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Abstract: Cause of death (COD) data are essential to public health monitoring and policy. This study
aims to determine the proportion of CODs, at ICD-10 three-position level, for which a long-term or
short-term trend can be identified, and to examine how much the likelihood of identifying trends
varies with COD size. We calculated annual age-standardized counts of deaths from Statistics
Netherlands for the period 1996–2015 for 625 CODs. We applied linear regression models to estimate
long-term trends, and outlier analysis to detect short-term changes. The association of the likelihood
of a long-term trend with COD size was analyzed with multinomial logistic regression. No long-term
trend could be demonstrated for 216 CODs (34.5%). For the remaining 409 causes, a trend could
be detected, following a linear (211, 33.8%), quadratic (126, 20.2%) or cubic model (72, 11.5%).
The probability of detecting a long-term trend increased from about 50% at six mean annual deaths,
to 65% at 22 deaths and 75% at 60 deaths. An exceptionally high or low number of deaths in a single
year was found for 16 CODs. When monitoring long-term mortality trends, one could consider a
much broader range of causes of death, including ones with a relatively low number of annual deaths,
than commonly used in condensed lists.
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1. Introduction

Mortality statistics are a key source of information in public health, epidemiology and medicine.
As part of the vital statistics registries, they cover entire national populations, extend over long periods
of time and are easily accessible. Among others, these statistics are used to monitor cause-specific
mortality, in order to identify trends that may inform disease prevention, screening and surveillance.

Both short- and long-term mortality trends can be monitored to identify changes that may prompt
health policy actions. Trends in the short term, defined as a maximum period of a year, are particularly
important to identify sudden population-level changes and events, such as outbreaks of communicable
diseases. Long-term mortality trends, defined as secular changes, as observed across several years,
may reflect gradual changes in the incidence or case-fatality of specific diseases or injuries.

Causes of death (CODs) are—in most countries—classified according to the 10th revision of the
International Classification of Diseases (ICD-10) [1]. The ICD-10 contains 1761 codes at a three-position
level, which refers to a single condition, a group of diseases, “other” or “unspecified” conditions,
and more than 14,000 codes at the four- and five-position level. Studies monitoring trends in mortality by
cause of death are often restricted to a few specific causes of interest, or to a systematic, but abbreviated,
list of leading CODs [2,3].
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The large number of ICD-10 codes raises the question of how many of these codes should be
distinguished when tabulating, analyzing and publishing mortality trends. This applies especially
to national statistical offices, both within Europe and in other continents, as they have to decide on
the level of detail to include when publishing annual cause-specific mortality data. Monitoring all
available ICD-10 codes, such as the 1761 codes at the three position level, may produce valuable signals
for health policy, that would go unnoticed when using abbreviated lists of leading CODs. On the other
hand, this approach may also produce uninformative signals, such as large random fluctuations in the
annual number of deaths from smaller causes.

The size of a COD—in terms of mean annual number of deaths—may offer a criterion to decide
which ICD-10 codes should be distinguished. All else being equal, the likelihood of detecting a trend
increases with an increase in COD size. A detailed description of this relationship may, therefore,
help develop guidelines for selecting CODs. Such guidelines may be particularly relevant regarding
the forthcoming release of the ICD-11 version, which may increase the number of possible COD
codes, and consequently decrease the average number of deaths per COD code. The 2018 version of
ICD-11 for Mortality and Morbidity Statistics has more than double the number of disease entity codes,
compared to ICD-10 [4].

The general aim of this study was to determine the level of detail, in terms of COD size, at which
the ICD-10 classification can be best used for presenting mortality trends in national populations.
The specific objective of this study was to estimate the proportion of causes of death for which we can
observe a long-term trend or a short-term change, and how the probability of finding a long-term trend
relates to COD size. To do this, we assessed trends in COD in the Netherlands over a period of 20 years.

2. Materials and Methods

We analyzed annual mortality data from Statistics Netherlands [5] for the period 1996–2015,
regarding each underlying COD at the ICD-10 three-position level, as reported on the death certificate
and coded at Statistics Netherlands. This period was chosen as the ICD-10 was introduced in the
Netherlands in 1996, and 2015 was the last year with available data at the time of initiation of this study.

We excluded 1136 CODs with less than three annual deaths on average, because most of these
CODs had predominantly zero or only zero annual deaths. No death (only zero values) was observed
for 415 CODs throughout the 20-year period, while the rest of the excluded CODs accounted together
for 476 deaths per year on average, which corresponded to 0.4% of the total number of deaths.

For the remaining 625 CODs, we calculated age-standardized counts of deaths using
age-standardized mortality rates, calculated with the direct method, using the Dutch population in
2005 as a reference population (i.e., mid-period). This method intended to control for annual changes
in the age distribution of the population. The population size was 15.5 million persons in 1996, with the
age distribution (<20, 20–40, 40–65, 65–80, ≥80 years) being 24%, 32%, 31%, 10% and 3%, respectively.
The corresponding numbers for 2015 were 16.9 million persons, with the age distribution being 23%,
25%, 35%, 13% and 4%, respectively. In the Netherlands, 137,561 deaths occurred in 1996, and 147,134
deaths in 2015. The age-standardized counts—further termed number of deaths—are available in an
additional file (see Table S1).

We assessed time-trends in CODs by applying two complementary methods: identification of
gradual long-term trends by means of polynomial models, and identification of sudden year-by-year
changes by means of outlier detection.

In more detail, we assessed how many CODs (at the ICD-10 three-position level) would
demonstrate a statistically significant change in mortality over a 20-year period. Possible trends were
assessed by applying four different linear regression models, with polynomial terms of year added as
independent covariates. We used orthogonal polynomials that account for multicollinearity of the
polynomial components [6]. We applied the constant, the linear, the quadratic and the cubic model and
evaluated them with the following hierarchical approach. Firstly, all four models were fitted, and we
used the lowest corrected Akaike Information Criterion (AICc) to select the best model. We used the
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AICc as it performs better than the AIC for small sample sizes [7]. Secondly, the best model for each
COD was compared with the constant model using the F-test, at a significance level of α = 0.05. If the
best model performed better than the constant model with statistical significance, it remained the final
best model. Otherwise, the constant model became the final best model for this COD.

In the development of the four polynomial models, a bivariate step parameter (break point) for
deaths before or during/after 2013 was introduced, to allow for the possible effect of the introduction of
automated coding of mortality data, which replaced the manual method of coding in the Netherlands
in 2013 [8], as well as the implementation of the cumulative WHO updates to ICD-10, for the period
1996–2013 [9].

The association between COD size and likelihood of fitting a long-term trend (linear, quadratic,
cubic) was analyzed with multinomial logistic regression, taking the logarithm of the mean number of
deaths for the COD size, since its distribution was highly skewed.

Next, we assessed the number of CODs with significant sudden changes across the monitoring
period. For each COD, we aimed to detect years with extreme observations in the number of deaths,
which were defined as residuals of the final best model, at the significance level (alpha) of 0.01 and 0.001.
These cases were identified using the outlierTest function from the “car” package in R software, with a
cut-off of 0.01 and 0.001, respectively. The Bonferroni p-values were obtained assuming a t-distribution
with degrees of freedom (df) equal to the residual df for the model minus one. [10].

In order to illustrate how the use of condensed lists of ICD-10 codes can lead to other selections
when monitoring causes of death, we repeated the analysis of long-term trends with ICD-10 three
position codes, aggregated as “chapters” or “blocks” of conditions [1]. The ICD-10 consists of 22
chapters, 19 of which are used for coding the underlying cause of death, and each chapter consists
of one or more blocks of three position codes. For example, Chapter IX (Diseases of the circulatory
system) includes a block like I20–I25 (Ischaemic Heart disease), which includes diseases like I21 (Acute
Myocardial Infarction).

In the analysis of long-term trends, we used linear regression models, assuming normal error
distribution, as we were primarily concerned with changes in absolute terms. Yet, statistical theory
says that numbers of deaths are Poisson distributed, and that regression models with a log–linear link
function would be more appropriate. However, the approximation of a Poisson by a normal error
distribution is said to be adequate if the mean number of observations is about five or more. Moreover,
in sensitivity analysis, we found that the main findings would not substantially change if we were to
use Poisson regression instead of normal regression analysis (results not shown).

All analyses were conducted with R software (3.3.1 version) [11].
No ethics approval or consent to participate was necessary, as we used publically available

population data.

3. Results

For a substantial amount of CODs (216, 34.5%), we could not detect a long-term (linear, quadratic,
cubic) trend (Table 1). For the remaining 409 causes, an annual trend was detected, following a linear
(211), quadratic (126) or cubic (72) model.

The descriptive statistics of the association between the probability of detecting an annual trend
in mortality and the size of cause of death are given in Table 1. As expected, polynomial models of
higher order were more often selected when the median number of deaths increased. The median
number of deaths in the group of causes that were best described by the constant model, was 9.5
(20.4 for linear model, 38.1 for quadratic model and 56.2 for cubic model). Among all 625 CODs, a trend
could be detected in 65.5% of cases (33.8% for linear model, 20.2% for quadratic model and 11.5% for
cubic model).
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Table 1. Distribution of the Causes of Death (ICD-10 three-position), according to the final best model,
stratified by their size.

Final Best Model

Constant (No
Detectable Trend) Linear Quadratic Cubic Total

Cause of Death Size a Number of Causes of Death (% of all Causes of Death with that Size)

[3,5) 55 (59.2) 27 (29.0) 8 (8.6) 3 (3.2) 93 (100.0)
[5,15) 78 (45.1) 64 (37.0) 24 (13.9) 7 (4.0) 173 (100.0)
[15,30) 32 (29.4) 38 (34.9) 23 (21.1) 16 (14.7) 109 (100.0)
[30,100) 35 (27.8) 44 (34.9) 31 (24.6) 16 (12.7) 126 (100.0)
[100,9750) 16 (13.0) 38 (30.6) 40 (32.5) 30 (24.4) 124 (100.0)
Total 216 (34.5) 211 (33.8) 126 (20.2) 72 (11.5) 625 (100.0)

Median number of deaths [IQR] b

9.5 [4.9–27.4] 20.4 [7.7–56.7] 38.1 [14.8–162.4] 56.2 [22.0–479.2] 20.7 [7.6–71.8]
a [i,j) is an interval notation for all values between i (included) up to j (not included). b IQR: interquartile range.

The association between COD size and selected polynomial degree was significant at α = 0.001.
For every 10% increase in the mean number of deaths, there was a 3% increase in the odds of having
the linear, as opposed to the constant, model (OR: 1.03, 95%CI:1.02;1.05). Similarly, the odds of having
the quadratic or the cubic model compared to the constant model increased by 6% (OR: 1.06, 95%CI:
1.04;1.07) and 8% (OR: 1.08, 95%CI: 1.06;1.09), respectively. When the mean number of deaths was
doubled, the correspondent changes in the odds were 27%, 49% and 71%.

Figure 1 gives the estimated probability of a COD having any long-term trend, defined as either
a linear, a quadratic or a cubic final best model. The probability of having any sort of long-term
trend (represented by the continuous line at the top of the graph) increased from 50% at a mean
number of six deaths, to about 65% at 22 deaths and 75% at 60 deaths. The probability of having a
linear trend (represented by the dashed line) increased as the mean number of deaths rose, reaching a
peak at about 50 deaths. The subsequent decline is due to the increased probability of observing a
quadratic trend (which reaches a peak at about 500 deaths) and a cubic trend (which steadily increased).
Simultaneously, this reflects a shift towards higher order trends with increasing COD size.

When we move from the individual three-position ICD-10 codes towards aggregated lists of
ICD-10 chapters, or blocks, for the study of long-term trends of causes of death, the number of CODs
with a detectable trend decreased considerably, from 409 three-position codes to 121 blocks and
12 chapters, respectively (Table 2).

Table 2. Distribution of the final best model of ICD-10 Causes of Death at different levels of aggregation.

Final Best Model Three-Position Codes Blocks Chapters

Constant (no detectable trend) 216 41 5
Any detectable trend 409 121 12
linear 211 56 6
quadratic 126 42 4
cubic 72 23 2
Total 625 162 17

Trend: the composite of linear, quadratic and cubic final best models.

Table S2 gives detailed information for each individual COD with a detectable trend. A great
variety of trends was observed. The 211 CODs with a linear trend showed either a monotonous
increase or a monotonous decrease. Of the 72 CODs with a cubic model, some showed an initial
decrease, interrupted by a stagnation or increase, and followed by a second decrease, while other CODs
followed the opposite pattern (initial increase, interrupted by stagnation or decrease, and subsequently
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a new increase). Only a few CODs showed no long-term trend, but instead had a few peak years with
high mortality.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 5 of 9 
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Figure 1. Predicted probability of detecting a long-term trend, according to size of the underlying cause
of death.

Regarding the investigation of sudden changes in causes of death, in total, 43 out of the 625 causes
of death had an outlier observation year in the 20-year period at the 0.01 alpha level (not reported here).
For the outlier observations at the 0.001 alpha level (Table 3), there were 16 CODs, with 14 having
extremely high values, and two having an extremely low value, in one single year. Of these 16 CODs,
nine were best described by the constant model, whereas a long-term trend could be identified for
seven CODs.

Table 3. Causes of death (ICD-10 three-position) with a detectable mortality fluctuation at the alpha
0.001 level.

ICD-10
Code ICD-10 Code Label Observation

Year

Deaths in
Observation

Year (O)

Mean Deaths
in Other
Years (E)

Ratio O/E Final Best
Model

B24 Unspecified human immunodeficiency
virus [HIV] disease 1996 97.9 18.7 5.24 quadratic

B94 Sequelae of other and unspecified
infectious and parasitic diseases 2013 2.4 3.1 0.77 constant

F32 Depressive episode 2001 54.3 28.3 1.92 constant

G31 Other degenerative diseases of nervous
system, not elsewhere classified 2015 408.2 90.1 4.53 constant

I08 Multiple valve diseases 1996 58.6 19.5 3.01 cubic
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Table 3. Cont.

ICD-10
Code ICD-10 Code Label Observation

Year

Deaths in
Observation

Year (O)

Mean Deaths
in Other
Years (E)

Ratio O/E Final Best
Model

I99 Other and unspecified disorders of
circulatory system 2002 75.1 25.7 2.92 quadratic

J09 Influenza due to certain identified
influenza virus 2009 31.7 1.6 19.81 linear

J10 Influenza due to identified
influenza virus 2014 9.3 a 9.0 1.03 constant

K62 Other diseases of anus and rectum 2001 40.8 11.5 3.55 constant

K66 Other disorders of peritoneum 2002 14.8 3.2 4.63 constant

N19 Unspecified renal failure 1996 696.3 361.6 1.93 quadratic

Q27 Other congenital malformations of
peripheral vascular system 2005 16 2.6 6.15 constant

R17 Unspecified jaundice 1999 28.9 12.5 2.31 constant

V45 Car occupant injured in collision with
railway train or railway vehicle 1999 29.2 7.4 3.95 linear

Y36 Operations of war 2014 183.8 1.0 183.8 constant

P22 Respiratory distress of newborn 1996 52.4 7.9 6.63 cubic
a Cause of death J10 has substantially decreased in number of deaths in 2014, compared to 2013 and 2015 (i.e., years
after the change to automatic coding), but has a similar number of deaths compared to years in the period 1996–2012.

4. Discussion

The objective of this paper was to determine how many of the CODs, at the ICD-10 three-position
level, reveal an annual trend or a short-term fluctuation in the Netherlands, over a period of 20 years.
The study outcomes could offer a criterion for deciding which ICD-10 codes should be distinguished
when describing trends in a wide range of causes of death. This study could be particularly relevant in
view of the forthcoming release of the ICD-11 version, which may increase the number of possible
COD codes.

A long-term trend could be identified for about two thirds of the CODs with at least three
annual deaths on average, and no long-term trend for the remaining one third. The probability of
detecting a time trend increased from 50%, at a mean annual number of six deaths, to about 65% at
22 deaths, and 75% at 60 deaths. An exceptionally high or low number of deaths in one year could be
demonstrated for only few CODs.

4.1. Evaluation of Data and Methods

The coding of causes of death at Statistics Netherlands may have affected observed trends for
three different reasons: the delayed consequences of the introduction of the ICD-10, the change to
automated coding, and other incidental changes.

Firstly, the introduction of the new ICD-10 classification version, in 1996, in the Netherlands,
which replaced the ICD9, may have been followed by temporal re-adjustments in the coding of COD
during the first few years after 1996, such as the HIV codes (B20, B24), which were introduced for the
first time in the ICD-10. Other examples are unspecified renal failure (N19), and respiratory distress of
newborn (P22). Our finding that multiple valve diseases (I08) had an extremely high number of deaths
in 1996 was already noted in a study aimed at detecting the effects of changes in data production
during the period 1970–2006 [12].

Secondly, in our study we accounted, to a large extent, for the introduction of the automated
COD coding and related changes in 2013. Switching from manual to automated coding can result in
significant changes in cause-specific mortality rates [13–15]. In further analyses, we found that our
results would be substantially affected if we omitted the 2013 step parameter and, thus, ignored the
switch to automated coding. This would have decreased the proportion of CODs without a detectable
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long-term trend (from 34.5% to 26.6%), or with a linear model (from 33.8% to 27.8%), and increased the
proportion of CODs with a quadratic model (from 20.2% to 23.5%), and cubic model (from 11.5% to
22.1%). While the inclusion of the step parameter was intended to prevent from identifying spurious
time trends, it implements a conservative approach, that may come at the price of masking some
real trends.

Thirdly, several incidental changes in the coding of COD may underlie some of the large short-term
fluctuations that we observed. Other degenerative diseases of the nervous system, not elsewhere
classified (G31), showed a 6.5-fold increase in 2015 as compared to 2013, most likely because of the
implementation of a WHO ICD-10 update [9]. Changes in the coding process in Statistics Netherlands
occurred in the period 1999–2002, when less resources for quality control were available. This may
have contributed to changes in the coding of conditions, such as depressive episode (F32), as well as
codes described as “other” or “unspecified”, such as other diseases of anus and rectum (K62), other and
unspecified disorders of circulatory system (I99) and unspecified jaundice (R17).

There are some limitations in the methodology used in our study. Firstly, we focused on codes at
the ICD-10 three-position level and did not examine the more detailed codes at the ICD-10 four-position
level. Although this could increase the number of the CODs with a detectable long-term trend,
the sporadic occurrence of most four-position codes would add the potential for redundant analyses.
Secondly, we did not investigate changes within individual years. For some CODs, such as contagious
diseases with epidemic outbreaks, it may be more important to monitor day-to-day or week-to-week
changes, rather than year-to-year trends. Thirdly, we included CODs with three or four deaths annually,
even though it is uncertain whether deaths were normally distributed, as we assumed by applying
normal regression. In a sensitivity analysis, we restricted the regression analysis to CODs with five
or more deaths annually. We found that the probability of detecting a long-term trend was 50% at
five mean annual deaths, 65% at 20 deaths and 75% at 60 deaths—results that are very close to our
main findings.

4.2. Interpretation of Trends

While we described long-term trends in mortality, we did not aim to explain the trends that were
observed. In general, understanding long-term changes in mortality requires consideration of the
incidence and case-fatality of a disease, the latter being largely determined by changes in medical
practices and technologies, and in the provision of and access to health care [16,17]. Generally, relevant
changes occur slowly and with delayed effects. Without any additional external information, such as
personal data obtained from record linkages, it is difficult to attribute these long-term changes to
specific factors, such as changes in treatments or risk factor prevalence [18]. One factor, the ageing of
the Dutch population, was controlled by using the age-standardized death counts.

Some of the observed short-term fluctuations may reflect real changes in the occurrence of specific
diseases or injuries in the Netherlands. One example is influenza due to an identified influenza virus
(J10) that had an extremely low observation in 2014, which was not attributable to an exchange with J11
(influenza, virus not identified). Real changes in external causes of death are exemplified by operations
of war (Y36), which increased in 2014, due to the MH17 flight crash.

Further research might show whether, and how, our results are cross-nationally generalizable.
Some results are not directly generalizable to other countries, as the Netherlands has a medium-sized
population (mean population during the study period was 16.3 million persons), and the proportion
of CODs with a detectable trend is likely to be higher (lower) in countries with a substantially larger
(smaller) population. However, the fundamental relationship between COD size and the likelihood
of detecting a long-term trend might be applicable to other countries, and could be the focus of
international comparative studies.
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5. Conclusions

This study demonstrates, for the Dutch population, that a long-term mortality trend can be
identified for at least 409 CODs, with a curved instead of linear trend in many cases. The size of a
COD is an important predictor of the probability of detecting a long-term trend. Year-to-year mortality
fluctuations could be demonstrated in fewer CODs and may result from problems with the coding
of CODs.

In the context of the ICD11 release, with a large increase in the number of possible COD codes,
and a decrease in the average number of deaths per COD, this study provides new evidence to guide the
level of COD coding and reporting that should reasonably be recommended. Such recommendations
are particularly important to national statistical offices, as they have to decide what level of detail to
include when they publish annual cause-specific mortality data. Both producers of these statistics
and users of the data benefit from realizing that, despite the large number of ICD codes that could be
distinguished, the number of CODs for which a trend can be detected is limited. At the same time, it is
important to realize that there is a reasonable likelihood of detecting a long-term trend, even for CODs
with only three annual deaths. Our results therefore suggest the selection of a broad range of causes of
death, preferably defined in terms of a minimum annual number of deaths, rather than condensed lists
of CODs, in order to not overlook CODs with a significant long-term trend.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/21/4150/s1,
Table S1: Age-standardized count of deaths for the three position ICD-10 codes reported in the Netherlands,
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