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Abstract: In the present study, a novel heterogeneous catalyst was successfully fabricated through
the decoration of palladium nanoparticles on the surface of designed Fe3O4-coffee waste composite
(Pd-Fe3O4-CWH) for the catalytic reduction of nitroarenes. Various characterization techniques
such as XRD, FE-SEM and EDS were used to establish its nano-sized chemical structure. It was
determined that Pd-Fe3O4-CWH is a useful nanocatalyst, which can efficiently reduce various ni-
troarenes, including 4-nitrobenzoic acid (4-NBA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine
(4-NPD), 2-nitroaniline (2-NA) and 3-nitroanisole (3-NAS), using NaBH4 in aqueous media and
ambient conditions. Catalytic reactions were monitored with the help of high-performance liquid
chromatography. Additionally, Pd-Fe3O4-CWH was proved to be a reusable catalyst by maintaining
its catalytic activity through six successive runs. Moreover, the nanocatalyst displayed a superior
catalytic performance compared to other catalysts by providing a shorter reaction time to complete
the reduction in nitroarenes.

Keywords: coffee waste; hydrochar; nitroarenes; catalytic reduction; nanocatalyst; palladium

1. Introduction

Due to the increasing demand for sustainable recovery and the exploitation of biowaste,
the conversion of biowaste into valuable products has attracted a lot of attention. At the
same time, the atmospheric emissions from the use of fossil fuels cause problems such as
global warming, climate change and environmental pollution. Furthermore, fossil fuel
reserves are rapidly depleting, while energy consumption is increasing dramatically [1,2].
Until now, the most sustainable exploitation pathway for biowaste has been its conversion
to biofuels; however, new applications are emerging. Coffee is one of the most widely
consumed beverages in the world and is created from roasted beans of the plant genus
Coffea and family Rubiaceae. On average, around 1 kg of soluble coffee can produce two
kilograms of wet ground coffee [3]. As a result, large quantities of used coffee grounds
from coffee shops are disposed of in landfills. Therefore, the disposal of coffee grounds
accelerates the time required for the landfill to reach its capacity. Furthermore, this con-
tributes to a global problem of food loss and waste, now estimated to be 2.1 billion tons of
food wasted and a lost economic value of USD1.5 trillion globally by 2030 [4].

Hydrochar is a carbon-based material that is prepared by the hydrothermal carboniza-
tion of high moisture biomass waste, such as sewage sludge, algae or grass, in an aqueous
environment at temperatures in the range of 180–260 ◦C [5]. Biochar is the solid product
of biomass pyrolysis at temperatures in the range of 300–800 ◦C. The main advantage
of hydrothermal carbonization over conventional pyrolysis is the potential to use wet
biomasses as feedstock. Such carbonaceous materials prepared from spent coffee grounds
have received much attention recently for their economic value and promising applications
in environmental treatment technology. Although biochars exhibit higher surface areas
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and more extended porosities compared to hydrochars, the latter commonly have a higher
number of oxygen-containing surface groups. Depending on the requirements, all these
attributes are highly desirable for the development of functional materials such as catalysts
or adsorbents. Various biochars and hydrochars have been used as substrates to disperse
and stabilize nanoparticles (NPs) to enhance their reactivity for catalytic reactions [6–8].

Some examples of pollutants of concern today include heavy metals, herbicides,
oil spills, pharmaceuticals and fertilizers. Compounds containing nitro groups have
been determined in aqueous environments [9]. Due to the mutagenic and carcinogenic
properties of nitro compounds, it is necessary to investigate their environmental fate
as part of a strategy to prevent the contamination of receiving bodies. So far, various
methods have been developed to remove nitro compounds from wastewater, including
photochemical degradation, adsorption, microbial degradation, membrane distillation and
electrocoagulation. However, these methods often have practical limitations, such as a
low removal efficiency, cost inefficiency and the formation of harmful by-products. The
catalytic reduction in nitro compounds to amino derivatives is an alternative and emerging
process for the elimination of toxic nitro compounds from the environment. As a result
of their unique and distinctive properties, nanomaterials have attracted great interest in
recent years. In particular, transition metal/metal oxide nanocatalysts, with their unique
physical and chemical properties, have attracted significant attention for their application
in various fields [10–12]. The design and preparation of such catalysts has attracted a lot
of attention for industrial processes, since they can be magnetically recovered after use,
washed and reapplied [13].

In the framework of circular bio-economy, the rationale behind this work is to develop
a novel pathway for the utilization of coffee waste and the production of a high added-value
material. Therefore, spent coffee grounds were converted to hydrochar through hydrother-
mal carbonization. This process helps to increase the structural and chemical stability of
the coffee grounds. The resultant hydrochar was then used as a substrate for the deposi-
tion of Fe3O4 particles, followed by the dispersion of Pd nanoparticles on the magnetic
substrate surface. The chemical structure and composition of the nanocatalyst (referred to
as Pd-Fe3O4-CWH thereof) were determined by various imaging and spectroscopic meth-
ods. Pd-Fe3O4-CWH was then applied as heterogeneous nanocatalyst for the reduction in
4-nitrobenzoic acid (4-NBA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPD),
2-nitroaniline (2-NA) and 3-nitroanisole (3-NAS), using NaBH4 as a reducing reagent. The
respective aniline products were determined by high performance liquid chromatography.
A detailed investigation of the mechanism of reduction in the nitro groups was beyond the
scope of this study. Finally, the reusability of the nanocatalyst was investigated by applying
it in six successive catalytic runs.

2. Experimental Part
2.1. Materials and Methods

Spent coffee grounds were collected from a coffee shop. All nitro aromatic compounds,
sodium borohydride (NaBH4, 99%), FeSO4·7H2O (4.2 g), FeCl3·6H2O, PdCl2, ethanol and
methanol were purchased from Merck Chemical (Istanbul, Turkey). Hydrothermal car-
bonization was performed in a Berghoff Ins.-Heidolph MR Hei-standard reactor (Heidolph
Instruments GmbH & Co. KG, Schwabach, Germany). Reductions in the nitro compounds
were monitored by using a PerkinElmer Flexar Series HPLC system (Waltham, MA, USA).
SEM images and EDS of CWH, Fe3O4–CWH and Pd-Fe3O4-CWH were recorded in a
Supra 55 field emission (FE) microscope (ZEISS, Oberkochen, Germany). TEM images of
Pd-Fe3O4-CWH were obtained in a JEOL JEM-1011 instrument. A SmartLab SE instrument
Rigaku, Tokyo, Japan) was used to obtain the XRD patterns for the nanocatalyst. The exact
Pd loading on Pd-Fe3O4-CWH was determined by inductively coupled plasma optical
emission spectrometry (ICP-OES) (Thermo Scientific iCAP 6500, Manchester, UK).
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2.2. Preparation and Characterization of Pd-Fe3O4-CWH Nanocatalyst

Hydrochar was prepared through hydrothermal carbonization at 200 ◦C and 2 h
treatment time.

Fe3O4–CWH was obtained by the following procedure, discussed in detail in our
previous study [5]. First, FeSO4·7H2O (4.2 g) and FeCl3·6H2O (6.1 g) were dissolved in
100 mL distilled water and heated to 90 ◦C. Ammonium hydroxide (10 mL-26%) and
a suspension of 1 g of CWH in 200 mL of water were mixed, the mixture was stirred
at 90 ◦C for 40 min and, finally, cooled to 25 ◦C. Fe3O4–CWH was collected as a black
precipitate by filtering, being repeatedly washed with distilled water until a neutral pH
was reached, dried at 70 ◦C for 18 h and stored. The next procedure was applied to load
the Pd nanoparticles onto Fe3O4–CWH. A total of 0.25 g of Fe3O4–CWH was suspended
in 30 mL water and a specific quantity of Na2PdCl4 (as the Pd precursor) was added,
representative of a 5% Pd loading. After 40 min of stirring at 25 ◦C, an ascorbic acid
solution (nascorbicacid:nPd

1
4 2:1) was added and allowed to react for 130 min. After filtration,

the solid catalyst was rinsed repeatedly with distilled water. Pd-Fe3O4-CWH was recovered
with extremal magnet after drying at 80 ◦C for 12 h. The preparation of Pd-Fe3O4-CWH
nanocatalyst is presented in Figure 1.
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Figure 1. Schematic diagram of the Pd-Fe3O4-CWH catalyst preparation.

2.3. Reduction in Nitro Compounds to Anilines

For the reduction in the nitro compounds to the respective amino derivatives, 20 mg
of Pd-Fe3O4-CWH was transferred into 1 mL of nitro compound (3 × 10−4 M), followed by
stirring for 1 min at room temperature. Freshly prepared NaBH4 (0.08 M, 0.4 mL) was then
added to the reaction medium and the nitro compound reduction was followed by HPLC.
Finally, the nanocatalyst was removed from the reaction media by a magnetic bar and
reactivated by washing with water before using it for subsequent runs. Kinetic studies were
performed at 25 ◦C by using 4-NBA as the model substrate and an excess concentration
of NaBH4.

2.4. HPLC Analysis

The analysis of the reduced nitro-aromatic compounds was performed by using a
PerkinElmer Flexar Series HPLC system (Waltham, MA, USA). Separation was achieved on
a ZORBAX SB Phenyl column (150 mm × 4.6 mm, 5 µm, Agilent Technologies, Santa Clara,
CA, USA) maintained at 25 ◦C. The mobile phase used was 20/79 v/v acetonitrile/water,
to which 1% acetic acid was added. The flow rate was set at 1.0 mL·min–1 and the injection
volume at 10 µL. UV detection was set at 270 nm.
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3. Results and Discussion
3.1. Characterization

Figure 2 depicts FE-SEM images and associated EDS data of Pd-Fe3O4-CWH. FE-SEM
images of CWH showed an irregular but porous surface morphology (Figure 2a,b).
Hydrochars are typically amorphous materials with a low degree of crystallinity [14,15].
Following the deposition of Fe3O4, it was observed that CWH’s surface morphology was
not affected, but only covered by Fe3O4 particles (Figure 2c,d). The Fe3O4 cluster sizes var-
ied widely, ranging from tenths to hundreds of nanometers, confirming earlier studies [16].
Figure 2e indicates that Pd nanoparticles, shown as small dots, were homogeneously dis-
persed on the surface of Fe3O4-CWH [17]. The presence of C, O, Pd and Fe peaks in the
EDX spectrum of the nanocatalyst confirmed the successful fabrication of Pd nanoparticles
on Fe3O4–CWH.

Figure 3 illustrates the XRD pattern of Pd-Fe3O4-CWH. The six sharp peaks at 30.16◦,
35.62◦, 43.34, 53.45◦, 57.13◦ and 62.83◦ represent the Fe3O4 crystalline phases and corre-
spond to the (220), (311), (400), (422), (511) and (440) planes [18] (Figure 3b). Additionally,
the two diffraction peaks at 40.19◦ and 46.65◦, assigned to the (111) and (200) planes of
metallic Pd [19,20] were easily observed in the XRD pattern of the nanocatalyst (Figure 3b).
These peaks further confirmed the presence of Pd NPs on the Fe3O4–CWH surface.

For a more detailed surface morphology, a TEM analysis of the Pd-Fe3O4-CWH
nanocatalyst was performed and the corresponding images are displayed in Figure 4. The
images highlighted the presence of Pd NPs as black dots, nearly homogenously grafted
on Fe3O4-CWH.

The XPS analysis (Figure 5) also confirmed the fabrication of the Pd-Fe3O4-CWH
nanocatalyst by the display of Fe 2p (709.4 eV (2p3/2), 723.8 eV (2p1/2)) and Pd 3d (335.3 eV
(3d5/2), 341.6 eV (3d3/2)) of metallic Pd(0), respectively, in the spectrum [21,22]. The
two characteristic peaks of Pd(II), commonly seen at 338.0 and 343.6 eV in published
works, were not observed [23]. This indicated the dominance of the Pd(0) speciation on
our nanocatalyst.
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3.2. Catalytic Activity Test

The performance of the nanocatalyst was explored by employing it in the catalytic
reduction in various nitro compounds in the presence of NaBH4 as a hydrogen source.
To test the catalytic performance of Pd-Fe3O4-CWH and establish the optimal reaction
conditions (amount of catalyst, concentration of NaBH4 and nitro compound) in the
reduction in nitro compounds, 4-NA was selected as a representative substrate and control
studies were performed (Table 1). The progress of catalytic reactions was followed by high
performance liquid chromatography by monitoring the retention times of both substrates
and reduced products (Figure 6). As seen in Table 1, the desired product was obtained
in less time in the presence of 20 mg of catalyst, 3 × 10−4 M of nitro compound and
0.4 mL of NaBH4 (0.08 M). Subsequently, the catalytic behavior of Pd-Fe3O4-CWH was
examined in the reduction in 2-NA, 4-NBA, 4-NPD and 3-NAS reductions with the detected
optimal conditions and the obtained findings shown in Table 1. As seen in Table 2, the
nitro compounds were successfully reduced to the corresponding aniline derivatives in
very short times. For example, the Pd-Fe3O4-CWH nanocatalyst provided a complete
reduction in 4-NBA within 60 s. Pd-Fe3O4-CWH catalyzed the 4-NA reduction within 82 s.
Furthermore, the reduction in 2-NA proceeded quickly and was completed within 90 s. In
a similar manner, the catalytic reductions in 4-NPD and 3-NAS were completed within
168 and 428 s, respectively. On the other hand, the reduction in 4-NA was performed
without the Pd-Fe3O4-CWH catalyst, and no product formation was observed after 1 h.
This result revealed the importance of the Fe3O4–CWH catalyst against the reduction in
nitroarenes. Additionally, based on previous studies, the possible reaction mechanism for
the Pd-Fe3O4-CWH catalyzed reduction in nitroarenes was given in Scheme 1 [24,25].
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Table 1. The optimization of reaction parameters for 4-NA reduction.

4-NA (M) NaBH4 (M) Pd-Fe3O4-CWH (mg) Reaction Time (s)

3 × 10−4 0.08 10 300
3 × 10−4 0.08 15 180
3 × 10−4 0.08 20 82
3 × 10−4 0.04 20 145
3 × 10−4 0.06 20 115

3.5 × 10−4 0.08 20 140
4 × 10−4 0.08 20 190

Table 2. The reduction and retention times of nitro compounds.

Substrate Product Reduction Time (s) Retention Time (rtmin) a Retention Time (rtmin) b

4-Nitrobenzoic Acid 4-Aminobenzoic acid 60 7.74 4.27
4-Nitroaniline 4-Phenylenediamine 82 7.33 2.95
2-Nitroaniline 2-Phenylenediamine 90 8.51 3.20

4-Nitro-o-phenylenediamine 1,2,4-Triaminobenzene 168 5.30 2.95
3-Nitroanisole 3-Anisidine 428 15.87 3.79

a Retention time of substrates in HPLC analysis. b Retention time of products in HPLC analysis. Reduction conditions: nitro compounds
(0.3 mM, 1.0 mL), NaBH4 (80 mM, 0.4 mL), Pd-Fe3O4-CWH catalyst (20 mg).
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Scheme 1. Proposed reaction mechanism for Pd-Fe3O4-CWH catalyzed reduction in nitroarenes.

To indicate the superiority of Pd-Fe3O4-CWH over other reported catalysts, its catalytic
performance for the reduction in 2-NA was compared to that of other catalysts reported
in the literature. As seen in Table 3, our nanocatalyst compared favorably with respect to
the reaction time for the complete reduction in 2-NA. Furthermore, some of the catalysts
reported in the table required multiple, complex preparation steps, and used substrates
from non-renewable sources.
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Table 3. Comparison of catalytic efficiency of Pd-Fe3O4-CWH with other reported catalysts in the
2-NA reduction.

Entry Catalyst Time Ref.

1 Ag-PNA-BIS-2 8 h [26]
2 Pd NPs/RGO 1.5 h [27]
3 MMT@Fe3O4@Cu 6 min [28]
4 Fe3O4-Glu-Ag 12 min [29]
5 NiNPs/DNA 3 h [30]
6 Cu–Acac@Am–Si–Fe3O4 5 min [31]
7 SiO2@CuxO@TiO2 150 s [32]
8 Ni@Au/KCC-1 660 s [33]
9 Ag@CeO2 NCs 240 s [34]
10 Pd-Fe3O4-CWH nanocatalyst 90 s Present study

For the kinetic study, a high excess of NaBH4 meant that the rate constant could be
assumed to be independent of the NaBH4 concentration and a pseudo-first-order kinetics
model could be applied to the reduction in 4-NBA [35]. The pseudo-first-order rate constant
(k) value was calculated from the slope of the following equation:

ln
4 − NBAt

4 − NBA0
= −kt (1)

where 4-NBAt and 4-NBA0 are the 4-NBA concentration at time t and initial concentration,
respectively. As indicated by the regression coefficient (R2 = 0.9829), the reduction data
fitted very well to the pseudo-first-order model (Figure S1). This observation agreed well
with earlier studies, which examined the reduction of nitroarenes under the influence of
various catalysts [36,37]. The rate constant was determined as 0.1479 min−1, indicating a
kinetically unhindered process with no induction period, in contrast to some earlier studies
that showed that Pd catalysts have an initial stage of reduced performance during the
reduction in nitro compounds [38–40].

3.3. Recyclability of Pd-Fe3O4-CWH

One of the most important properties of heterogeneous catalysts is their reusabil-
ity, a valuable attribute for industrial applications. Therefore, the recycling potential of
Pd-Fe3O4-CWH was evaluated on 4-NBA reduction. The nanocatalyst was readily sepa-
rated from reaction media magnetically after the 4-NBA reduction and rinsed with water
to use in the further reactions (Figure 7). Reusability/recoverability studies showed that
Pd-Fe3O4-CWH was reused up to a number six runs without any significant loss of catalytic
performance (Figure 8).
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4. Conclusions

It was demonstrated that coffee waste hydrochar can be used as a substrate for the
development of an efficient nanocatalyst. Overall, our approach combined concepts of
waste management, circular bio-economy and wastewater treatment. Therefore, biomass-
based materials can provide sustainable building blocks for the production of catalysts for
environmental remediation. Fe3O4 and Pd nanoparticles were deposited on the hydrochar
surface through a simple process and the resultant catalyst exhibited a positive performance
in the reduction in nitroarenes. Kinetically, the nanocatalyst showed no induction period,
achieving complete reductions for a wide range of nitro compounds in very short times.
Furthermore, the stability and reusability of the catalyst was established by collecting it
through the use of a magnet and applying it in successive reaction runs. Further work
should focus on testing the performance of the catalyst in the reduction in or oxidation
reactions of other organic contaminants and investigating the economics of the process in
detail, identifying necessary steps before scaling-up application.

Supplementary Materials: The following are available online, Figure S1: Fitting of the 4-NBA
reduction data to the pseudo first-order kinetic model.
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