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ABSTRACT
Background Pelvic X- ray (PXR) is a ubiquitous 
modality to diagnose hip fractures. However, not all 
healthcare settings employ round- the- clock radiologists 
and PXR sensitivity for diagnosing hip fracture may vary 
depending on digital display. We aimed to validate a 
computer vision algorithm to detect hip fractures across 
two institutions’ heterogeneous patient populations. We 
hypothesized a convolutional neural network algorithm 
can accurately diagnose hip fractures on PXR and a web 
application can facilitate its bedside adoption.
Methods The development cohort comprised 4235 
PXRs from Chang Gung Memorial Hospital (CGMH). 
The validation cohort comprised 500 randomly sampled 
PXRs from CGMH and Stanford’s level I trauma centers. 
Xception was our convolutional neural network structure. 
We randomly applied image augmentation methods 
during training to account for image variations and used 
gradient- weighted class activation mapping to overlay 
heatmaps highlighting suspected fracture locations.
Results Our hip fracture detection algorithm’s area 
under the receiver operating characteristic curves were 
0.98 and 0.97 for CGMH and Stanford’s validation 
cohorts, respectively. Besides negative predictive value 
(0.88 Stanford cohort), all performance metrics—
sensitivity, specificity, predictive values, accuracy, and F1 
score—were above 0.90 for both validation cohorts. Our 
web application allows users to upload PXR in multiple 
formats from desktops or mobile phones and displays 
probability of the image containing a hip fracture with 
heatmap localization of the suspected fracture location.
Discussion We refined and validated a high- performing 
computer vision algorithm to detect hip fractures on 
PXR. A web application facilitates algorithm use at 
the bedside, but the benefit of using our algorithm 
to supplement decision- making is likely institution 
dependent. Further study is required to confirm clinical 
validity and assess clinical utility of our algorithm.
Level of evidence III, Diagnostic tests or criteria.

INTRODUCTION
Hip fractures pose a considerable mortality and 
morbidity burden globally.1 2 Long- term disability, 
increased risk for other adverse health conditions 
(eg, cardiovascular disease), and costly healthcare 
utilization are well- known sequelae.3 4 Rapid hip 
fracture diagnosis is critical to mitigate both short 
and long- term adverse events. For operative candi-
dates, guidelines recommend surgery for hip frac-
tures be performed within 48 hours of injury.5

Pelvic X- ray (PXR) is an essential and ubiqui-
tous modality to diagnose hip fractures. However, 

not all healthcare settings employ round- the- clock 
radiologists to interpret challenging plain radio-
graphs. Moreover, PXR sensitivity for diagnosing 
hip fractures may vary depending on digital display 
and has been reported to be as low as 31% in a 
contemporary multi- institutional study.6 7 Deep 
neural network learning is increasingly used to assist 
radiographic diagnoses, but limited data and lack of 
cross- institutional validation have hindered applica-
tion for patients with hip fractures. A preliminary 
computer vision- based deep learning algorithm 
achieved 98% sensitivity in identifying hip fractures 
on PXR but has not been validated beyond a single- 
institution and single- race population.8 Establishing 
clinical validity requires algorithm validation and 
refinement across heterogeneous populations.

We aimed to (A) refine and validate a computer 
vision algorithm to detect hip fractures across two 
institutions’ heterogeneous patient populations, 
and (B) design a practical tool for bedside use. We 
hypothesized that a convolutional neural network 
algorithm would accurately diagnose hip fractures 
across heterogeneous populations and a web appli-
cation could facilitate bedside adoption.

METHODS
Development cohort
The development cohort comprised PXR (anterior- 
posterior view) of patients presenting to Chang 
Gung Memorial Hospital’s (CGMH) level I trauma 
center between August 2008 and December 2016. 
After designating unique identifiers to correlate 
PXRs with patient demographics and confirma-
tory hip fracture diagnoses (radiologist report on 
advanced imaging (eg, CT) or operative finding), a 
Python script stored anonymized PXR for imaging 
analysis. We excluded PXR with positioning errors 
(eg, full pelvis not filmed) and concurrent non- hip 
fractures (eg, pelvic fracture, femoral shaft fracture).

Computer vision algorithm
Our convolutional neural network structure was 
Xception.9 Convolutional neural network is a deep 
learning methodology that permits image pattern 
recognition based on filters applied serially to 
groups of pixels. Xception optimizes image clas-
sification accuracy. The initial cohort was divided 
into training and internal validation images. Image 
augmentation methods (eg, blur, brightness, color 
jitter, contrast adjustment, noise addition, cropping, 
rotation, shifting, and zooming) were randomly 
applied during training to overcome possible image 
variations across institutions. Gradient- weighted 
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class activation mapping overlaid heatmaps to highlight 
suspected fracture locations. We used TensorFlow V.1.14.0 and 
Keras V.2.3.1 open- source libraries on Python V.3.6.9 (Python 
Software Foundation).

Validation cohort
The external validation cohort comprised 500 PXRs from 
CGMH (n=250) and Stanford (n=250). For Stanford’s 
cohort, 140 PXRs with confirmed hip fractures and 110 nega-
tive controls were randomly selected among injured patients 
presenting between January and November 2019. The CGMH 
validation cohort comprised same number of randomly sampled 
PXRs with and without confirmed hip fractures in 2017. We 
evaluated model performance using area under the receiver 
operating characteristic curve (AUC), sensitivity, specificity, 
negative predictive value, positive predictive value, accuracy 
and F1 scores. The F1 score is a function of model precision 
(true positives/(true positives+false positives)) and recall (true 
positives/(true positives+false negatives)). Measuring precision 
is important when the cost of false positive is high (eg, spam 
email), and measuring recall is important when the cost of false 
negative is high (eg, sepsis screen). The F1 score is a weighted 
average of precision and recall.

Implementation science: web application
We integrated the final algorithm within a web application to 
detect hip fractures. When clinicians upload a PXR reference 
image (eg, screenshot, JPEG, smartphone photo), the probability 
of the image containing a hip fracture and a heatmap localizing 
the fracture location would be displayed. We used R V.3.6.3 (R 
Core Team, Vienna, Austria) to conduct statistical analysis.

RESULTS
Development cohort
The development cohort comprised PXRs from 4235 patients, 
among whom 51% (n=2089) had confirmed hip fractures 
(table 1). Of those with hip fractures, 53% (n=1005) had 
trochanteric fractures, and the remainder had femoral neck frac-
tures. All patients were Asian. Our hip fracture detection algo-
rithm achieved AUC of 1.00 using the training data set.

Validation cohort
Model performance on CGMH validation cohort had AUC of 
0.98, with accuracy, sensitivity, and specificity at the Youden 
index of 94%, 92%, and 96%, respectively (table 2). Model 
performance on Stanford’s validation cohort had AUC of 0.97, 
with all performance metrics, except negative predictive value 

(88%), above 90%. At the high sensitivity cut- off point of 95%, 
the specificity still achieved 85%.

Web application
Our web application (Chrome browser, account: WTC2021; 
code: WCTCtrauma) allows users to upload PXR in multiple 
image formats (ie, PNG, JPEG) from various settings (screen-
shot from desktop, photo from smartphone).10 Figure 1 displays 
example reference and analyzed images. Of note, our algorithm 
also detected hip fractures on PXR with existing contralateral 
implants.

DISCUSSION
We refined and validated a convolutional neural network algo-
rithm that accurately detected hip fractures on PXR across 
heterogeneous populations. Our algorithm had good perfor-
mance metrics for validation cohorts from two institutions. A 
web application allowed rapid, computer vision- assisted hip 
fracture diagnosis to supplement clinical decision- making at the 
bedside.

Computer vision applications are increasingly studied to 
assist diagnoses of various conditions.11–13 To our knowledge, 
our previous work was the first computer vision application 
with automatic heatmap localization to detect hip fractures on 
PXR.8 Global prevalence of hip fractures and potential sex and 
race- specific pelvic anatomy variations warranted algorithm 
refinement and validation across more heterogeneous popula-
tions.1 14 15 As the initial screening modality for a diagnosis that 
requires urgent management, high sensitivity is paramount for 
hip fracture diagnosis. The sensitivity of our algorithm was 90% 
and 92% for validation cohorts; in comparison, the reported 
sensitivity of CT for diagnosing occult hip fractures is 86%.16

Acquiring high- volume, high- quality data is critical for devel-
oping accurate deep learning algorithms. This is challenging for 
medical imaging data due to patient privacy regulations, and 
most researchers have only developed algorithms from their own 
institution.17 Subsequently, many algorithms overfit to develop-
mental data (ie, limited performance for non- developmental 
data).18 Slight image pattern differences (eg, acquisition modality, 
patient positioning, presence of foreign bodies) can degrade 
algorithm performance for data from other institutions.19 Our 
preliminary external validation shows the potential to apply 
algorithms to other institutional data without incurring addi-
tional algorithm training or labeling costs.

Estimates suggest it takes 17 years for health research to 
be translated to bedside practice.20 After developing a high- 
performing algorithm, our next task was implementation 
science—designing a practical tool for immediate bedside imple-
mentation. Deep learning deployment into clinical workflow is 
critical to realize clinical utility (ie, improving patient outcomes), 
beyond clinical validity (ie, developing accurate diagnostic test). 

Table 1 Development and validation cohort characteristics
Development cohort Validation cohort

Hip fracture
(n=2089)

No hip fracture
(n=2146)

CGMH
(n=250)

Stanford
(n=250)

Age (years), mean 
(SD)

48.0 (23.6) 71.4 (17.3) 54.8 (20.5) 79.1 (16.0)

Male, n (%) 1307 (62.6) 929 (43.3) 171 (68.4) 90 (36.0)

Race, n (%)

  Asian 2089 (100) 2146 (100) 250 (100) 11 (4.5)

  Black 5 (1.9)

  Hispanic 15 (5.8)

  White 200 (79.9)

  Other 19 (7.8)

CGMH, Chang Gung Memorial Hospital.

Table 2 Model performance on validation cohorts
CGMH Stanford

AUC 0.98 0.97

Sensitivity 0.92 0.90

Specificity 0.95 0.94

Positive predictive value 0.96 0.95

Negative predictive value 0.91 0.88

Accuracy 0.94 0.92

F1 score 0.94 0.92

AUC, area under the receiver operating curve; CGMH, Chang Gung Memorial Hospital.
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Our web application allows clinicians to upload PXR from 
various settings with an internet connection and outputs two 
key results: the probability of the PXR containing a hip fracture 
and a heatmap highlighting the suspected fracture location for 
detailed review. In healthcare settings where round- the- clock 
radiologist interpretation is unavailable, our algorithm may be 
an important adjunct to rapidly detect hip fractures that require 
further management.

Our study has several limitations. First, our model perfor-
mance, especially sensitivity, is imperfect. In spite of using 
our algorithm, some occult hip fractures will likely be missed. 
However, computer vision is meant to supplement, not replace, 
clinician decision- making. In select healthcare settings, benefits of 
using our algorithm will outweigh the minimal user costs (time to 
upload an image). Second, although more diverse than the devel-
opment cohort, Stanford’s validation cohort largely comprised 
Caucasian patients. This precluded validating algorithm perfor-
mance for all sex- race subgroups. Whether subgroup differences 
in pelvic anatomy affect algorithm performance remains unclear. 
Third, implementing our algorithm requires thoughtful consid-
eration of institution- specific hip fracture diagnosis pathways. 
For example, in an emergency department without in- house 
radiologists overnight, clinicians may use our algorithm to triage 
which PXR should be prioritized for urgent confirmatory diag-
noses or further workup. However, additive benefit of using 
our algorithm is likely limited in settings where radiologists are 
readily available to interpret plain radiographs. Fourth, the algo-
rithm is limited to detecting hip fractures and may be misleading 
for other concomitant PXR findings (eg, pelvic/femoral shaft/

periprosthetic fractures, bone tumors). Fifth, our web applica-
tion user interface is suboptimal for mobile phones. Uploading 
smartphone photos is feasible, but our current application 
is hosted on the web and does not have a mobile application 
counterpart. Developing a mobile application is the next step of 
our work. Lastly, our study only assessed an algorithm’s clinical 
validity, not clinical utility. The ultimate goal of diagnostic tools 
should be to improve patient outcomes. Algorithm validation on 
broader target populations (eg, patients presenting with clinical 
concerns for hip fractures across various healthcare settings) and 
formal clinical utility assessment is required to evaluate whether 
our algorithm can improve outcomes.

CONCLUSION
We refined and validated a high- performing computer vision 
algorithm to detect and localize hip fractures on PXR. A web 
application facilitates algorithm use at the bedside, but the 
benefit of using our algorithm to supplement decision- making is 
likely institution dependent. Despite need for further validation 
and a more user- friendly mobile application, we are hopeful our 
work can exemplify strategies to incorporate implementation 
science and maximize computer vision’s potential to improve 
care for injured patients.
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Figure 1 Detection of different types of hip fractures using computer vision algorithm. (A) Left femoral neck fracture, (B) with heatmap localization; 
(C) left intertrochanteric fracture, (D) with heatmap localization; (E) left femoral neck fracture with contralateral implant, (F) with heatmap 
localization.
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