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Rheumatoid arthritis (RA) is a chronic, definitely disabling, and potentially severe autoimmune disease. Although an increasing
number of patients are affected, a key treatment for all patients has not been discovered. High-mobility group box-1 (HMGB1)
is a nuclear protein passively and actively released by almost all cell types after several stimuli. HMGB1 is involved in RA
pathogenesis, but a convincing explanation about its role and possible modulation in RA is still lacking. Microbiome and its
homeostasis are altered in patients with RA, and the microbiota restoration has been proposed to patients with RA. The purpose
of the present review is to analyze the available evidences regarding HMGB1 and microbiome roles in RA and the possible
implications of the crosstalk between the nuclear protein and microbiome in understanding and possibly treating patients
affected by this harmful condition.

1. Introduction

Among the autoimmune diseases, rheumatoid arthritis (RA)
represents one of the most relevant [1, 2]. In fact, patients
affected by RA have a poor quality of life, due to articular
pain and functional impairment [3–7]. In addition, RA
causes an increased risk of other pathological conditions,
including cardiovascular diseases [8–16]. Furthermore,
immunosuppressant for RA can often determine dangerous
and potentially lethal side effects, among which are infec-
tions, organ failure, and even death [7, 17–24]. Although
RA has been studied over the last decades and several
researchers have been focused on identifying new potential
drugs, a definite treatment is not available and the disease
can progress to severe disability [4, 7, 17, 19, 25–30]. One
of the reasons of the delayed defeat of the disease is the lack
of a full understanding of the causes responsible for the RA
onset. Indeed, while several pathways and mechanisms have

been clarified, such as lymphocyte, interleukin, and tumor
necrosis factor (TNF) roles, the very initial trigger has not
been discovered [1, 23, 27, 28, 31–41]. As in other autoim-
mune conditions, an infectious event has been proposed to
explain the altered immune response and the RA initiation
[42]. In this scenario, microbiome obviously represents an
attractive candidate. In fact, the altered crosstalk between
microbiome and the immune system could underlie the
disease onset [43–54]. Among the well-known pathways,
the high-mobility group box-1 (HMGB1) plays a role in
RA. In fact, this nuclear protein is involved in synovial
inflammation observed in RA and could represent a new
therapeutic target [55–68]. Recent data demonstrated that
the HMGB1 pathway is important in a model of bowel
inflammation [69]. The aims of the present review are to
evaluate the available data about the role of HMGB1 in the
crosstalk between gut microbiome and RA-altered immune
response, to try to better understand the mechanisms
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underlying this disease, and to see whether it could represent
a therapeutic target and, eventually, whether it would be
more cost-effective to inhibit or stimulate the activity of
HMGB1 in these conditions.

2. Rheumatoid Arthritis

RA is an autoimmune disease, characterized by chronic
inflammation of joints and several other tissues, including
those of the lungs, vessels, blood, eye, skin, and heart
[70, 71]. RA is not a rare disease; in fact, out of every
100,000 people, about 40 are diagnosed with RA every year
[72]. In general, at the onset, RA affects the small joints of
hands. However, also hips, shoulders, and knees may be
involved, and RA can potentially hit every joint [25, 33, 73].
Quality of life of patients affected by RA is worsened by pain,
swelling, stiffness, and loss of function in the joints [4, 5, 74].
Furthermore, patients with RA have a reduced life expec-
tancy due to an increased mortality for cardiovascular events,
infections, and drug side effects [9–11]. In fact, it has been
definitely demonstrated that patients with RA have an
increased risk of myocardial infarction and of stroke [75].
The principal reason is that the typical chronic inflammation
observed in the RA scenario plays a pivotal role in atheroscle-
rotic plaque formation and destabilization [10, 11, 76, 77]. In
addition, the immune dysregulation of T and B cell network
can affect other cardiovascular risk factors, such as hyperten-
sion and lipid metabolism [9, 78, 79]. Furthermore, sedentary
lifestyle and weight gain due to joint impairment could be
additional factors. Other morbidity causes are certainly infec-
tions. In fact, immunosuppressant therapy and RA itself
increase the risk of infectious complication, and about a
quarter of deaths are caused by infections [42, 80–86].
Finally, several of the most effective treatments commonly
used in patients with RA can have many side effects, includ-
ing organ failure, cancer and, sometimes, death [18–20, 22].

Although the relevance and the impact of RA are clearly
important, an effective treatment has not been yet discov-
ered. The reason of this delay may reside in the relatively
unknown initial pathological event. Indeed, several mecha-
nisms have been clarified to explain the fundamental injury:
the synovitis and the joint destruction [3]. First, a genetic sus-
ceptibility is known. In fact, an association between RA onset
and major histocompatibility complex (MHC) class II anti-
gens, specifically the shared epitope found on HLA-DRB1,
has been demonstrated [3, 70, 71, 87–89]. However, RA does
not seem to be a genetically transmitted disease, and DNA in
the strict sense plays a minor role. Regarding the genetic
heritage and regulation, novel mechanisms have been eluci-
dated in the last decade, in particular the epigenetic regula-
tory systems, including the microRNA (miRNA) pathways
[41, 90, 91]. Moreover, miRNAs can regulate gene expression
and protein function of several cytokines, growth factors, and
receptors involved in RA [41]. Alongside the genetic suscep-
tibility, a trigger is required to initiate RA; in fact, studies
performed on twins have demonstrated that identical genet-
ics are not sufficient to develop similar disease [92]. Several
potential environmental triggers have been implicated,
among which are cigarette smoking and infections [93–95].

Taking into account infectious event, the relationship
between RA and infective disease is dependent on the
immune and inflammatory activation caused by pathogens
[42, 96–98]. The T and B cell activation and the beginning
of the autoimmune response are the mechanisms involved
in the RA onset [32, 79, 99–103]. Another important event
is represented by the protein citrullination, a normal post-
translational modification required in several physiological
processes [104–107]. In RA, there is an autoimmune activity
against citrullinated peptides detected as anti-citrullinated
peptide antibodies (ACPA), a prototypical biomarker of the
disease. After T and B cell activation and autoantibody pro-
duction, additional cell types come into play to propagate
and amplify inflammation, among which are macrophages
that produce interleukin- (IL-) 1, IL-6, IL-8, and tumor
necrosis factor- (TNF-) α [108–113]. All these phenomena
translate into the main event of the disease: joint damage.

3. High-Mobility Group Box-1

The high-mobility group box-1 (HMGB1) is a highly con-
served DNA-binding protein, present in the nucleus, that
acts as a damage-associated molecular pattern (DAMP)
molecule [114]. HMGB1 belongs to the family of the high-
mobility group (HMG) chromosomal proteins, distinguished
on the basis of their rapid mobility on electrophoresis gels
[115]. These nuclear proteins were discovered more than 40
years ago and are subdivided into three superfamilies: the
HMGB, HMGN, and HMGA superfamilies [116]. Of the
HMGB family that includes HMGB1, HMGB2, HMGB3,
and SP100HMG, HMGB1 is the most abundant nonhistone
DNA-binding protein [114]. HMGB1 is the typical DAMP
molecule, and it is involved in the setting of both sepsis and
sterile inflammation [114]. This nuclear protein belongs to
the “alarmin” family, a group of signaling effectors that acts
as an injury-induced response in mammals [117]. DAMPs
interact with several ancestral receptors and pathways and
share a significant number of signaling systems with the
pathogen-associated molecular patterns (PAMPs) [118].
DAMPs and PAMPs can activate the immune system by
using the same ways, starting from completely different path-
ological triggers. In this scenario, HMGB1 represents the
prototypical molecule that can stimulate a lot of immune
responses against external injury. In this sense, HMGB1
could be considered exclusively a defensive protein. How-
ever, this protein plays also a dangerous and harmful role
in numerous conditions by activating detrimental pathways
so that many authors suggest the blockade of its function
[119–121]. The role of HMGB1 in normal and in disease
conditions was originally attributed to the passive release in
the extracellular space after the cell damage [122]. Subse-
quently, a more complex mechanism of action was identified
for HMGB1: it is also actively secreted by almost all types of
cells, in response to several stimuli, and it can activate differ-
ent pathways, depending on the tissue where the signaling is
triggered and on the kind of receptor involved [118, 123].
The most recent findings have highlighted that the effect of
HMGB1 is also closely dependent on the redox status of the
milieu where the protein is released [124].
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The first information about HMGB1 activity has been
collected in models of sepsis and systemic infections [125];
the idea that this alarmin is involved in the sterile inflamma-
tion and fibrosis rapidly increased [55, 114, 117, 126] and
fibrosis [127]. During the last decade, additional data were
collected regarding more variegated effects of this nuclear
protein in terms of tissue remodeling and angiogenesis, not
necessarily related to septic conditions [115, 128–131].

4. High-Mobility Group Box-1 and Rheumatoid
Arthritis

There are several data supporting the role of HMGB1 in RA,
particularly suggesting that it plays a role in initiating the
synovium inflammation and in maintaining the joint damage
mediated by proinflammatory cytokines. Since the first stud-
ies by Andersson and coworkers, it has been clarified that
HMGB1 can stimulate the release of IL-1, IL-6, and TNF-α
[122] and it determines the beginning and the development
of inflammation in different experimental models of arthritis.
Furthermore, HMGB1 is increased in synovium and synovial
fluid of patients with RA, compared with patients with oste-
oarthritis [132, 133]. Moreover, HMGB1 blockade reduces
arthritis induction in experimental models [55, 56, 59, 63,
67, 134, 135]. Finally, HMGB1 administration induces syno-
vial angiogenesis through a vascular endothelial growth
factor- (VEGF-) dependent mechanism [55]. Although mul-
tiple mechanisms involved in RA pathogenesis have been
discovered, there is no fully comprehensive explanation
about the HMGB1 pathway in this scenario. In particular,
HMGB1 function depends on two principal factors: the
oxidation/reduction status and the extracellular milieu where
different receptor systems can be found. While the second
point is enough studied and we know now that the TLRs,
the receptor for advanced glycation end-products (RAGE)
and the IL-1 receptor, represent the most important extracel-
lular pathways [61], we less know about the factors that
modify the oxidation/reduction status of HMGB1. In fact,
depending on oxidation/reduction status, HMGB1 can be
in three different conformations: sulfonic, disulfide, or all-
thiol form [58, 136, 137]. According to the redox status and
following different structures, HMGB1 explicates various
functions. For instance, the sulfonic form acts as an immune
tolerance inducer, while the disulfide one is a major player in
inflammation. In this sense, the HMGB1 pathway is notably
plastic and dynamic and depends on the redox status of the
extracellular setting, not only on the receptor quality and
content [61]. However, it is not yet clear how the environ-
ment can modify the redox state and what cell types are
involved in this process.

5. Microbiome

The term microbiome refers to the genetic characterization
of the entire microbiota in a specific tissue [138]. We know
several microbiomes, depending on localization, such as skin,
lung, and oral microbiomes [139]. Certainly, the gut
microbiome is one of the most important because, together
with activities shared with other microbiomes, it plays a

fundamental role in digestion and transformation of food
[43, 45, 51, 140, 141]. However, the principal function of
microbiome is the crosstalk with the immune system to mod-
ulate and regulate the immune response against the host. Gut
is colonized by billions of bacteria immediately after birth,
and the mucosal interface of the intestinal tract is character-
ized by several types of immune cells and systems, organized
in aggregates and organs [140]. The location of these systems
is strategically at the border with the outside world, and they
require a multipotent and versatile network of signals and
receptors. In fact, there we have the pattern recognition
receptors (PRRs), an ancestral part of the immune system
that can recognize several pathogens with the same pathway
[142]. Among PPRs, toll-like receptors (TLRs) are the proto-
typical receptors that bind elemental fragments of bacteria,
such as lipopolysaccharides (LPSs), and also of microbiota
[142, 143]. However, given the number and the different
types of species of gut microbiome, it seems unlikely that
these bacteria activate the immune response normally. Most
likely, the interaction between microbiome and intestinal
immune system determines a continuous modulation of the
two players [43, 144].

6. Microbiome and Rheumatoid Arthritis

The connection between gut and joints was hypothesized
several decades ago, when researchers studied different
models of inflammatory arthritides, in particular spondy-
loarthropathies related to inflammatory bowel diseases and
secondary to intestinal resections [49]. The interaction
between genetic profile and environmental triggers is impor-
tant in the pathogenesis and development of RA. Oral
chronic colonization or infection sustained by Porphyromo-
nas gingivalis was linked to RA development [145, 146],
and traces of bacteria were found in synovial fluid of patients
with RA. Furthermore, prolonged antibiotic therapy against
certain bacterial infections is effective in RA disease control
[147]. Breaking tolerance in RA could occur in reaction to
these pathogens. However, Porphyromonas gingivalis is not
the only implicated in RA. In fact, data regarding other
bacteria are available, and a single infection seems to be not
likely as the sole cause. Moreover, the analysis of microbiome
from mice prone to arthritis development revealed that
microbiome can influence the arthritis susceptibility [148].
Several reports demonstrated that a subpopulation of
patients with early RA harbored intestinal microbiota domi-
nated by Prevotella copri and that SKG mice harboring the
same microbiota had an increased number of intestinal
Th17 cells and developed severe arthritis due to autoreactive
T cells [149]. Interestingly, a taxon-level analysis-based study
revealed an expansion of rare taxa with a decrease in abun-
dant taxa in microbiome of patients with RA, compared with
controls; this finding was related to the production of proin-
flammatory cytokines, such as IL17 [150]. Microbiome alter-
ations do not only affect the expression level of TLRs of cells
that exhibit antigens but also contribute to the Treg/Th17
deregulation. Epigenetic modifications triggered by external
factors are important pathways leading to an altered gene
expression. Crosstalk between microbiome and the mucosal
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immune system has been demonstrated being a crucial
activator of epigenetic pathways in mammalian, including
humans [43]. The most compelling evidence that gut
infection-inflammation is a key moment in the occurrence
of arthritis comes from the K/BxN and IL1RA−/− mice that
do not develop arthritis in a germ-free setting [151]. On the
other hand, the evidence that a normal gut microbiota is
fundamental in maintaining the homeostasis is shown in
the streptococcal cell wall arthritis, in which the normal flora
protects against the occurrence of arthritis [152].

RA is a chronic multifactorial autoimmune disease where
the immune event represented by the ACPA production can
start even 15 years before symptoms, thus suggesting that the
initial pathogen phenomenon is not necessarily present in
the joints. In this scenario, microbiome represents the ideal
theater [44]. Starting from animal models, about forty years
ago, several researchers found that the administration of
specific bacteria fragments, such as LPS, can induce arthritis
and that the presence of gut microbiota is protective against
the injury. Furthermore, additional evidence suggested that
the balance of the intestinal germ population is fundamental
in maintaining homeostasis and protection against environ-
mental pathogens [153]. Recent data demonstrated that
alteration of the gut microbiome can influence the balance
of pro- and anti-inflammatory immune cells, such as T reser-
voir, and promote the development of RA [154]. Moreover, it
has been found that TLRs play a crucial role in influencing
the Th17 differentiation and the Treg inhibition caused by
gut microbiome in animal and human models [142]. How-
ever, although a lot of possible mechanisms have been eluci-
dated to demonstrate the role of microbiome in RA, a
definitive, omnicomprehensive, and convincing explanation
has not been yet found.

7. High-Mobility Group Box-1 and Microbiome

Since LPS is one of the most important experimental activa-
tors of the HMGB1 pathway, it seems fair to assume that
intestinal bacterial flora is involved in HMGB1 modulation.
However, there is a lack of evidence about the crosstalk
between HMGB1 and microbiome due, at least in part, to
the difficulty of measuring tissue and fluid protein concentra-
tions in its extracellular form. In fact, once released after
cellular injury or activation, HMGB1 can be found in at least
three conformations, depending on the oxidation/reduction
status, and the commonly used experimental kits are not
capable to detect all the conformations [58, 136, 137]. Fur-
thermore, the complexity of the gut and the difficulty of
obtaining reproducible data about the redox state of microbi-
ota make it evenmore difficult task. However, HMGB1 surely
plays a role in oral and intestinal homeostasis [155], and
recent data demonstrated that this nuclear protein is
involved in the inflammatory response of the gut and that
the HMGB1 blockade is able to inhibit the LPS-induced
injury by a TLR4-dependent mechanism [69]. In this model,
TLR4 is considered a pivotal receptor for inflammation and
the interaction between HMGB1 and TLR4 of mucosal tissue
is important in inducing the intestinal inflammation. How-
ever, the inflammatory milieu is rich in oxidizing agents,

and the HMGB1 translocation in this scenario could pro-
mote the structural modification of the protein. Furthermore,
microbiome represents an important source of redox-based
signals that modulate critical microbial and host cell func-
tions [156–158]. Moreover, the microbiome modulates the
redox status of the host by modifying the glutathione metab-
olism [159]. In addition, recent data obtained in both in vivo
and in vitro models demonstrated a novel HMGB1-RAGE-
mediated redox signaling pathway involved in intestinal
inflammation induced by a liver dysfunction model [160].
As shown in Figure 1, HMGB1 conformational modula-
tion depending on microbiome homeostasis could lead to
different redox states and consequent activities. In this
respect, the maintenance of a proper homeostasis of the
microbiome may be important to prevent damage caused
by HMGB1 overexpression.

8. Therapeutic Implications

A definitive treatment for all RA patients has not been dis-
covered [23, 161–164]. A multitarget approach is required
to better control the disease, and several pathways must be
considered to completely treat RA. However, immunosup-
pressive drugs are not always sufficient [165–167]. For this
reason, new therapeutical strategies are desirable and a better
knowledge of HMGB1 interaction with microbiome in RA
could provide new elements to achieve it. In this regard, a
possible attempt could be the HMGB1 pathway blockade.
In fact, several data demonstrated that, together with the
commonly used monoclonal antibody-based therapies,
monoclonal antibodies directed versus HMGB1 can protect
against arthritis in experimental models [168, 169]. In partic-
ular, in two notably different models of arthritis, collagen-
induced arthritis (CIA) and a genetic model of arthritis,
Schierbeck and colleagues demonstrated that anti-HMGB1
monoclonal antibody administration significantly amelio-
rated the clinical courses in these experimental conditions.
However, there is no evidence about the redox status and
the possible role of microbiome in these models, and further
data are needed to better understand the possible implica-
tions of an altered homeostasis of microbiome in HMGB1-
dependent arthritis and in anti-HMGB1 therapy efficacy.
Moreover, in a model where germ-free piglets were orally
colonized with enteric bacterial pathogens, HMGB1 result
significantly increased, suggesting that the upset balance of
the microbiome can affect the HMGB1 pathway equilibrium
[170]. Since the protein redox state can significantly modify
the HMGB1 activity, a therapy capable of controlling the
microbiome-oxidizing capacity could represent a new inter-
esting approach. In this respect, probiotics need to be cited.
Probiotic administration restores homeostasis of the gut
microbiome and can have several beneficial effects [52].
Among the autoimmune disorders, RA seems to benefit from
the probiotic therapy [54, 171]. Results obtained from animal
models demonstrated that oral therapy with Lactobacillus
casei ameliorated CIA by downregulating T helper 1 effector
functions [172] and by reducing proinflammatory cytokines
[173]. Also, data from humans have been achieved. In partic-
ular, in 46 patients with RA, Lactobacillus casei was orally
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administrated for 8 weeks and the disease activity score
and serum proinflammatory cytokines were significantly
decreased by the intervention [174]. In this setting, it is
possible to speculate that homeostasis of microbiome
could regulate HMGB1 activities in these patients. However,
additional data are required to confirm this hypothesis.

9. Conclusions

RA is a chronic, harmful, and potentially severe disease for
which there is no yet a decisive treatment. HMGB1 and
microbiome alterations are involved in pathogenesis of RA,
and the crosstalk between the protein and the microbiome
deserves to be studied more carefully in order to offer a
new therapeutic tool for patients with this serious disease.
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