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Summary

The presence of systematic noise in images in high-throughput
microscopy experiments can significantly impact the accuracy
of downstream results. Among the most common sources of
systematic noise is non-homogeneous illumination across the
image field. This often adds an unacceptable level of noise,
obscures true quantitative differences and precludes biologi-
cal experiments that rely on accurate fluorescence intensity
measurements.

In this paper, we seek to quantify the improvement in the
quality of high-content screen readouts due to software-based
illumination correction. We present a straightforward illumi-
nation correction pipeline that has been used by our group
across many experiments. We test the pipeline on real-world
high-throughput image sets and evaluate the performance of
the pipeline at two levels: (a) Z′-factor to evaluate the effect
of the image correction on a univariate readout, represen-
tative of a typical high-content screen, and (b) classification
accuracy on phenotypic signatures derived from the images,
representative of an experiment involving more complex data
mining. We find that applying the proposed post-hoc correc-
tion method improves performance in both experiments, even
when illumination correction has already been applied using
software associated with the instrument.

To facilitate the ready application and future development of
illumination correction methods, we have made our complete
test data sets as well as open-source image analysis pipelines
publicly available. This software-based solution has the po-
tential to improve outcomes for a wide-variety of image-based
HTS experiments.
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Introduction

Automated microscopes have become widely used, allow-
ing acquisition of thousands of images at rates previously
unattainable. Image processing software allows the auto-
matic, quantitative analysis of these images. Uneven illumina-
tion of the field of view is often tolerable if images are analyzed
qualitatively – that is, viewed by an expert. However, when
precise quantitative measurements are needed, variation in
illumination can contribute a level of noise that confounds an
experiment’s goals.

Several approaches can mitigate this problem, also known
as intensity nonuniformity, uneven shading or vignetting. Im-
provements to the optical path can help, such as using a light
source as uniform as possible (e.g. using fibre optics) and reduc-
ing aberrations in the optical path such as dust or nonuniform
filters (due to manufacturing conditions or burn-in). Here, we
focus on software approaches, which can further reduce inten-
sity anomalies and improve data quality in high-throughput
microscopy experiments.

White-referencing approaches to illumination correction are
insufficient for quantitative high-throughput microscopy

For brightfield images, dividing each image by an image of a
blank field of view taken immediately after each exposure,
and then normalizing the resulting image provides simple
correction but is not robust against artefacts (e.g. dust) or
changes in overall brightness of the image (Schultz et al., 1974;
Regitnig et al., 2003; Piccinini et al., 2012). In addition, this
is not practical for high-throughput experiments or for fluo-
rescence images where a different sample must be used to col-
lect the white reference image. For fluorescence microscopy,
a comparable method called ‘white referencing’, ‘flat field
correction’ or ‘shading correction’ can be used, and is in-
cluded with many commercial microscopes’ software (Model
& Burkhardt, 2001; Zwier et al., 2004). This requires collect-
ing a white reference image of a uniformly fluorescent sample
(e.g. free fluorescent dye), which is then divided or subtracted
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from each collected image, often followed by a normalization
step (reviewed in Likar et al., 2000 and Piccinini et al., 2012).
Further improvement of the image may result by preceding
this correction by subtracting a dark-current image acquired
with the shutter closed to remove the electronic noise resulting
from the camera (Likar et al., 2000).

There are several problems with white-referencing-based
approaches to illumination correction, at least in practice. The
methods require that the user properly create the appropriate
white referencing images and that conditions do not change
between the acquisition of the images and the collection of
the experimental images. Some software only allow one white
reference image to be used to correct all wavelengths, despite
substantial differences in their optical paths and spectral char-
acteristics. For white referencing to work well, images ought
to be collected across a range of exposure times so that a linear
curve can be fit to each pixel and applied appropriately to the
actual exposure time of a given image (Hiraoka et al., 1987);
however, this capability is not available in most microscope-
associated software. Further, white referencing does not take
into account the effect of the fluorescent dye being in a dif-
ferent chemical environment in real samples compared to a
uniformly fluorescent control. In fact, often a different fluo-
rophore which has a similar but not identical spectral range
is used. It is also common for microscope users to be unfa-
miliar with best practices and to inappropriately apply white
reference images, such as outdated images that are stored in
memory with the instrument, despite changing optical condi-
tions.

Thus, in practice, images acquired from standard or auto-
mated microscopes, even with white referencing, are generally
adequate for visual inspection but unsatisfactory for quanti-
tative image analysis, because the intensity of an object is
rendered dependent on its position within the field of view. For
example, in careful studies, corrections using a white refer-
ence image of a uniformly fluorescent dye reduced the varia-
tion in mean intensity of a cell’s signal from �20% to �5%
(Pajor & Honeyman, 1995) and from �30% to �5% (Model &
Burkhardt, 2001). In practical use, when conditions are not so
carefully controlled, differences can be more substantial; in our
experience, illumination can routinely vary 10–30% across a
single image when using standard microscope hardware, even
when white-referencing has been applied (see below).

Retrospective approaches to illumination correction

There is therefore a strong need for illumination correction
that depends on nothing but the actual images acquired dur-
ing an experiment; such an approach is called data-driven,
or retrospective, because it can be carried out after image ac-
quisition and does not depend on proper white-referencing
images to be taken. A retrospective approach can help over-
come illumination anomalies which arise due to the absence
of or incorrect application of white referencing, or due to the

residual anomalies that remain even after appropriate white
referencing.

As a simple example of a retrospective approach, the back-
ground variation in each image can be independently cor-
rected by subtracting a smoothed version of the raw image.
However, this relies upon certain assumptions that are rarely
appropriate for all images in a high-throughput experiment,
for example, that the distribution of material in each image is
roughly uniform across the field of view. Retrospective meth-
ods that estimate an illumination correction function (ICF)
by combining information across multiple images are more
robust and thus more desirable.

Likar et al. (2000) propose a retrospective method that uses
a linear model of image formation consisting of additive and
multiplicative shading components. The components, which
are modelled as second order polynomials, are estimated by
minimizing the entropy of the corrected image. With a focus
on correcting intensity heterogeneity in 3D confocal images
(Lee & Bajcsy, 2006) propose a method that minimizes the
variation in intensity across the image, while maximizing the
contrast and minimizing resulting distortions near the edges
of objects. Poon et al. (2008) propose a retrospective method to
adjust for local variation in background, where morphological
filters are used to estimate intensity in the adjoining pixels near
the cells. However, to estimate the global variation in back-
ground, they propose a prospective method that requires using
fluorescent calibration beads a priori. Piccinini et al. (2012)
recently proposed a method to correct for vignetting in bright-
field images. The technique is based on the assumption that
the image background is more homogenous relative to fore-
ground, and estimates a correction function that is estimated
over the background regions of the image. Other retrospective
methods of illumination correction have been reviewed (Likar
et al., 2000; Russ, 2002; Leong et al., 2003; Lee & Bajcsy,
2006; Piccinini et al., 2012), but to our knowledge none have
been assessed in the context of high-throughput fluorescence
imaging experiments, complete with freely usable pipelines
and test image sets.

Computing illumination correction functions and assessing
anomalies

We have found that a straightforward approach to retrospec-
tive illumination correction (Jones et al., 2006) works well in
practice for high-throughput microscopy experiments; here
we validate its use. The approach is as follows. The ICF is
calculated by averaging all images in an experimental batch
(usually, all images for a particular channel from a particular
multi-well plate), followed by smoothing using a median filter.
Then, each image is corrected by dividing it by the ICF. For the
results presented in this paper, we have used a median filter
with window size = 500 pixels for the smoothing (Fig. 1).

We have implemented the approach in freely available
open-source software, CellProfiler (Carpenter et al., 2006;
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Fig. 1. Estimating illumination correction functions. Sample ICFs for DAPI (top-left), actin (top-right) and tubulin (bottom-left). The image dimensions
are 1280 × 1024 pixels. To generate an ICF, the mean image across all images in a plate is smoothed using a median filter with window size = 500
pixels. The value of this parameter was chosen manually as follows. Start with filter dimensions approximately 25% that of the image, then increase
the dimensions in increments of about 10% of the image size until the ICFs appear smooth overall; the presence of bright ‘blotches’ in the ICF indicates
that the local cellular intensities still dominate the global illumination pattern or that artefacts are present. The density of cells across the field-of-view is
uniform (bottom-right). This check is important to confirm that there are no systematic uneven cell distribution patterns that could lead to erroneous
ICFs.

Kamentsky et al., 2011) so that it can be readily and routinely
applied to large numbers of images from high-throughput mi-
croscopy experiments.

For testing, we selected a high-throughput image set
BBBC021v1 (Caie et al., 2010) from the Broad Bioimage
Benchmark Collection (Ljosa et al., 2012) that is publicly avail-
able. Images in this set have already been corrected by white
referencing using the image acquisition software (MetaMorph
software; images acquired on ImageXpress 5000A microscope
manufactured by Molecular Devices, Union City, CA, USA). We
computed ICFs using images from each 96-well plate as the ex-
perimental batch (Fig. 1). We find that despite the previously
applied white referencing correction, the intensity response
across the field of view for these images still varies 10–30%,
depending on the channel and the plate (Figs. S1 and S2 shows
ICFs from all the plates in the experiment).

We have observed that for microtiter plate-based imaging
experiments, ICFs vary significantly across plates, and we thus
typically compute ICFs by plate-wise grouping of images. Other

groupings of images, such as by row, column or site, are feasi-
ble but in our experience, including this data set, there is less
variation requiring correction across row, column and site
than across plates (Fig. S3, with ICFs corresponding to these
groupings shown in Figs. S4–S6).

We find that viewing the functions themselves is good prac-
tice to identify quality control issues (Bray & Carpenter, 2013).
For example, a sudden change in the pattern of ICFs for some
plates may alert to a problem with microscope hardware, or
a single unusual ICF from a plate may identify a single image
with intense debris (Fig. S7).

Influence of illumination correction on assay quality: screens
using a univariate readout

The most common application of high-throughput microscopy
involves selecting a single readout of interest, rank-ordering
each sample with respect to measurements of that readout
and selecting ‘hits’ (Singh et al., 2014). We therefore tested
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whether our standard illumination correction method im-
proves assay quality for an assay with a single readout. Using
the BBBC021 image set, we selected wells treated with DMSO
as negative controls, wells treated with Taxol as positive con-
trols, and measured the ability to distinguish them, with and
without our retrospective illumination correction method. We
used the Z′-factor (Zhang et al., 1999) as a measure of assay
quality, but modified it to be ‘one-tailed’ (Supporting Informa-
tion and Bray & Carpenter, 2013) to account for the typically
asymmetric distributions of image-based readouts.

Although the BBBC021 experiment was not specifically de-
signed as an assay for Taxol’s effects, we examined images and
noted that the intensity of tubulin staining distinctly increases
when cells are treated with Taxol, compared to DMSO; there
is prior evidence for this effect (Sum et al., 2014). We thus
chose this simple intensity metric as the readout for our illu-
mination correction tests (vs. more complex readouts that are
more heavily influenced by other factors such as segmentation
quality). For each well, we measured the total intensity of tubu-
lin within each cell, and computed the median of this value
across all cells in the well to obtain the readout for the well. The
quality of this readout is not sufficiently high to justify a real
screen: without illumination correction, the Z′-factor is –0.57.
This measurement was a good choice for our purposes, how-
ever, because we wanted an intensity-based readout whose
baseline quality was not so high so as to leave no room for im-
provement upon illumination correction. Indeed, the Z′-factor
improves after applying illumination correction, increasing to
–0.40 (corresponding results for row, column and site-wise
grouping are shown in Fig. S9). This result is consistent: we
also observed that the Z′-factor improves for nearly all of the
other 41 Tubulin intensity-related features (Fig. S10a; the cor-
responding results for row, column and site-wise grouping are
shown in Figs. 10b–d). In addition, we observe that the statis-
tical significance in the difference between means increases as
well (Fig. S11).

In considering the significance of these improvements, it is
important to note that these images have already been cor-
rected for illumination using white referencing at the time
of acquisition. For most experimenters, therefore, it is worth
applying a simple post-hoc computational approach in order
to see Z′-factor improvements of >0.10 for images that were
already thought to be unaffected by illumination variation.

Influence of illumination correction on assay quality:
experiments involving multivariate profiling

Data quality is an even more serious consideration in
experiments involving multivariate profiling. In profiling
experiments, hundreds of measurements of cells are used
simultaneously; the effects of small anomalies can be amplified
and hamper sensitivity. We recently published a comparison
of methods for image-based profiling and released complete
ground-truth and test data sets, as well as open-source im-

Fig. 2. Influence of illumination correction on image-based profiling. Illu-
mination correction improves accuracy of mechanism-of-action classifi-
cation of compounds by 6% even though these images have already been
white-referenced using the microscope’s software. Confusion matrices
show classification accuracy without the proposed method of correction
(top) and with correction (bottom). ICFs were computed by plate-wise
grouping of images.

plementations of the various methods in a common software
framework (Ljosa et al., 2013). Here, we used these images
(also from BBBC021) and methods to test whether our stan-
dard illumination correction can improve the ability to identify
similarities and differences among samples of cells treated with
various small molecules, in order to predict their mechanisms
of action.

The image and data analysis methods to perform this task
are described in detail in Ljosa et al. (2013); a brief summary fol-
lows. Features are extracted from each cell in an image, which
are then normalized using a reference distribution defined by
control cells. The image-based profile is given by computing
the mean for each feature across all the cells treated with that
compound. Nearest neighbour classification is used to identify
the compound’s mechanism of action.

The classification accuracy using these images, which
have already been corrected using white-referencing, is 84%.
Applying our retrospective illumination correction method
increases the classification accuracy by 6% (Fig. 2 ; the
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corresponding results for row, column and site-wise group-
ing are shown in Fig. S12). Again, application of this simple
approach is worthwhile to improve data quality.

Conclusion

To facilitate the practical application of this approach,
we have implemented the necessary tools as modules in
our freely available, open-source software CellProfiler for
high-throughput image analysis (Carpenter et al., 2006;
Kamentsky et al., 2011; http://www.cellprofiler.org). Ex-
ample pipelines are available (Supporting Information;
http://cellprofiler.org/published_pipelines.shtml), as is the
test data set used in this paper (Ljosa et al., 2012; http://www.
broadinstitute.org/bbbc/). We have provided source code
to fully reproduce the key results presented (Supporting
Information).
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Supporting Information

Additional Supporting information may be found in the online
version of this article at the publisher’s website:

Figure S1. Variation of ICF values.
Figure S2. Illumination correction functions based on plate-
wise grouping.
Figure S3. Grouping of images to compute ICF.
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Figure S4. Illumination correction functions based on row-
wise grouping.
Figure S5. Illumination correction functions based on column-
wise grouping.
Figure S6. Illumination correction functions based on site-wise
grouping.
Figure S7. Using ICFs for quality control.
Figure S8. Influence of illumination correction on segmenta-
tion quality.

Figure S9. Improvements in Z′-factor after illumination cor-
rection for a single readout.
Figure S10.(a)–(d) Influence of illumination correction on as-
say quality – multiple features.
Figure S11. Improvements in separation between means after
illumination correction for a single readout.
Figure S12. Influence of illumination correction on image-
based profiling.
Appendix. Source Code & Definitions.
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