
A Comparative Study of the Performance for Predicting
Biodegradability Classification: The Quantitative Structure−Activity
Relationship Model vs the Graph Convolutional Network
Myeonghun Lee and Kyoungmin Min*

Cite This: ACS Omega 2022, 7, 3649−3655 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The prediction and evaluation of the biodegradability of molecules with computa-
tional methods are becoming increasingly important. Among the various methods, quantitative
structure−activity relationship (QSAR) models have been demonstrated to predict the ready
biodegradation of chemicals but have limited functionality owing to their complex implementation.
In this study, we employ the graph convolutional network (GCN) method to overcome these issues.
A biodegradability dataset from previous studies was trained to generate prediction models by (i) the
QSAR models using the Mordred molecular descriptor calculator and MACCS molecular fingerprint
and (ii) the GCN model using molecular graphs. The performance comparison of the methods
confirms that the GCN model is more straightforward to implement and more stable; the specificity
and sensitivity values are almost identical without specific descriptors or fingerprints. In addition, the
performance of the models was further verified by randomly dividing the dataset into 100 different
cases of training and test sets and by varying the test set ratio from 20 to 80%. The results of the
current study clearly suggest the promise of the GCN model, which can be implemented
straightforwardly and can replace conventional QSAR prediction models for various types and
properties of molecules.

■ INTRODUCTION

Microorganisms remove organic materials from the environ-
ment through oxidation, reduction, and hydrolysis. This
process is defined as biodegradation and is an essential
method of removing pollutants from the environment.1

However, the accumulation of non-biodegradable chemicals
poses a potential threat to humans and ecosystems. Some
synthetic plastics, such as polyethylene−starch blends and
polyester polyurethane, are biodegradable, but the most
commonly used plastics are non-biodegradable or require
decades to degrade completely.2 Therefore, it is essential to
establish effective evaluation methods for classifying the
potential biodegradability of organic materials.
European legislators included chemical persistency in

Registration, Evaluation, and Authorization of Chemicals
(REACH) for the evaluation of chemicals.3 REACH requires
biodegradability assessments of chemicals produced or
imported in quantities of more than a ton per year.4 However,
only 61% of chemicals produced or imported in quantities of
more than 1000 tons per year have information on
biodegradability.5 Therefore, it is critical to assess the
biodegradability of the remaining chemicals. As a potential
solution, REACH encourages the use of quantitative
structure−activity relationship (QSAR) models to predict the
biodegradability of compounds.6

In particular, several QSAR classification models have
recently been proposed for predicting the “ready biodegrad-

able” (RB) or “not ready biodegradable” (NRB) class of
materials7 as artificial intelligence (AI) methods have become
more accessible. Previous studies have applied machine
learning algorithms, such as partial least squares discriminant
analysis (PLSDA), multiple linear regression (MLR), logistic
regression (LR), naive Bayes (NB), k-nearest neighbors
(kNN), and support vector machines (SVM), as QSAR
models to molecular fingerprints and descriptors to develop a
biodegradability classification model.1,3,7−9 The datasets, Sn,
and Sp results of previous studies using QSAR models for
biodegradability prediction are summarized in Table S1.
Although various models and datasets are implemented, it is
not clear whether which regressors are superior to the others.
In addition, software has been developed to calculate
molecular descriptors, such as PaDEL-Descriptor10 and
DRAGON,11 which were used as features to develop QSAR
models.3,12 The freely available PaDEL-Descriptor can
calculate 1875 molecular descriptors, such as atom-type
electrotopological state descriptors, McGowan volume, molec-
ular linear free energy relation descriptors, ring counts, and 10
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types of fingerprints.10 DRAGON is another widely used tool
that can calculate 5270 molecular descriptors, but it is difficult
to use because of licensing issues.13

While it has been proven that integrating data and ensemble
analysis can increase the reliability of QSAR models, they
commonly face problems with uncertainty for various reasons.7

For example, QSAR models make false correlations owing to
errors in the experimental process or do not fully reflect the
characteristics of the data because of the small number of
training databases.14 In addition, they intrinsically require the
generation of appropriate features to train the models. Hence,
choosing the appropriate features is often a complicated issue.
For example, several structural features of molecules (such as
halogen, chain branching, and nitro groups) have been shown
to increase biodegradation time, while others (such as esters,
amides, and hydroxyl groups) have been found to decrease
biodegradation time. However, these structural features cannot
be generalized to represent both RB and NRB molecules.15

To overcome the above-mentioned limitations, we intend to
predict biodegradability using graph neural networks (GNNs)
and compare their performance with that of QSAR models. In
particular, graph convolutional networks (GCNs)16 are

implemented, which produce outstanding performance in
various fields dealing with molecules, such as molecular
property, activity, interaction, and synthesis prediction.17

This indicates that such a method can potentially replace the
QSAR model.18 In chemistry, the atoms and bonds that make
up a molecule can be naturally converted into graphs by
mapping them into sets of nodes and edges,19 which can be
used as input features. This study compares the procedures and
results of QSAR models and the GCN model for
biodegradability classification, demonstrates the advantages
and disadvantages, and discusses the great potential of the
GCN model. The overall procedure of the two models is
shown in Figure 1. The GCN model can be directly applied by
converting the simplified molecular input line entry system
(SMILES) into graphs, whereas the QSAR model is applied by
calculating and selecting molecular descriptors and fingerprints
from SMILES. This schematic indicates that the GCN
implementation is less complicated and requires less
information than the QSAR model.

Figure 1. Flowchart conducted in this study. The dataset (green) consists of SMILES and RB/NRB class data. The QSAR model (blue) consists of
applying four machine learning algorithms by generating descriptors and fingerprints that can be calculated from SMILES. The GCN model
(yellow) was composed of converting SMILES into molecular graphs and using the architecture of Figure 2c.

Figure 2. (a) Visualizing the number of RB/NRB in the dataset. (b) Features of atoms constituting the node feature matrix of the molecular graph.
(c) GCN model architecture.
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■ METHODS

Biodegradability Database. This study used “All-Public
set”, an organized and aggregated dataset from five different
sources:9 the ECHA database,20 the NITE database,21 and the
training sets of the existing tools VEGA,22 EPI Suite,23 and
OPERA.24 Subsequently, CADD Group Chem and User
Services25 and PubChem26 were used to verify the accuracy of
SMILES. Standardization was performed using workflows
implemented in Konstanz Information Miner (KNIME).27

Additionally, deduplication was based on standardized
SMILES matching. The datasets represent biodegradable
classes with RB and NRB, as shown in Figure 2a, which are
1097 and 1733, respectively.
Molecular Descriptors.Mordred,13 a molecular descriptor

calculation software that can calculate more than 1800 two-
and three-dimensional descriptors, was used for the QSAR
model. It is an open-source software that is easier to install and
use than other libraries (e.g., Cinfony28 and ChemoPy29) and
can be employed flexibly with a rapid calculation speed.
However, 3D structural descriptors, such as CPSA and
MoRSE, can cause complex and non-reproducible optimiza-
tions.3 While 3D descriptors represent valuable chemical
information about molecules, they may be difficult to apply to
new molecules because geometric optimization is necessary. In
addition, they vary between 3D conformers, which can affect
the values of the 3D descriptors. Therefore, this study used
Mordred to calculate a total of 1613 two-dimensional values,
such as the adjacency matrix, distance matrix, S log P, and
weight. In addition to descriptors, molecular fingerprints are
often used for biodegradability classification using QSAR
models;1,7,8 in this study, the most widely used Morgan
fingerprint30 (1024-bit), MACCS fingerprint31 (167-bit), and,
additionally, RDKit topological fingerprint (2048-bit)32 were
tested.
In contrast, the molecular graph for the GCN model was

transformed in response to the atoms (nodes) and the bonds
between atoms (unweighted edges). The graph is represented
by G = (X, A), where X is a 75-dimensional node feature
matrix (N × 75, N is the number of nodes) of the chemical
features of atoms, as shown in Figure 2b, and A represents an
adjacency matrix (N × N), in which Aij = 1 when the ith and
jth atoms are bonded and Aij = 0 otherwise. The molecules
were represented by SMILES and converted to graphs using
RDKit32 and PyTorch Geometric (PyG).33

Machine Learning Details. Four classification algorithms
were applied for QSAR modeling: kNN, SVM, random forest
(RF), and gradient boosting (GB). kNN, SVM, and RF have
already been implemented for biodegradability predictions,3,8,9

and GB, one of the representative boosting models, was
additionally tested. These models were implemented and
tuned using scikit-learn,34 and their details can be found in the
Supporting Information. In particular, for the case of SVM and
RF, the weight balancing technique was also applied to
consider imbalanced data. In addition, ensemble analysis was
applied to combine the prediction results of the four different
machine learning algorithms. This method can further enhance
the predictive reliability of the model.35 Because individual
models contain a variety of noises, averaging the prediction
results of the implemented models can reduce the overall
noise.36 Among the ensemble analysis methods, a soft voting
ensemble (SVE) classifier using scikit-learn was applied in this

study. This method selects the highest class by summing the
probabilities predicted by each model.

Graph Convolutional Network (GCN). As shown in
Figure 2c, the GCN model for biodegradability prediction
consists of two regions: (i) graph convolution layers (blue)
and (ii) prediction layers (green). In the graph convolution
layers (which consist of four layers), the features of
neighboring atoms and the central atom are calculated by
GCNConv,37 as follows:

σ= = ̃ ̃ ̃+ − −H f H A D AD H W( , ) ( )l l l l( 1) 1/2 1/2 ( ) ( )

where Ã = A + I, I is the identity matrix of the adjacency
matrix, D̃ is the diagonal node degree matrix, W(l) is the weight
matrix of layer l, H(0) = X, where X is the feature matrix of the
nodes, and H(l) is the output of layer l. The prediction layers
consist of three fully connected layers and eventually return
prediction results via the log softmax function.

Evaluation Metrics. To compare the results of the QSAR
and GCN models, the dataset was randomly divided into
training and test sets at a ratio of 8:2, and the proportion of
each class was uniformly distributed (stratified sampling) for
each set. The classification model was evaluated based on the
metrics of balanced accuracy (BA), specificity (Sp), sensitivity
(Sn), and error rate (ER) for the prediction of RB and NRB of
molecules. The evaluation metrics are calculated as follows:

=
+

BA
Sn Sp

2

=
+

Sp
TN

TN FP

=
+

Sn
TP

TP FN

= +
+ + +

ER
FN FP

TP FN FP TN

where TN and TP are true negative and true positive values,
respectively, while FN and FP are false negative and false
positive values, respectively. Additionally, Sn and Sp are
inversely proportional; therefore, a higher Sn corresponds to a
lower Sp and vice versa.38

■ RESULTS AND DISCUSSION
To develop the most accurate surrogate model, it is imperative
to conduct several tests to find appropriate combinations of
parameters in various cases using the four QSAR models and
one GCN model. In this respect, three approaches were used:
(i) BA values from 10-fold cross-validation (CV) were
obtained for direct comparison of the machine learning
models, (ii) the average and range of four metrics from 100
different configurations were calculated by randomly dividing
the dataset into training and test sets, and (iii) the test set ratio
was varied from 20 to 80% with 100 different random states, as
conducted in case 2, to further verify the prediction stability.
By comparing these metrics, essential conditions for improving
the model performance, such as several descriptors and
algorithms, were selected, and the final model was determined.

Molecular Descriptors and Fingerprints. The perform-
ance of the QSAR models was first tested when only Morgan,
MACCS, and topological fingerprints were used, as shown in
Table S2. Especially, Morgan and MACCS fingerprint methods
are widely used in various molecule-related fields, such as
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virtual screening39,40 and target prediction benchmarks.41,42

Although the results indicate that there is no significant
difference, the MACCS fingerprint among the three types of
molecular fingerprints is slightly better in the four QSAR
models; hence, it was adopted. In addition, some prior
studies3,8,9 that classified biodegradability using QSAR models
implemented genetic algorithms (GAs) for feature selection of
descriptors obtained from these fingerprints. Similarly, in this
study, a GA was used to find the optimal subset of features by
reducing unnecessary or insignificant features, thereby
potentially increasing the training speed and prediction
accuracy.
However, using sklearn-genetic43 to select the most relevant

of the 1613 two-dimensional descriptors did not significantly
improve the model performance, as shown in Table S3. (The
numbers of descriptors in each model were reduced as follows:
kNN, SVM, RF, and GB were implemented with 642, 50, 832,
and 470 descriptors, respectively.) This process was conducted
by obtaining BA scores from 10-fold CV for all models and
descriptors (MACCS and Mordred) with and without GA-
based feature selection (Tables S2 and S3). As a result,
although using any of the three types of molecular fingerprints
did not make a significant performance improvement, the case

of using only MACCS fingerprints showed slightly better
performance in common (BA > 0.82), so only MACCS
fingerprints were adopted. Also, as a result of comparing the
performance of applying GA to the descriptors calculated by
Mordred, kNN and RF use the selected descriptors, and SVM
and GB use all the calculated descriptors. The result of GA also
did not make a significant performance change, but it is
important in that it improved kNN and RF by evaluating and
analyzing a small number of key descriptors. In addition, as
shown in Figure S1, the Pearson correlation coefficient
between all the descriptors and the class (RB/NRB) was not
exceptionally high or meaningful. For 53 relatively more
correlated descriptors (correlation > 0.35) and MACCS
fingerprints, the BA value in 10-fold CV measured using
SVM was 0.83, which was lower than that using the full
descriptors (0.84; Table S3). Therefore, along with the
MACCS fingerprint, kNN and RF for descriptors were
selected by GA, and SVM and GB for all descriptors were
adopted as final QSAR models in this study. An unsupervised
learning approach using dimensionality reduction was
attempted for further analysis of the descriptors and finger-
prints, as shown in Figure S2. Using principal component
analysis (PCA), t-distributed stochastic neighbor embedding

Figure 3. For the entire dataset, the composition of the training set and test set divided by 8 to 2 was randomly different, indicating a result of 100
times. (a) Results of the QSAR models and (b) result of the GCN model and a confusion matrix example. The confusion matrices of the remaining
models can be seen in Figure S4.

Table 1. Summary of Results for Test Sizes of 0.2 and 0.8 for All Modelsa

test size of 0.2 test size of 0.8

model BA Sn Sp ER BA Sn Sp ER

kNN 0.83 (±0.04) 0.85 (±0.06) 0.81 (±0.05) 0.18 (±0.04) 0.79 (±0.02) 0.83 (±0.05) 0.75 (±0.04) 0.22 (±0.02)
SVM 0.84 (±0.04) 0.82 (±0.07) 0.86 (±0.05) 0.16 (±0.04) 0.81 (±0.02) 0.78 (±0.05) 0.84 (±0.04) 0.18 (±0.02)
RF 0.83 (±0.04) 0.81 (±0.07) 0.86 (±0.05) 0.16 (±0.04) 0.81 (±0.02) 0.76 (±0.06) 0.85 (±0.04) 0.18 (±0.02)
GB 0.84 (±0.04) 0.78 (±0.07) 0.90 (±0.04) 0.15 (±0.03) 0.81 (±0.02) 0.74 (±0.05) 0.88 (±0.03) 0.17 (±0.02)
GCN 0.84 (±0.05) 0.82 (±0.06) 0.86 (±0.04) 0.16 (±0.04) 0.81 (±0.02) 0.80 (±0.04) 0.81 (±0.04) 0.19 (±0.02)

aDetails of each result are shown in Figures 3 and 4.
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(t-SNE),44 and uniform manifold approximation and projec-
tion (UMAP)45 algorithms, 1780 dimensions (1615-dimen-
sional descriptors and 167-bit fingerprints) were reduced to
two dimensions and visualized. In addition, the k-means
clustering algorithm was applied to obtain BA values of 0.56,
0.60, and 0.58 for PCA, t-SNE, and UMAP, respectively. In
particular, t-SNE exhibited a relatively visually distinguishable
positional relationship between the two classes. Although these
results are not sufficiently accurate to fully replace the
supervised learning approach, the semi-supervised approach
could still be applied to label molecules with unknown target
properties.
Performance of the QSAR Models. The performances of

the QSAR and GCN methods were compared using the
metrics proposed above. As shown in Figure 3 and Table 1, for
the three QSAR models except kNN, SVM, RF, and GB exhibit
the same trend in the results: Sp is larger than Sn, and the error
range of Sn (fluctuation magnitude) is relatively larger. This
means that RB is often not correctly predicted, and its
prediction capability could be unstable compared to NRB
classification. A previous study also found that Sp, which is
influenced by this prediction imbalance, is larger than Sn.3 In
the case of kNN, on the contrary, Sn was higher than Sp, but
the overall performance was not good, especially when the test
size was 0.8. The primary cause for such behavior could be due
to the imbalanced dataset, and this is why this study
considered the weight balancing technique for SVM and RF
(the number of RB entries is relatively smaller than that of
NRB, as discussed in Figure 2a).
As shown in Table 1, both SVM and GB show the highest

performance among the QSAR models with a BA value of 0.84
(±0.04). Among the two models, ER of GB was lower at 0.15
(±0.03), but when Sn and Sp were compared, SVM values
were closer to 0.82 (±0.07) and 0.86 (±0.05), respectively.
These results were the same even when the test size was 0.8.
To further verify the performance of the models, the variation
in the prediction accuracy with the ratio of the test set to the
training set was obtained, as shown in Figure 4. The results
show that, as the proportion of the test set approaches 80%,
the performance of the surrogate models deteriorates (e.g.,
kNN was the worst with a BA of 0.79). Furthermore, Sp was
generally larger than Sn, and their difference increased as the
size of the test set increased. This indicates that the intrinsic
data imbalance could cause considerably poorer prediction
accuracy when the developed model was employed for
unexplored molecules. To further verify potential improvement
in the prediction accuracy, we adopted the ensemble analysis
model SVE. Ensemble analysis has been used to overcome the
limitations of individual classifiers.46 This method aims to
increase the accuracy by combining the prediction results of

various models to generate the final prediction results.
Compared with the performance of individual classifiers,
ensemble classifiers have demonstrated better stability and
robustness.47 However, employing the SVE did not improve
the model performance compared to that of SVM, even though
all four models were used, as shown in Figure S3. To provide
further details, the confusion matrices for all the considered
models are shown in Figure S4.
To summarize, as with many machine learning algorithms,

the development of the QSAR model requires substantial
consideration when choosing proper algorithms and feature
selection methods for various descriptors and fingerprints.
Hence, different types of accessible fingerprints and descriptors
have been suggested. However, this increases the complexity of
choosing a suitable model because it requires additional tests.
Moreover, in addition to the results of the molecular descriptor
generator, the physicochemical properties that directly
represent the molecules can improve the performance of the
model, but their actual implementation requires considerable
resources owing to the limited availability and validity of the
experimental data.48

GCN Model Details. Similar to the QSAR model, the
optimal parameters for the GCN model must be found to
obtain the best performance. In particular, various graph
convolution algorithms are available, and the prediction
accuracy depends on the model chosen. GCNConv, one of
the most representative algorithms, was employed in this study,
and its performance was compared with those of SAGEConv49

and ARMAConv,50 another representative algorithm.
GCNConv is widely used and has been used to predict
various molecular properties, such as drug−target affinity,51

free energy, solubility, and metabolic stability.52 As can be seen
in Figure S5, it is difficult to judge that the performance of
GCNConv is particularly superior to those of the other two
algorithms, but in this study, the architecture consisting of four
graph convolution layers of GCNConv and three prediction
layers was adopted as it was judged appropriate in terms of
computational cost and performance.16 When the architecture
was deeper with eight and seven layers, the error ranges in Sp
and Sn are slightly wider (±0.07 and ±0.05, respectively; test
set size was 20%). However, when four graph convolution
layers and three prediction layers were used, Sp and Sn values
were narrower (±0.06 and ±0.04, respectively). This perform-
ance suggests that the implemented GCN model is similarly
stable enough for different algorithm and architecture choices
to predict the biodegradability of molecules.

Performance of the GCN Model. The GCN model did
not show dramatically improved performance compared to the
QSAR models. The BA value was the same as those of SVM
and GB, and the difference in the ER value was not significant.

Figure 4. Results of measuring the configuration of the training set and test set for the entire dataset by dividing it from 8 to 2 to 2 to 8. The results
showed the average of randomly performing each configuration 100 times differently.
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However, an essential difference in the GCN model is the
distance between Sp and Sn and convenience of the
development process. In particular, there was only a difference
in degree in the QSAR models: Sp was higher than Sn in all
models, which caused instability in the prediction performance.
However, especially when the test size is 0.8, the GCN model
had similar BA, Sp, and Sn values, indicating that the
prediction was more stable for both classes than that of the
QSAR models (Table 1). Figure 4 and Table 1 confirm that
this meaningful result of the GCN model was maintained even
when the ratio of the test set was increased up to 80%, in
contrast to SVM. This implies that the performance of the
GCN model is similar to that of the QSAR models for the
overall prediction results, but when the test size is 0.8, its
prediction capability for each class is more stable and better
than that of the four QSAR algorithms. The confusion matrices
are shown in Figure S4 for further comparison.
As mentioned earlier, the GCN model can be developed by

defining molecular graphs, applying various convolution
algorithms, restructuring the model architecture, and adjusting
the hyperparameters. However, unlike the QSAR models, the
GCN model predicts the target properties using only the
features of the atoms in molecular graphs; therefore, it does
not require descriptors and fingerprints that are obtained
through calculations. Moreover, this means that complicated
feature selection processes are not required. Consequently,
while developing the GCN model requires considerable effort
and various tests to understand and optimize the architecture
(similar to the QSAR models), because it only uses molecular
graphs, it is easy to expand the dataset. Furthermore, it is
simpler and more convenient because it does not perform
feature importance analysis; as a result, it exhibits stable
performance.

■ CONCLUSIONS

Because the biodegradability of materials is a molecular
property directly related to environmental issues, efforts have
been made to predict it. Numerous studies have attempted to
solve this problem using QSAR machine learning algorithms,
which have shown sufficient performance. However, models
with many descriptors are less likely to generalize and have
complex interpretations. Furthermore, the conditions that
must be considered for the development of QSAR models and
their performance have highlighted issues that require further
improvement.
As a solution, this study presented a GCN model that is

widely applied to molecules with high performance. For
comparison, four QSAR models, an ensemble model, and the
GCN model were constructed for datasets organized in a
previous study. In addition, molecular descriptors and
fingerprints were calculated and selected to develop the
QSAR models, and convolutional algorithms and model
architectures were selected to develop the GCN model. The
results confirmed that the GCN model does not require
descriptors or fingerprints and that, unlike the QSAR models,
the Sp and Sn of the results of the GCN model are similar to
each other, demonstrating stable performance for binary
classification. Furthermore, these advantages of the GCN
model suggest its potential to be an easy and robust solution
not only for biodegradability but also for various QSAR
prediction challenges in molecules.
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