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Background: Esophageal squamous cell carcinoma (ESCC) is one of the most fatal
cancers in the world. The 5-year survival rate of ESCC is <30%. However, few biomarkers
can accurately predict the prognosis of patients with ESCC. We aimed to identify potential
survival-associated biomarkers for ESCC to improve its poor prognosis.

Methods: ImmuneAI analysis was first used to access the immune cell abundance of
ESCC. Then, ESTIMATE analysis was performed to explore the tumor microenvironment
(TME), and differential analysis was used for the selection of immune-related differentially
expressed genes (DEGs). Weighted gene coexpression network analysis (WGCNA) was
used for selecting the candidate DEGs. Least absolute shrinkage and selection operator
(LASSO) Cox regression was used to build the immune-cell-associated prognostic model
(ICPM). Kaplan–Meier curve of survival analysis was performed to evaluate the efficacy of
the ICPM.

Results: Based on the ESTIMATE and ImmuneAI analysis, we obtained 24 immune cells’
abundance. Next, we identified six coexpression module that was associated with the
abundance. Then, LASSO regression models were constructed by selecting the genes in
the module that is most relevant to immune cells. Two test dataset was used to testify the
model, and we finally, obtained a seven-genes survival model that performed an excellent
prognostic efficacy.

Conclusion: In the current study, we filtered seven key genes that may be potential
prognostic biomarkers of ESCC, and they may be used as new factors to improve the
prognosis of cancer.

Keywords: esophageal squamous cell carcinoma, LASSO regression, WGCNA, tumor microenvironment,
prognostic biomarkers
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INTRODUCTION

There are more than half a million new esophageal cancer cases
diagnosed each year, leading it to be one of the most universal
cancers (1). Esophageal cancer has two main subtypes:
esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC) (2). In Asia, most esophageal cancer is
ESCC and had higher mortality rates than other regions (3).
Unfortunately, distal metastases have occurred in a great mass of
ESCC patients when diagnosed, and the 5-year survival rate
is <30% (1). Hence, it is necessary to identify novel biomarkers as
improving the prognosis and providing new targets for the
therapy of ESCC.

In recent years, the tumor microenvironment (TME) has
attracted public attention as a novel therapeutic strategy (4). TME
contains numerous cells and acts a vital role in the development and
invasion of cancers (5). With the development of tumor
immunology, an in-depth understanding of TME is essential to
improve immunotherapy (6, 7). More recently, an algorithm called
ESTIMATE was able to calculate the abundance of various immune
cells in a tissue based on high-throughput second-generation
sequencing data (8, 9). This provides a powerful aid for the
mining and analysis of the existing numerous cancer data. There
were also many research focus on the TME in cancers (10–12).

In recent years, many algorithms based on network analysis
have emerged endlessly (13). A widely used algorithm, called
weighted gene coexpression network analysis (WGCNA), could
calculate the relationship between genes and patients’
information (14). The advantage of WGCNA is that genes
with analogous patterns in expression level can be synthesized
into coexpression modules and then associated with clinical
characteristics so that genes related to specific traits can be
screened by dimensionality reduction (15–17). The WGCNA
can analyze data from large samples and establish key genes for
further validation after identifying expression modules that are
relevant to clinical characteristics (18). WGCNA provides a
powerful aid in the search for clinically relevant molecular
markers. Here, we screened multiple modules and genes
closely related to the tumor microenvironment and immune
cells and obtained possible biomarkers, which could improve the
prognosis of ESCC (Figure 1A).
METHODS

Data Sources
Three cohorts were used in the study. The training dataset was
extracted from the GEO database (GSE53625). It contains 179
ESCC patients’ expression data and their clinical trait
information. One of the test datasets was downloaded from the
TGGA database. We obtained the RNA-seq data of 84 ESCC
patients and corresponding clinical information. The gene
expression level was normalized by a log2 conversion. Another
test dataset containing 125 ESCC patients with clinical
information was downloaded and used as another test
dataset (GSE121931).
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Differential Expression Analysis
We used the ESTIMATE algorithm to get the immune scores of
ESCC patients (19). Then, the patients were divided into high
and low immune‐score groups based on the median of the score.
Finally, we used the “limma” R package to perform the
differential expression analyses between the two groups. The
threshold of differentially expressed genes (DEGs) is adjusted p <
0.05 and |log2 fold change| ≥ 0.585.

Wealsoapplied theImmuCellAIdatabase topredict theabundance
of 24 immune cell types inESCCsamples (20).The abundanceof these
immune cells in high and low immune‐score groupswas analyzed and
used as the trait of ESCC samples for further analysis.

Weighted Gene Coexpression
Network Analysis
We used the “WGCNA” R package to construct the coexpression
network of immune-related DEGs based on the automatic
network construction function. Then, gene modules with
similar expression pattern hierarchical were detected. Finally,
patients’ characteristics of immune cell infiltration were
associated with these modules, and the key genes from the
candidate module were explored for further analysis.

Enrichment Analysis
We used the “clusterProfiler” R package for functional
enrichment analysis of genes of interest. The background
functions including the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and GO terms. In the analysis,
only functions with a p < 0.05 will be selected.

Survival Analysis
The R package glmnet was applied to build an immune cell-
associated prognostic model (ICPM) of ESCC patients by LASSO
analysis. Subsequently, we used the survival R package to depict
the survival curve to estimate the efficiency of the ICPM and the
genes in the model. We analyzed the overall survival between
different clinical subgroups of ESCC patients based on the risk
score, too. The subgroups included age (≤59 or >59 years),
gender, alcohol, tobacco, and tumor–node–metastasis (TNM)
stage. The pROC package was used to assess the prognostic
efficiency of the ICPM. Univariate cox regression analysis was
performed to filter the prognosis-associated genes in the ICPM,
and a Cox regression model was constructed based on its result.

Statistical Analysis
All statistical analyses were calculated through R software (version
4.0.3). t-test was used to compare the differences between the
selected two groups. Adjusted p < 0.05 was regarded as significant.
RESULTS

Evaluation of Immune Cell Abundance in
ESCC Patients and Identification of
Immune-Associated DEGs
In the training dataset, we split the 179 ESCC patients into high-
and low-immune score groups based on the ESTIMATE analysis.
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FIGURE 1A | Assessment of immune cell abundance and the tumor microenvironment in ESCC. (A) Flow chart of this study. (B) Immune cell abundance in the
training dataset. The p-value is displayed at the top of the bar. We only selected the significantly different cells for further analysis. (C) Immune cell abundance in the
test dataset. (D) Differential analysis of immune score based on ESTIMATE analysis. The volcano plot shows the DEGs in high and low immune-score groups.
(E) Enrichment analysis of immune-associated DEGs.
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Next, we explored the immune cell abundance of the cohort. It
showed that most of the 24 immune cells were different in these
groups except CD4-naive, cytotoxic T cell, NKT, DC, and B cell
(Figure 1B). Then, the test data contains 84 ESCC patients who
had performed the same analysis. These immune cells had a
similar abundance in the test dataset (Figure 1C).

Subsequently, we identified DEGs between these groups and
found 1,489 differentially upregulated genes and 213
downregulated genes in the training dataset (Figure 1D). The
enrichment analysis also showed that these DEGs were involved
Frontiers in Oncology | www.frontiersin.org 4
in the Th17 cell differentiation, Th1 and Th2 cell differentiation,
cell adhesion, and so on (Figure 1E). It hints that the DEGs
participate in the immune-associated functions in ESCC patients.
Identification of Immune-Cells-Associated
Modules
The immune-related DEGs were then utilized to cluster the
coexpression modules. We used the pickSoftThreshold
function to calculate the cutoff of soft power. Soft power is a
A B

C

FIGURE 2 | WGCNA to construct the coexpression modules based on immune-related DEGs. (A, B) The soft power is set at 7 based on the R2 of the scale-free
topology model, which reached 0.82. (C) Six modules were clustered based on under the parameter.
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key parameter to cluster the modules. In the study, the power
threshold was calculated at 7 (Figure 2A). When this power is
used, the R2 of the scale-free topology model under the soft
threshold is 0.82. It hints that the network we constructed
conformed to scale-free characteristics (Figure 2B). Next, we
constructed the network with default module size and built six
coexpression modules (green, yellow, turquoise, blue, brown, and
red) (Figure 2C). Subsequently, we calculated the correlation
between these six modules and immune cell abundance to filter
the most important modules and crucial genes. It showed that
the blue module was significantly associated with most immune
cells, especially iTreg and Tfh cells (Figure 3A). The blue module
contained 240 genes, and the enrichment analysis showed that
they are related to the T-cell receptor signaling pathway, cell
adhesion, antigen-receptor-mediated signaling pathway, etc.
(Figure 3B). The enrichment results hinted that these genes
Frontiers in Oncology | www.frontiersin.org 5
are immune-associated in the tumor microenvironment
of ESCC.

Construct the Immune-Cell-Associated
Prognostic Model
To select the potential prognostic genes in the blue module, we
used LASSO analysis on the 240 genes to generate an ICPM. This
is the best model, which contains 13 genes based on LASSO
analysis (Figures 4A, B). Figure 4C shows the coefficient of the
13 genes in the LASSO model. Subsequently, survival analysis
revealed that high-risk-score patients had less overall survival
time (Figure 4D). We then analyzed the relationship between the
patients’ clinical traits and the model to evaluate the ICPM’s
efficacy. We found that this model could distinguish the TNM
stage (Figure 4E). Thus, a stratified survival analysis was used to
access the prognostic efficacy in different TNM stages.
A

B

FIGURE 3 | Coexpression modules were related to immune cells. (A) Heatmap shows the relationship between coexpression modules and immune cell abundance.
(B) Enrichment analysis of candidate DEGs in the blue module.
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FIGURE 4 | LASSO regression to construct the ICPM and its stratified survival analysis. (A, B) The best criteria to build the model based on LASSO regression.
(C) The coefficients of the candidate genes in the survival model. (D) The ICPM has an excellent prognostic efficacy. (E) The ICPM can separate patients with
different TNM stages into different subgroups based on risk score. (F) The ICPM could predict the prognosis in patients with different TNM stages. ns, not significant,
**p < 0.01.
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Interestingly, high-risk-score patients also had a bad prognosis in
TNM stages (Figure 4F). The result substantiated that the model
could be used as a predictor and helps to improve the prognosis
of ESCC.
Survival Analysis of the 13 Genes in ICPM
The 13 crucial genes in ICPM were then tested by survival
analysis. It indicated that most of these genes are prognosis
associated in the training dataset except RASGRF1 (Figure 5).
To be specific, 4 out of the crucial 13 genes (FFAR4, HTR2A,
RASA3, and SH3KBP1) were risk factors of ESCC patients, while
the other 8 genes (CD38, CLEC6A, DPP4, STX11, TRAV26-2,
TRBV4-2, TRBV5-3, and XCR1) are protective factors.

Then, two test datasets were used to test the 13 genes’ survival
ability. In the Cancer Genome Atlas (TCGA) test dataset, eight
genes were detected, and six of them were survival associated
(DPP4, FFAR4, RASA3, RASGRF1, XCR1, and STX11)
(Supplementary Figure 1). In another test dataset with 125
ESCC patients, 10 genes were detected, and 6 of them were
survival associated (CLEC6A, DPP4, HTR2A, RASA3,
SH3KBP1, and XCR1) (Supplementary Figure 2).

Construct the Ultimate Survival Model
Based on the ICPM
After the filtration by two test datasets, we obtained eight stable
prognostic genes that were survival associated in at least two
Frontiers in Oncology | www.frontiersin.org 7
datasets (Figure 6A). Next, we used univariate Cox regression
analysis to select independent prognostic genes. Seven out of the
eight crucial genes were independent prognostic factors of
overall survival (OS) in ESCC patients (Figure 6B). Thus, we
used the seven genes to construct a survival model. It showed
that the model performed an excellent efficacy in prognosis
(Figure 6C), and the receiver operating characteristic (ROC)
curves also proved the efficacy of the model (Figure 6D).
DISCUSSION

ESCC is one of the most malignant cancers in the world.
However, few biomarkers can accurately predict the
prognosis of patients with ESCC (21). In addition, some
studies have already demonstrated the effect of immune cells
on cancers, and the immune cells in ESCC can be applied to
access its therapeutic and prognostic effects (10, 22). In the
current study, by performing an integrated analysis of immune
microenvironment and gene expression pattern, we
investigated potential prognostic biomarkers in ESCC base on
the following steps: (1) predict the immune cell abundance in
ESCC, (2) assess the tumor microenvironment of ESCC and
identify differentially expressed genes, (3) enrich DEGs through
Gene Ontology and KEGG pathway analysis, (4) construct the
coexpression network of immune-related DEGs through
WGCNA, (5) associate immune cell infi ltration and
coexpression modules, (6) construct the survival model, and
(7) validate the model and improve its efficacy.

The tumor microenvironment is important for the study of
immune-related target molecules and prognostic markers (23,
24). There have been many studies using the tumor
microenvironment to search for prognostic markers (25–27).
Furthermore, the integration of multiple bioinformatics
analyses has been widely used with ESCC (28). Thus, the
integration of immune cells and ESCC is feasible in the
discovery of prognostic biomarkers. In recent years,
immunotherapy has been recognized as a treatment strategy
that performs well in many types of cancer (29). It works
against cancer cells by inhibiting immune checkpoints. The
development of monoclonal antibodies that inhibit
programmed death 1 (PD-1) or programmed death-ligand 1
(PD-L1) has also been shown to produce convincing clinical
efficacy in a variety of malignancies, including ESCC (30).
However, the efficacy of these drugs is limited. Therefore,
there is an urgent need to identify new biomarkers associated
with immune cells to select patients sensitive to these drugs and
thus improve the prognosis of ESCC.

Here, we obtained seven crucial genes that may act as the
prognostic factor of ESCC. CLEC6A is a gene of human innate
immunity. It can directly mediate intracellular signaling,
recognize a variety of endogenous and exogenous ligands, and
drive both innate and adaptive immunity (31). DPP4 is an
inherent type II transmembrane glycoprotein and serine
peptidase involved in glucose and insulin metabolism and
immune regulation (32). DPP4 has been found to participate
FIGURE 5 | Survival analysis of the 13 candidate genes in ICPM.
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in thyroid papillary carcinoma cell proliferation by inhibiting the
mitogen-activated protein kinase (MAPK) pathway (33). FFAR4
encodes G-protein-coupled receptor (GPR) and is involved in
anti-inflammatory responses (34). FFAR4 can promote cell
proliferation and migration and has been identified as a
potential prognostic biomarker for laryngeal cancer (35).
HTR2A encodes one of the serotonin receptors and could
activate the PI3K-Akt-MTOR signal (36). SH3KBP1 is
involved in several cellular processes, such as apoptosis,
cytoskeletal rearrangement, and cell adhesion (37). It has been
reported to promote tumor proliferation and invasion in ESCC
(38). STX11 is involved in intracellular vesicle transport. It has
been found to play a tumor-suppressive role in peripheral blood
T-cell lymphoma (39). XCR1 signals by increasing intracellular
calcium levels. It has been found to promote the migration of
non-small cell lung cancer (40). At present, there are no key
targets for the prognosis of ESCC. Although these genes are not
specifically expressed in ESCC, they have been able to show the
potential ability to predict the prognosis of cancer through the
integration of the survival model, which is helpful to determine
its prognostic targets. Moreover, subsequent studies can further
determine the expression levels of these key genes at low
Frontiers in Oncology | www.frontiersin.org 8
throughput levels and further study their important
mechanisms in esophageal cancer. In short, our study provides
a sol id foundat ion for subsequent prognost ic and
mechanism research.

All in all, our findings provide several potential prognostic
biomarkers of ESCC and may improve the treatment of this type
of cancer.
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