis on data from

PIEZO1 channels recorded at −60mV. (A): Analyzed segment (part of

recording in Figure 6, indicated by rectangular inset in Figure 6C). Raw data,

gray; low-pass filtered, black. MDL idealized, red. Rectangles indicate regions

expanded below. (B): Expanded view of parts of the trace in (A). Top: MDL

idealized (red) and low-pass filtered data (black). Middle: Idealized by two state

SKM (SKM2). Bottom: Idealized by 3 state SKM (SKM3).

our method to simulated data and investigated the limits for
detection. These simulations showed our method to be efficient
for detecting events with multiple independentMarkov processes
under various noise levels. Finally, we used a novel correlation
analysis to relate the results to the transitions of single channels.

Our approach required the solution of two sub-problems:
First, we needed an objective criterion for model selection. More
precisely, it was necessary to test whether a complex model of
the data using many discrete segments is superior to a simple
model with fewer segments. For this type of assessment, several
measures of quality have been proposed, among which the
Akaike Information Criterion (Akaike, 1973), Bayes Inference
Criterion (Schwarz, 1978), and theMinimumDescription Length
Principle (Rissanen, 1978; Lee, 2001). In our hands, MDL proved
to work best, and we derived a cost function that described
the balance between model complexity and fitness. Optimizing
the cost function posed a second challenge: Calculation of the
description length depends onmultiple interdependent variables,
all of which contribute to the cost function. A full search of
all possible combinations in solution-space is not universally
applicable, since the expected number of events in real data
is often in the thousands, which would be computationally
impossible. Instead, we resorted to an iterative procedure in
which breakpoints were inserted sequentially. One method for
this is presented by the binary segmentation process (Scott and

Knott, 1974; Kalafut andVisscher, 2008). However, when a binary
search was applied to simulated data, the fraction of detected
steps declined as a function of record length. In contrast, no such
dependence was observed when implementing a tertiary search,
where the algorithm searches for possible combinations of two
break points before terminating (compare solid to dashed lines
in Figure 1B). A binary search was used in the method presented
earlier by Kalafut and Visscher (2008) for analyzing movement
of the molecular motor kinesin. Presumably, loss of detection
in long time series is less of a concern in their application
because the motion of kinesin has a preferred direction, which
makes it simpler to decompose the time series into segments.
For ion channel applications, time series are often generated by
a stationary random process, which makes it more unlikely that
breakpoints inserted one by one fulfills the criterion given by
Equation (4). Thus, resolution of typical data for our application
also requires the more elaborate tertiary search method where
breakpoints are inserted two by two. However, to optimize the
computing time and reliability, our algorithm combines binary
and tertiary searches (Figure 3).

We anticipate that there could be cases for which the tertiary
search method will also be sub-optimal. For example, a long
time-series constructed of alternating segments of equal length
would require a higher SNR in order to be resolved than would
be necessary if the segments were of random length, as in our
tests. However, this situation is unlikely to occur in real data from
ion channels for which stochastic processes drive the changes
in conductance states. Furthermore, were such a circumstance
actually encountered, there are convenient analysis methods for
accommodating periodicity (Little et al., 2011).

Proper use of prior knowledge of the underlying biophysical
processes generally enhances data analysis. For example,
supervisedmethods such as SCAN take into account the presence
of low-pass filters, and are thus able to determine transition
points with accuracy exceeding the sampling rate of the data
(Colquhoun and Sakmann, 1985). We found that the MDL
method approached (but did not exceed) the performance of
methods that explicitly use prior information (Figure 4). In
situations where analysis can be performed by more specialized
methods, the MDL-based method may nevertheless serve as
an independent test of the model assumptions, and guide
development of more refined analysis. Due to the minimal
number of assumptions, our unsupervised MDL method may
prove particularly useful for complex data from recordings
of channels with unknown sub-state structure, and in cases
where multiple independent channels are active (Figures 5, 8).
We find that the J-SMURF method resembles our method
the most, because it aims to idealize ion-channel data without
imposing a particular channel structure (Hotz et al., 2013).
When running with default settings, J-SMURF does not require
user inputs. However we found that low-pass filtering the test
sequence improved event detection, although at the expense of
computation time. In our comparison we found that MDL was
much faster in analyzing long records and was more sensitive to
short segments (Figure 4).

However it is worth mentioning that the MDL method
performs best with white noise. In the current version of the
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MDL algorithm, colored noise could lead to false segmentation
and one may have to decimate the data in order to decrease
correlation between adjacent data points. The capability of J-
SMURF to handle colored noise is an obvious advantage, in
particular if the filter characteristics are known. Hidden markov
models have also been applied to low-pass filtered data and may
also provide an alternative if the state structure of the channel is
known (Venkataramanan and Sigworth, 2002).

We applied the MDL method to experimental recordings of
human PIEZO1 (hPIEZO1) channels, in which we encountered
currents with multiple amplitudes (Figures 6, 7). Our analysis
showed that the algorithm has particular advantage in situations
where prior knowledge of the sub-conductance states of a
channel is lacking. The flexibility of the MDL algorithm is a
desirable property when performing analyses on large datasets.
The MDL algorithm is generalized and can be used with time-
series datasets acquired from other disparate sub-fields of biology
characterized by state models (Nicolai and Sachs, 2014).

CONCLUSION

We developed an idealization method based on the minimal
description length principle for the use of analyzing ion channel
recordings. The method was validated on simulated data, with

characterization of event detection reliability under different
noise and recording conditions. We the applied the algorithm
to the analysis of patch clamp recordings of currents from
the human PIEZO1 channel. Results of this test confirmed the
algorithm’s fitness to detect sub-conductance states.
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