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A B S T R A C T   

Cancer is widely regarded as a leading cause of death in humans, with colon adenocarcinoma 
(COAD) ranking among the most prevalent types. Cuproptosis is a novel form of cell death 
mediated by protein lipoylation. Cuproptosis-related genes (CRGs) participate in tumourigenesis 
and development. Their role in pan-cancer and COAD require further investigation. This study 
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comprehensively evaluated the relationship among CRGs, pan-cancer, and COAD. Our research 
revealed the differential expression of CRGs and the cuproptosis potential index (CPI) between 
normal and tumour tissues, and further explored the correlation of CRGs or CPI with prognosis, 
immune infiltration, tumor mutant burden(TMB), microsatellite instability (MSI), and drug 
sensitivity in pan-cancer. Gene set enrichment analysis (GSEA) revealed that oxidative phos-
phorylation and fatty acid metabolism pathways were significantly enriched in the high CPI group 
of most tumours. FDX1 and CDKN2A were chosen for further exploration, and we found an in-
dependent association between FDX1 and CDKN2A and prognosis, immune infiltration, TMB, and 
MSI in pan-cancer. Furthermore, a prognostic risk model based on the association between CRGs 
and COAD was built, and the correlations between the risk score and prognosis, immune-related 
characteristics, and drug sensitivity were analysed. COAD was then divided into three subtypes 
using cluster analysis, and the differences among the subtypes in prognosis, CPI, immune-related 
characteristics, and drug sensitivity were determined. Due to the level of LIPT1 was notably 
positive related with the risk score, the cytological identification was carried out to identify the 
association of LIPT1 with proliferation and migration of colon cancer cells. In summary, CRGs can 
be used as potential prognostic biomarkers to predict immune infiltration levels in patients with 
pan-cancer. In addition, the risk model could more accurately predict the prognosis and immune 
infiltration levels of COAD and better guide the direction of clinical medication. Thus, FDX1, 
CDKN2A, and LIPT1 may serve as prospective new targets for cancer therapy.   

1. Introduction 

Cancer is the leading cause of death and a significant economic burden worldwide [1,2]. Globally, there were approximately 23.6 
million new cancer cases and 10 million deaths from cancer in 2019, with increases of 26.3 % and 20.9 %, respectively, from 2010 to 
2019 [3]. Colon adenocarcinoma (COAD) is one of the most common cancers worldwide, along with lung, liver, and breast cancers. 
Neoadjuvant chemotherapy, radiotherapy, immunotherapy, and targeted therapy have shown strong anticancer effects in clinical 
practice [4–7]. While advancements in treatment options and early screening have contributed to a gradual decrease in the mortality 
rate of COAD, unfortunately, the incidence of COAD continues to rise [8,9]. In addition, drug resistance and cancer metastasis pose 
many challenges in developing effective cancer treatments. Therefore, identifying more effective therapeutic targets for early detection 
and prognosis prediction is important to improve the prognosis of patients with cancer. 

Cuproptosis, a novel form of cell death discovered by Tsvetkov et al., and cell death is induced by intracellular copper [10,11]. The 
mechanism of cuproptosis involves the binding of excess intracellular copper to fatty acylated proteins in the tricarboxylic acid (TCA) 
cycle within the mitochondria. These lipoylated copper-bound proteins aggregate and the Fe–S cluster protein is downregulated, 
triggering proteotoxic stress and eventual cell death [10,12–14]. Copper is an indispensable cofactor and its homeostasis is essential for 
many physiological reactions. Dysregulation of intracellular copper bioavailability can lead to oxidative stress and cytotoxicity [15, 
16]. One study showed that cytoproptosis-related cell death is mainly achieved by enhancing reactive oxygen species (ROS) levels, 
which makes cancer cells more susceptible to increased oxidative stress [17]. Studies have shown that Cuproptosis-related genes 
(CRGs) can predict the prognosis and immune cell infiltration in various cancers, including renal clear cell carcinoma, hepatocellular 
carcinoma, soft tissue sarcomas, melanoma, osteosarcoma, head and neck squamous cell carcinoma, glioma and lung adenocarcinoma 
[18–30]. Currently, there is a lack of pertinent literature available to study the connection between CRGs and their impact on 
pan-cancer and specifically COAD. 

In the present study, we comprehensively analysed the mRNA levels of ten CRGs (FDX1, LIPT1, LIAS, DLD, PDHA1, PDHB, DLAT, 
MTF1, GLS, and CDKN2A) and investigated the correlation of CRGs or cuproptosis potential index (CPI) with prognosis, immune 
infiltration, TMB, MSI, and drug sensitivity. Furthermore, the association between the expression of CRGs and gene methylation, 
pathway enrichment analysis of the ten CRGs, and the mutational landscape (including CNV and SNV) of CRGs in pan-cancer were 
explored. Due to the role of FDX1 and CDKN2A in some cancers have been studied, FDX1 and CDKN2A were chosen for further 
exploration to analyse the association between FDX1 and CDKN2A and prognosis, immune infiltration, TMB, and MSI in pan-cancer. 
Besides, we constructed a prognostic risk model and investigated the association between the risk score and prognosis, immune cell 
infiltration, immune checkpoint expression, and drug sensitivity in COAD. COAD was then divided into three subtypes using cluster 
analysis, and the differences among the subtypes in prognosis, CPI, immune-related characteristics, and drug sensitivity were deter-
mined. Finally, we verified the association of genes in the risk model with the proliferation and migration of colon cancer cells in vitor. 

In conclusion, CRGs can be used as prognostic biomarkers to predict immune cell infiltration levels in patients with pan-cancer. In 
addition, the risk model could more accurately predict the prognosis and immune infiltration levels of COAD and better guide the 
direction of clinical medication. Besides, FDX1, CDKN2A and LIPT1 may serve as novel targets for cancer therapy. 

2. Materials and methods 

2.1. Download transcriptome and clinical data 

The Fragments per kilobase million (FPKM) transcriptome data including 33 cancers were downloaded from The Cancer Genome 
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Atlas (TCGA) database. Then, sample annotations and survival information from "https://xenabrowser. net/datapages/." were 
downloaded and collated. The CPI value was calculated using single-sample gene set enrichment analysis (and Gene Set Variation 
Analysis (GSVA). 

2.2. Differential expression analysis 

The differential expression levels of CRGs and CPI were calculated in 14 cancers compared to normal tissues (only in 14 cancers was 
the number of paired normal tissues more than 10, and other cancers were excluded), including BLCA, ESCA, KICH, LICH, LUSC, 
LUAD, STAD, BRCA, COAD, HNSC, KIRC, PRAD, KIRP, and THCA. Wilcox tests were used to assess the differentially expressed CRGs 
and CPI in tumour tissues compared with those in normal tissues. The criteria of |log2(fold change)| > 2/3 and P < 0.05 were regarded 
as statistically significant. The "pheatmap" R package was used to cluster the differential genes. 

2.3. Gene set enrichment analysis and survival analysis 

GSEA was carried out by using "cluster Profiler" and GSVA. The "ggplot2″ is mainly used for image visualisation. The value of 
–log10(FDR) represents the relationship between the expression of the CRGs and the enrichment pathway. We considered the false 
discovery rate (FDR) to be < 0.05, which was considered significant. 

The "survminer" R package was used by Kaplan-Meier curves, log-rank tests, and univariate Cox proportional hazards regression to 
calculate the p values and hazard ratio (HR) with 95 % confidence interval (CI). HR is the hazard ratio of the high-risk group to the low- 
risk group. If the HR values were <1, the genes were considered protective, and HR values greater than 1 indicated that the gene was a 
risk factor. 

2.4. Gene methylation and gene variation analysis 

The association between the expression level of CRGs with gene methylation was assessed by Spearman correlation coefficient. The 
gene mutation data of patients with pan-cancer from the TCGA database was downloaded, and the variation of CNV (copy number 
variation) and SNV (single nucleotide variation) among distinct tumours were analysed by the "maftools" R package. 

2.5. Association of CPI with TMB and MSI 

Pearson correlation coefficient was used to assess the relationships between tumour mutation burden (TMB) and Microsatellite 
Instability (MSI) with CPI in pan-cancer patients and visualised as radar plots. The overall number of coding errors of somatic genes, 
base substitutions, and gene insertions or deletions per million bases was defined as the TMB. The TMB value for each tumour sample 
was calculated based on exome sequencing data from TCGA. MSI has been primarily discussed as a deficient mismatch repair system. 
Previous studies were collected to summarise MSI data across different cancers. 

2.6. Immune-related characteristics and drug sensitivity analysis 

Immune infiltration data according to CIBERSORT, and immune-related signature scores were calculated using ssGSEA for 
pancreatic cancer. The correlation between CPI and various immune-related characteristics was calculated by Spearman correlation 
coefficient in pan-cancer patients using the "MCPcounter" R package. The GDSC and CTRP databases were used to investigate the 
relationship between CRGs expression and drug sensitivity using Spearman’s correlation coefficient. Image visualisation is mainly 
presented by the "ggplot2″ R package. 

2.7. Construction of risk model in COAD and ROC curves 

CRGs were characterised using the LASSO Cox regression algorithm, and the selected genes were used to establish a prognostic risk 
model. The risk scores of all pan-cancer patients were calculated based on this formula: riskScore =

∑n
i=1Coefi ∗ xi (Coefi is coeffi-

cient, xi is expression per gene). The cutoff point was the median risk score. Subsequently, we divided the pan-cancer patients into 
high- and low-risk groups. The Kaplan-Meier "survival" R package was used to plot the ROC curve, and the area under the curve (AUC) 
was used to judge the credibility of the prediction. 

2.8. Immune-related characteristics and drug sensitivity analysis in COAD 

Patients with COAD were divided into high- and low-risk groups based on median risk scores. The Wilcoxon test was used to analyse 
the differences in immune cell infiltration, immune checkpoint expression, and immune response (TIDE score) between high- and low- 
risk populations, and the IMgor210 immunotherapy cohort was used to validate the risk model. The R package "pRRophetic" was used 
to analyse the difference between the high- and low-risk group regarding chemotherapeutic drug sensitivity. 
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2.9. Cluster analysis and subgroups analysis 

The "ConsensusClusterPlus" R package was used to divide the COAD patients into subtypes through consistent cluster analysis based 
on the CRGs’ expression. Differences in survival, CPI, immune cell infiltration, immune checkpoint expression, and immune response 
between subgroups were analysed using chi-square tests. 

COAD cell lines from the GDSC database were grouped according to their COAD subtypes. The drug sensitivity was compared 
among subgroups, and the differences in drug sensitivity were quantified using AUC by Kruskal tests. 

2.10. qRT-PCR 

Total RNAs were extracted using TRIzol reagent (Thermo Fisher Scientific, USA) according to the manufacturer’s advised protocol. 
A NanoDrop spectrophotometer was used to determine the quality and quantity of the RNA samples. A PrimeScript RT reagent kit with 
a genomic DNA eraser (TaKaRa, Tokyo, Japan) was used for cDNA synthesis. SYBR qPCR Master Mix (TaKaRa, Tokyo, Japan) was used 
for qRT-PCR. The relative mRNA expression level was computed according to the 2− ΔΔCt approach. All primers were synthesised by 

Fig. 1. CPI difference and pathway enrichment analysis of CRGs. (A) The CPI difference between normal and tumour tissues. (B) The differ-
ential expression of pathways between high and low CPI groups. (C/D) The situation of each CRGs enrichment in the two oxidative phosphorylation 
pathways and fatty acid metabolism, respectively. The size of the circle represents the degree of correlation. 
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Henan Qingke BioCompany (China). All experiments were performed in triplicates. 
The primer sequences of qRT-PCR are shown in Table S1. 

2.11. Transwell and clone assays 

A transwell assay was used to evaluate cell migration ability. For the transwell assay, SW620, HCT116 and HT29 cells were sus-
pended in a serum-free medium. The concentration of cells was adjusted to 2 × 105 cells/mL, and the 200 μL cell suspension was 
subsequently seeded into the upper side of a transwell chamber (8 μm pore size; Costar, Cambridge, MA). Then, 600 μl DMEM complete 

Fig. 2. Expression levels of CRGs and the association with tumour prognosis and the difference of CPI between subtypes of tumours. (A) 
The heatmap with expression levels of CRGs. (B) The heatmap of correlation between CRGs and tumour prognosis. (C) The difference of CPI between 
clinical subtypes of tumours. 
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medium containing 10 % FBS was added into the lower chambers. After incubation for 36h, the non-migratory cells on the upper side 
of the Transwell chambers were gently swabbed. Subsequently, the cells in the transwell chambers were fixed with 4 % para-
formaldehyde and stained with 0.1 % crystal violet. Finally, the chambers were washed three times with PBS, air-dried, and photo-
graphed using an inverted microscope (Leica MZ8; Leica Microsystems, Wetzlar, Germany). 

A clone assay was used to evaluate cell proliferative ability. For the cloning assay, the cells were suspended and counted, and 1000 
cells were seeded into 6-well plates (Corning, USA), followed by 10 days of incubation. Finally, cells were fixed with 4 % para-
formaldehyde and stained with 0.1 % crystal violet. 

2.12. Statistical analysis 

All statistical analyses were performed using R 4.1.1 and GraphPad Prism 8.0. A P-value less than 0.05 was regarded as statistically 

Fig. 3. Mutational landscape of CRGs and the correlation of CPI with immune variables in pan-cancer and the association of expression 
level with methylation of CRGs. (A)The copy number variation of CRGs in pan-cancer. (B) The single nucleotide variation of CRGs in pan-cancer. 
(C) Correlation of CPI with TMB in pan-cancer. (D) Association of CPI with MSI in pan-cancer. (E) Correlation between mRNA expression and 
methylation of CRGs. 
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significant, and the P-value was two-sided. The R package of "cluster Profiler" and GSVA were performed to analyse the GSEA, and FDR 
value < 0.05. Wilcox tests were used to assess the differentially expressed CRGs and CPI in tumour tissues compared with those in 
normal tissues. The criteria were |log2(fold change) | > 2/3 and P < 0.05. 

3. Results 

3.1. The expression level of CPI and gene set enrichment analysis based on CPI in pan-cancer 

We chose tumours in which several paired normal samples from more than 10 patients, and 14 tumours satisfied the requirement 
and were analysed to determine the difference in CPI between normal and tumour tissues. The results showed that CPI was higher in 
KICH, LIHC, LUSC, LUAD, and STAD tumours and lower in BRCA, COAD, HNSC, KIRC, KIRP, and THCA tumours (P < 0.05) (Fig. 1A). 

GSEA was performed for each tumour based on the transcriptomes of the two tumour groups with the highest 30 % and the lowest 
30 % CPI to investigate the different pathways between the high and low CPI groups in the 14 tumours. We found that the oxidative 
phosphorylation and fatty acid metabolism pathways were significantly enriched in the high CPI group of most tumours, including 
ESCA, HNSC, KICH, KIRP, LIHC, LUAD, and THCA (Fig. 1B). In addition, based on the expression of CRGs, ssGSEA was performed in 
pan-cancer patients, and the analysis showed the situation of gene enrichment in different pathways. Two pathways, oxidative 
phosphorylation and fatty acid metabolism, were significantly enriched in the FDX1 and PDHB high-expression groups (Fig. 1C and D). 
The results showed that tumour metabolism was stronger in the high CPI group, and the expression levels of FDX1 and PDHB were 
positively correlated with these two pathways. However, the related mechanisms of FDX1 and PDHB metabolism need to be studied 
further. 

3.2. Differential expression of CRGs in pan-cancer 

Among the 10 CRGs, CDKN2A was highly expressed in the tumour tissues, whereas almost all the other nine genes showed low 
expression in the tumour groups (Fig. 2A). Previous studies have shown that FDX1 could affect the prognosis and mediate the 
metabolism of LUAD, and the expression of CDKN2A and FDX1 in clear cell renal cell carcinoma was also correlated with immune 
infiltration levels and PD-1 expression [31,32]. Thus, we focused on these two CRGs and analysed their differences in expression in the 
tumour groups (Figs. S1A and B). We found that the expression of FDX1 was lower in COAD, LUAD, THCA, LIHC, HNSC, KIRC, and 
KIRP samples than in normal samples, whereas that of CDKN2A was distinctly higher in COAD, BRCA, LUAD, THCA, LIHC, KICH, 
KIRC, and KIRP samples. 

3.3. Relationships between CRGs with tumour prognosis and the different CPI among subtypes of tumours 

By analysing the association of CRGs with tumour prognosis, we found that CRGs play different roles in the prognosis of different 
tumours. For example, FDX1 could serve as a protective factor in LICH and KIRC, while it is a risk factor in LGG. CDKN2A could act as a 
risk factor in LICH, KIRC, THCA, KICH, and ACC, while it is a protective factor in HNSC (Fig. 2B). Therefore, CRGs may serve as 
prognostic indicators. We obtained tumours with clinical subtypes (BLCA, BRCA, COAD, GBM, HNSC, KIRC, LUAD, LUSC, and STAD) 
and analysed the differences in the CPI among the tumour subtypes. We found that the CPI significantly differed among the BRCA, 
GBM, HNSC, KIRC, and STAD subtypes (Fig. 2C). 

3.4. The mutational landscape of CRGs in pan-cancer 

We analysed 33 types of tumours to identify the CNV levels in the CRGs. We found that CDKNZA, PDHB, and other genes have a 
large proportion of copy number deletions in various cancers and that DLD has a large degree of copy number amplification in almost 
all cancers. In addition, each CRG had many amplified copies in OV, UCS, and LUAD (Fig. 3A). We analysed 10088 cancer patients, 
including 31 types of tumours, to identify the level of single nucleotide variation and found that CDKN2A was mutated at a higher 
frequency in tumours (SKCM, HNSC, PAAD, and LUSC), whereas in UCEC, CRGs were all mutated to some extent (Fig. 3B). 

3.5. Correlation of CRGs with TMB and MSI in pan-cancer 

TMB and MSI can predict the effects of immunotherapy in clinical settings. The higher the TMB and MSI values, the better the effect 
of immunotherapy. Thus, in this study, we analysed the association of CPI with TMB and MSI to predict the therapeutic direction. The 
radar chart shows that CPI is positively correlated with TMB in BRCA, BLCA, STAD, SKCM, PRAD, and LUAD, but is negatively 
associated with TMB in UCEC (Fig. 3C); CPI is positively correlated with MSI in STAD, KIRC, and DLBC, while it is negatively correlated 
with MSI in THCA, PRAD, OV, LUSC, and COAD (Fig. 3D). We also analysed the relationship of FDX1 and CDKN2A with TMB and MSI 
and found that FDX1 was significantly associated with TMB and MSI in DLBC and STAD (Fig. S2A). In the ACC, CDKN2A had a sig-
nificant positive correlation with TMB, and CDKN2A had a positive correlation with MSI in KICH (Fig. S2B). 

3.6. Association between mRNA expression and methylation of CRGs 

As shown in Fig. 3E, in most cancers, CRG expression is negatively correlated with methylation. For example, the expression of 
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LIPT1, LIAS, CDKN2A, and DLAT negatively correlated with methylation in TGCT, PRAD, TGCT, ACC, STAD, BLCA, STAD, and PRAD. 

3.7. Correlation of CRGs with immune-related features in pan-cancer 

According to previous studies, we have known that the relationship of CRGs with immune infiltration has been researched in many 
tumours, such as osteosarcoma, hepatocellular carcinoma, HNSC, soft tissue sarcoma, KIRC, glioma, and cutaneous melanoma [22–27, 
29]. Therefore, we also analysed the association between CPI and immune infiltration in pan-cancers. We found that CPI had a negative 
correlation with immune-related features such as infiltration score, CD4+ T, NK, gammadelta, Tfh, and CD8+ T, but a positive cor-
relation with immune-related features such as nTreg, effector memory, neutrophil, Th1, and DC in pan-cancer (Fig. 4A). We further 
investigated the relationship between FDX1 and CDKN2A and immune infiltration in pan-cancer. Obtaining the data according to 
CIBERSORT, we found that in most cancers, FDX1 was positively interrelated with regulatory T cells (Fig. S3A); CDKN2A was posi-
tively associated with memory CD4+ T cell resting (Fig. S3B). 

3.8. Correlation between CRGs and drug sensitivity 

We obtained the TOP30 drugs from the GDSC database and found that CDKN2A was positively correlated with almost all drug 
susceptibilities, such as Bleomycin, PD-0332991, Nutlin-3a(− ), whereas LIAS, PDHB, and GLS were negatively correlated with drug 
sensitivity, mainly including Nutlin-3a(− ) and CEP-701 (Fig. 4B). Among the TOP30 drugs obtained from the CTRP database, we found 
that LIAS was significantly negatively associated with almost all drug sensitivities; MK-1775, tivantinib, COL-3, and other CRGs 
(including LIPT1, LIAS, DLD, PDHB, DLAT, MTF1, and CDKN2A) were also negatively correlated with almost all drug sensitivities 
(Fig. 4C). Therefore, CRG expression of CRGs can predict the direction of clinical medication. 

3.9. Established a prognostic risk model in COAD based on CRGs 

COAD is one of the leading cancers worldwide, and its incidence is high at present; however, no relevant article has been published 
on the correlation of CRGs with COAD. Therefore, we developed a risk model to investigate the relationship between CRGs and 
prognosis, immune-related characteristics, and drug sensitivity. Genes were screened by utilising LASSO Cox regression (Fig. 5A), and 

Fig. 4. Correlation of CPI with immune-related features in pan-cancer and relationship of CRGs with drug sensitivity in GDSC and CTRP 
database. (A) Association of CPI with immune-related features in pan-cancer. (B) Correlation of CRGs and drug sensitivity in GDSC database. (C) 
Relationship of CRGs and drug sensitivity in CTRP database. 
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the partial likelihood deviance curve was plotted versus log (λ) (Fig. 5B). Finally, four key CRGs were identified to build the risk model 
and calculate the risk score of patients with COAD according to the following algorithm: risk score = (0.1345) × LIPT1+(− 0.075) ×
PDHB+(− 0.315) × DLAT+(0.1208) × CDKN2A. Fig. 5C shows the relationship between the risk score and survival status. The top 
represents the scatter plot of the risk score from low to high, and different colours represent different risk groups; the middle represents 
the scatter plot of the association of the risk score with survival time and survival status, indicating that the risk score is negatively 
correlated with survival time and survival status. The bottom is a heatmap that represents the situation of gene expression contained in 
the risk model. The protective CRGs have a higher expression, whereas the risky CRGs have a lower expression in the low-score group. 
KM survival curves were plotted, in which the different groups were tested using the log-rank test, and the OS was shorter in the high- 
risk group than in the low-risk group (Fig. 5D). The ROC curves of the risk model at 1, 3, and 5 years were drawn, and the AUC values 

Fig. 5. A prognostic risk model was established in COAD. (A)The LASSO Cox regression for ten CRGs. (B) The partial likelihood deviance curve 
versus log (λ). (C) The top represents the scatter plot of the risk score from low to high, and different colours represent different risk groups; the 
middle represents the scatter plot of about the association of the risk score with survival time and survival status; the bottom is a heatmap that 
represents the situation of gene expression contained in the risk model. (D) KM survival curves in high- and low-risk score groups. (E) The ROC 
curves of the risk model at 1, 3, and 5 years. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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were 0.654, 0.689, and 0.697, respectively, indicating that the accuracy of the risk model was higher (Fig. 5E). 

3.10. Correlation of risk score with immune signatures 

Immune cell infiltration in COAD was calculated using QUANTISEQ software. It was found that the infiltration of Macrophage M1, 
Neutrophil, T cell CD4+(non-regulatory), and T cell regulatory (Tregs) in the high-risk group was lower than those in the low-risk 
group (Fig. 6A). Among the different expression levels of immune checkpoints, SIGLEC15 was significantly overexpressed in the 
high-risk group and CD274 (PD-L1) was significantly overexpressed in the low-risk group (Fig. 6B). 

The response of the risk model to immunotherapy was evaluated using the TIDE website, and the outcomes showed that the TIDE 
score was higher in the high-risk group, indicating that this group was more sensitive to immunotherapy (Fig. 6C). We then used the 
IMvigor210 immunotherapy cohort to validate the predictive effect of immunotherapy using this risk model. The results indicated that 
the high-risk group patients had longer OS in the IMvigor210 cohort, showing that patients in the high-risk group could improve 
outcomes with immunotherapy (Fig. 6D). The CR/PR ratio was higher in the high-risk group than in the low-risk group (Fig. 6E). 

Fig. 6. Correlation between risk score and immune signatures. (A)The difference in immune cell infiltration in the high- and low-risk groups. 
(B) The different expressions of immune checkpoints in the high- and low-risk groups. (C) The result of the TIDE score in the high- and low-risk 
groups. (D) The predictive effect of immunotherapy. (E) the ratio of CR/PR in the high- and low-risk groups. (CR: complete response, PR: par-
tial response, SD: stable disease, PD: progressive disease). 
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Fig. 7. The differences between the three subtypes in COAD. (A) The difference of OS among the three subtypes. (B) The difference in CPI 
among the three subtypes. (C) The difference in immune cell infiltration among the three subtypes. (D) The difference in immune checkpoint 
expression among the three subtypes. (E) The difference in immune efficacy among the three subtypes. 
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Fig. 8. Expression of CRGs and the difference of drug sensitivity in subtypes. (A) The heatmap of CRGs expression in different subtypes of 
COAD tissues. (B) The heatmap of CRGs expression in different subtypes of COAD cell lines. (C) The difference in drug sensitivity among subtypes. 
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3.11. The analysis of drug sensitivity in patients with COAD based on risk score 

Of the 138 chemotherapeutic drugs analysed, 17 drugs showed differences in the high- and low-risk groups, namely BI.D1870, 
BAY.61.3606, BMS.708163, methotrexate, and epothilone. B, AICAR, cisplatin, ATRA, docetaxel, doxorubicin, mitomycin. C, PAC.1, 
PF.4708671, vinorelbine, JNK.Inhibitor.VIII, pazopanib, camptothecin, and common chemotherapeutic drugs, such as cisplatin, 
docetaxel, and doxorubicin all showed higher sensitivity in the low-risk group (IC50 was lower), indicating that COAD patients in the 
low-risk group were more suitable for chemotherapy (Fig. S4). 

3.12. Cluster analysis 

A consistent cluster divided COAD into three subtypes (k = 3 was the most suitable). Fig. S5 A and B represent the cumulative 
distribution function (CDF) curve and CDF Delta area curve, respectively, and the delta area curve of the consistent cluster indicates 
that compared with k = 1, the change in the area under the CDF curve relative to each category number k. Fig. S5C shows the sample 
distribution map when k = XX and Fig. S5D is the heat map of consistent cluster results when k = XX. 

There were survival differences among the three subtypes, with cluster 3 having a shorter OS (Fig. 7A). There were also differences 
in CPI among the subtypes, with cluster 2 having a higher CPI (Fig. 7B). Regarding immune cell infiltration, B cells, M1 macrophages, 
neutrophils, and CD4 T cells differed among the three subtypes, and the degree of immune cell infiltration was significantly higher in 

Fig. 9. The Results of cytological verification. (A) The relative mRNA expression of LIPT1. (B) The statistical result of Transwell assay. (C/D) The 
results of transwell and clone assays. 

C. Li et al.                                                                                                                                                                                                               



Heliyon 10 (2024) e34011

14

cluster1 than in the other two subtypes (Fig. 7C). Among the immune checkpoints, SIGLEC1 was highly expressed in cluster1 and 
cluster3, and LAG3 was highly expressed in cluster3 (Fig. 7D). Regarding the immunotherapy response, cluster1 and cluster3 had 
higher TIDE scores, and cluster1 and cluster3 were more sensitive to immunotherapy (Fig. 7E). 

3.13. The level of CRGs and the drug sensitivity in subtypes of COAD 

We used a heat map to show the expression of CRGs in different subtypes of COAD and found that only CDKN2A was significantly 
overexpressed in cluster3, and FDX1 was significantly overexpressed only in cluster2 (Fig. 8A). The nearest centroid classifier was 
constructed, and the classifier was used to predict the COAD cell line data in GDSC, which were then divided into three groups ac-
cording to the COAD typing results. The expression of CRGs in different subtypes of COAD cell lines was displayed with a heat map. 
This was consistent with the expression of CRGs in tissues (Fig. 8B). Based on the analysis of the relationship between COAD subtypes 
and drug sensitivity, we found that 12 drugs, including MIM-1, SERDEMETAN, RUXOLITINIB, CCT007093, XMD14-99, XMD15-27, 
VX-702, BDP-00009066, TIVOZANIB, ALVOCIDIB, CABOZANTINIB, and PALBOCICLIB, were different among the three subtypes, and 
the AUC was generally higher in cluster2 (Fig. 8C). 

3.14. The cytological verification via clone and transwell assays 

LIPT1 was positively correlated with the risk score of patients with COAD. To analyse the association between LIPT1 mRNA levels 
and the malignancy of colon cancer cells, we chose one normal colon cell line (NCM460) and three colon cancer cell lines (SW620, 
HCT116, and HT29) for PCR, cloning, and transwell assays. The results revealed that the higher the expression of LIPT1 mRNA, the 
stronger the proliferation and migration of colon cancer cells (Fig. 9). Thus, LIPT1 is a new prospective target for COAD treatment. 

4. Discussion 

According to the findings of the 2019 Global Burden of Diseases, Injuries, and Risk Factors Study, we understand that cancer- 
related fatalities rank second globally, coming right after cardiovascular diseases in terms of mortality rates [3]. COAD is the most 
common malignancy and is also considered one of the major killers of humans [9,33]. Influenced by westernisation, the incidence rate 
of COAD is high in developed countries and the incidence rate is rising in low- and middle-income countries [34,35]. For the most part, 
drug resistance, tumour metastasis, and the economic burden of cancer treatment are becoming huge, and the development of cancer 
more effective treatment remains a great challenge [36,37]. Therefore, it is important to identify more effective indicators for early 
detection, prognostic judgment, and more effective treatment targets to further improve the outcomes of cancer patients. 

Cuptosis, a study found a new form of cell death, is distinct from all other known cell types, including apoptosis, ferroptosis, 
pyroptosis, and necroptosis [10]. The main mechanism of cuproptosis involves the accumulation of copper ions in the cells and 
excessive intracellular copper binding to lipoylated proteins in the tricarboxylic acid (TCA) cycle of the mitochondrial respiratory 
chain [10,13]. Recent studies have indicated that cuproptosis-related genes or long non-coding RNAs could determine the prognosis 
and immune cell infiltration in KIRC, LICH, soft tissue sarcomas, and melanoma [18–21]. However, no relevant study has investigated 
the correlation among CRGs, pan-cancer, and COAD. This study systematically analysed the relationship between CRGs, pan-cancer, 
and COAD in the present study by comprehensively accessing and analysing public databases. 

This study found that CDKN2A was highly expressed in pan-cancer, and almost all of the other nine genes showed low expression in 
the tumour groups. In a previous study, we found that FDX1, LIPT1, LIAS, DLD, PDHA1, PDHB, and DLAT are positively regulated 
genes, while MTF1, GLS, and CDKN2A are negatively regulated genes in cuproptosis [10]. Thus, the results indicated that positively 
regulated CRGs usually had lower expression, whereas negatively regulated CRGs had higher expression in cancer tissues. Our study 
also found that FDX1 is a protective prognostic factor in LICH and KIRC, while it is a risk factor in LGG. CDKN2A acts as a risk factor in 
LICH, KIRC, THCA, KICH, and ACC, but acts as a protective factor in HNSC. Therefore, CRGs can serve as a potential pan-cancer 
prognostic signature. However, the specific mechanism of action of CRGs remains unclear and requires further verification through 
in vivo and in vitro experiments. 

Several studies have indicated that CRGs are associated with the prognosis and malignancy of many cancers. For example, FDX1 
promotes ATP production and is associated with glucose metabolism, fatty acid oxidation, and amino acid metabolism. Zhang found 
that the level of FDX1 could predict the prognosis of LUAD by mediating metabolism [31]. LIPT1 activates 2-ketoacid dehydrogenases 
associated with the TCA cycle [38]. One study indicated that higher LIPT1 expression is associated with longer overall survival in 
melanoma patients than in those with lower LIPT1 expression after receiving immunotherapy. LIPT1 is highly expressed in melanoma 
biopsies and is an independent favourable prognostic marker for melanoma patients. Furthermore, LIPT1 expression was positively 
associated with PD-L1 expression but negatively correlated with Treg cell infiltration [20]. The lower the expression of PDHB, the 
worse the overall survival of patients with NSCLC [39]. DLAT enhances NSCLC cell malignancy by promoting glycolysis and sup-
pressing acetyl-CoA production. Clinically, the higher the DLAT expression, the poorer the prognosis and the higher the SUVmax 
values on 18F-FDG-PET/CT scans in patients with NSCLC [40]. CDKN2A is a susceptibility gene for pancreatic cancer [41]. CDKN2A is 
a negative regulator of the cell cycle that plays a role in lethal pancreatic ductal adenocarcinoma [41]. One study also found that 
CDKN2A could be used as a predictor of haematogenous metastasis in gastric carcinoma [42]. The biotin and lipoic acid synthetase 
families are encoded by the LISA gene, which is localised in the mitochondria. The final step in the de novo pathway for lipoic acid 
biosynthesis is catalysed by an iron-sulfur enzyme, which is a potent antioxidant [43]. There are no related studies on the correlation 
between LIAS and cancer. However, the specific mechanisms of action of CRGs in tumourigenesis remain unclear. 
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Furthermore, we also investigated immune infiltration in pan-cancer tissues and found that CPI positively correlates with immune 
cells such as nTregs, effector memory cells, neutrophils, Th1 cells, and DC. The level of immune cell infiltration can be used to predict 
the clinical prognosis of patients. Our study on COAD showed that the higher the immune cell infiltration level, the better the 
prognosis. In our study, we analysed the essential genes associated with cuproptosis, namely FDX1 and CDKN2A. Our findings revealed 
a positive correlation between FDX1 and T cell regulation, as well as a positive correlation between CDKN2A and T cell CD4+ memory 
resting. The specific mechanisms by which these two genes influence immune cell infiltration need to be verified through detailed 
experiments at a later stage. Other studies have found that the expression of CDKN2A is positively associated with the infiltrating levels 
of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in hepatocellular carcinoma and that CDKN2A 
could be used as a prognostic biomarker for determining prognosis and immune infiltration in HCC [44]. CDKN2A loss-of-function 
negatively affects clinical outcomes in advanced NSCLC patients treated with immune checkpoint blockade, even in high PD-L1 
and TMB tumours [45]. 

Therapeutic methods vary according to tumour sites, such as surgery, chemotherapy, radiotherapy, immunotherapy, and targeted 
therapy, and have exerted strong efficacy in clinical practice, especially targeted therapy [4–7,46,47]. However, conventional targeted 
therapies often suffer from severe off-target effects because most critical target facets of cells are shared by all rapidly proliferating cells 
[17]. The development of new therapeutic agents should aim to increase selectivity and reduce side effects [17]. In recent decades, 
ferroptosis has emerged as a newly discovered form of cell death regulation. Ferroptosis inducers (including small molecules and 
nanomaterials) for cancer therapy have made great progress in research [48–51]. Thus, we can design cuproptosis inducers to treat 
cancer patients in the future. 

In addition, our study found that CDKN2A was significantly positively correlated with all drug susceptibilities obtained from the 
TOP30 drugs in the GDSC database. In contrast, LIAS was significantly negatively correlated with almost all drug susceptibilities 
obtained from the TOP30 drugs in the CTRP database. Thus, CDKN2A and LIAS expression levels can predict the direction of clinical 
medication for pan-cancer therapy. 

In our study, we constructed a prognostic risk model that included four CRGs in COAD and divided the patients into high- and low- 
risk groups. The relationship between the risk score and prognosis, immune-related signatures, and drug sensitivity was analysed in 
COAD. The low-risk group had a better prognosis. The immune infiltration indicators of M1 macrophages, neutrophils, CD4+ T cell, 
and T cell regulation were significantly higher in the low-risk group. Among the immune checkpoints, SIGLEC15 was significantly 
overexpressed in the high-risk group, and CD274 (PD-L1) was significantly overexpressed in the low-risk group. We used the TIDE 
website to evaluate the response of the risk model to immunotherapy and then used the IMvigor210 immunotherapy cohort to validate 
the predictive effect of immunotherapy in this risk model. We found that the high-risk group was more responsive to immunotherapy 
and had longer OS for the patients who received immunotherapy. The ratio of CR/PR was higher. We also analysed 138 chemo-
therapeutic drugs and found that 17 drugs (including the common chemotherapeutic drugs cisplatin, docetaxel, and doxorubicin) 
showed a difference in the high- and low-risk groups, and all had higher sensitivity in the low-risk group. Thus, we concluded that the 
high-risk group had worse overall survival but more sensitivity to immunotherapy, while the low-risk group had better overall survival 
and more sensitivity to chemotherapy. Thus, the risk model could predict the prognosis, immune infiltration, and direction of clinical 
medication in patients with COAD. In addition, the risk model played an important role in the prognosis, immune infiltration, and drug 
sensitivity among the COAD subgroups. 

Our study has several important advantages. First, this is the first study to investigate the association between CRGs, pan-cancers, 
and COAD. Second, we constructed a new prognostic risk model for cuproptosis in patients with COAD. The risk model can predict 
prognosis, immune infiltration level, and direction of clinical medication. 

Our study also had certain limitations. Firstly, the data of pan-cancer patients regarding the expression levels of CRGs were only 
evaluated in the TCGA dataset. Therefore, other databases should also be included. Although LIPT1 is a new prospective target for the 
treatment of patients with COAD, the underlying mechanism remains unclear. The specific mechanism of LIPT1 should be investigated 
in vivo and in vitro using the GSEA results as a guide. Besides, the potential mechanism bout the 10 genes of CRGs in the development 
of pan-cancer should be explored in the future and find the difference among pan-cancer about CRGs. 

5. Conclusion 

In summary, CRGs can be used as potential prognostic biomarkers to predict immune infiltration levels in patients with pan-cancer. 
In addition, the risk model could more accurately predict the prognosis and immune infiltration levels of patients with COAD and 
better guide the direction of clinical medication. Besides, FDX1, CDKN2A, and LIPT1 may serve as prospective new targets for cancer 
therapy. 
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