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Cancer stem cells (CSCs) have been characterized by several exclusive features
that include differentiation, self-renew, and homeostatic control, which allows tumor
maintenance and spread. Recurrence and therapeutic resistance of head and neck
squamous cell carcinomas (HNSCC) have been identified to be attributed to CSCs.
However, the biomarkers led to the development of HNSCC stem cells remain less
defined. In this study, we quantified cancer stemness by mRNA expression-based
stemness index (mRNAsi), and found that mRNAsi indices were higher in HNSCC
tissues than that in normal tissue. A significantly higher mRNAsi was observed in HPV
positive patients than HPV negative patients, as well as in male patients than in female
patients. The 8-mRNAsi signature was identified from the genes in two modules which
were mostly related to mRNAsi screened by weighted gene co-expression network
analysis. In this prognostic signatures, high expression of RGS16, LYVE1, hnRNPC,
ANP32A, and AIMP1 focus in promoting cell proliferation and tumor progression. While
ZNF66, PIK3R3, and MAP2K7 are associated with a low risk of death. The riskscore of
eight signatures have a powerful capacity for 1-, 3-, 5-year of overall survival prediction
(5-year AUC 0.77, 95% CI 0.69–0.85). These findings based on stemness indices may
provide a novel understanding of target therapy for suppressing HNSCC stem cells.

Keywords: cancer cell stemness indices, head and neck squamous cell carcinomas, The Cancer Genome Atlas,
weighted gene co-expression network analysis, predictive models
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INTRODUCTION

Head and neck cancers are a collection of malignancies that
arise from the upper aerodigestive tract, salivary glands and
thyroid (Cramer et al., 2019). Head and neck squamous
cell carcinomas (HNSCC) account for 90% of head and
neck cancers and are mainly derived from the oral cavity,
oropharynx, hypopharynx, and larynx (Wyss et al., 2013). The
main reasons associated with their occurrence are tobacco and
alcohol use, however, increased HNSCC cases with human
papillomavirus (HPV) have highlighted the role of high-risk
HPV in the pathology of HNSCC (Chaturvedi et al., 2011).
Worldwide, around 430,000 patients die due to its high
mortality annually, where its 5-year survival rate is about 40–
50%, though patients with the advanced disease only have
a 34.9% survival rate (Leemans et al., 2011). Hence, it is
critical to explore the mechanism regarding this malignancy,
which may aid in diagnosing early HNSCC and predicting
clinical outcomes.

Stem cells are known to be a cell subset having the
ability to self-renew and differentiate, which has been found
in most human tissues (Blanpain et al., 2004). Due to
strides in cancer research, cancer cells are generally considered
to have the propensity to initiate, spread and metastasize.
Several studies based on multiple tumors showed that a
small subpopulation of undifferentiated cells that strikingly
resemble stem cells within the tumor could trigger cancers.
Therefore, these cells were aptly named cancer stem cells
(CSCs; Reya et al., 2001). Cancer stem cells are present
in bulk tumors of HNSCC and gave rise to new tumors
in immunodeficient mice (Prince et al., 2007; Okamoto
et al., 2009), which may elucidate how residual stem cells
cause tumor recurrence and regrowth in patients following
treatment. To further clarify CSCs, researchers fused artificial
intelligence and deep learning methods further to explore
the features of stem cells in tumors. Malta et al. (2018)
generated stemness indices for evaluating the degree of oncogenic
dedifferentiation using a one-class logistic regression machine
learning algorithm (OCLR), which may define signatures to
quantify stemness. Accordingly, they extracted transcriptomic
and epigenetic feature sets from non-transformed pluripotent
stem cells and their differentiated progeny, eventually obtaining
the two stemness indices, mDNAsi and mRNA expression-based
stemness index (mRNAsi).

This study attempts to generate the stem cell-associated
indices by taking advantage of both the Progenitor Cell Biology
Consortium (PCBC) and The Cancer Genome Atlas (TCGA)
databases, which analyzed and quantified cancer stemness in
the HNSCC cohort and acquired their mRNAsi scores. Using
weighted gene co-expression network analysis (WGCNA), gene
modules were constructed that are closely related to the stem
index. Eight mRNAsi based signatures were selected from two of
these gene modules, and a risk model based on eight mRNAsi
signatures was conducted to predict the prognostic risk in
HNSCC patients. Finally, a functional analysis was carried out
to determine the molecular mechanism’s stemness regarding the
prognosis of HNSCC patients.

MATERIALS AND METHODS

Data Collection and Pre-processing
The CSC samples were downloaded from the PCBC R package
synapser (v 0.6.61). Moreover, the raw data of gene expression
and related clinical information of HNSCC patients were
downloaded from the TCGA website, which included 546 RNA-
Seq expression data. Additionally, 97 cases of GSE41613 data
were downloaded from the Gene Expression Omnibus (GEO)
website. The RNA-Seq data from TCGA-HNSCC were pre-
processed as follows. Samples with expression profile information
were retained, changing the Ensemble ID to Gene Symbol, while
only leaving protein-coding genes. Next, the expression data
of primary solid tumors and solid normal tissue samples were
left. Afterward, the expression of multiple genes was chosen
as the median. Finally, the overall survival (OS) data used for
the survival analysis removed samples with a survival time of
less than 30 days. GSE41613 data was also pre-processed, and
the samples kept their expression profile information. Moreover,
the unit of survival information of the sample was converted
to days, and the probe was changed to the Gene Symbol. The
probes which were related to several genes were deleted, and the
expression of multiple genes was chosen as the median. As the
TCGA data, the OS data used for the survival analysis removed
samples with a survival time less than 30 days. All data from these
two databases after pre-processing are shown in Table 1.

CSCs-Related Clinical Characteristics of
HNSCC
The expression data of pluripotent stem cells (ESC and iPSC)
from the PCBC database were analyzed, and the OCLR algorithm
was utilized to predict mRNAsi. The Kruskal-Wallis test then
compared the mRNAsi of normal tissue and tumor tissue or
different clinical characteristics.

Weighted Gene Co-expression Network
Analysis
Module Establishment
The WGCNA co-expression algorithm was utilized to acquire the
co-expressed genes and co-expression modules according to the
expression profiles of these genes. According to the 500 HNSCC
expression data from the TCGA database, the expression profiles
of the protein-coding genes were extracted. A co-expression
network was constructed using WGCNA in the R package based
on the TCGA datasets. A Pearson correlation matrix was built to
calculate the distance of each gene.

In this study, a soft threshold of nine was selected to screen the
co-expression modules. To ensure the constructed co-expression
network approached the scale-free distribution, β = 9 was chosen.
Next, the expression matrix was changed to the adjacency matrix,
after which the adjacency matrix was converted into a topological
overlap matrix (TOM). Average linkage hierarchical clustering
was used to cluster genes based on TOM, and the minimum
genome number of the gene dendrogram was 40.
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TABLE 1 | Clinical information of TCGA-HNSCC and GSE41613.

Clinical features TCGA-STAD GSE41613

Type

Normal 44 0

Tumor 500 97

OS

0 280 46

1 211 50

OS time (mean)

0 1047.261 1997.23

1 767.1185 730.65

T Stage
T1 34

T2 143

T3 132

T4 180

TX 11

N Stage
N0 241

N1 81

N2 152

N3 7

NX 19

M Stage
M0 475

M1 5

MX 20

Stage

I 25

II 81

III 90

IV 304

Grade

G1 61

G2 299

G3 119

G4 2

GX 19

Gender
Male 367

Female 133

Age

≤60 244

>60 255

Unknown 1

Alcohol

Yes 332

No 157

Unknown 11

HPV Status
Negative 64

Positive 19

Unknown 417

Tobacco
1 111

2 170

3 72

4 135

Identifying mRNAsi Modules
After determining the genetic modules, the module eigengenes
of each module, in turn, was calculated, and the modules
were then clustered, resulting in 20 differently related modules.
The relationship between each module and different clinical
characteristics was also analyzed. The most positive correlation
was with the blue module, while the most negative correlation
was with the yellow module.

Functional Annotation: Gene Ontology
and Kyoto Encyclopedia of Genes and
Genomes Analyses
The WebGestaltR (v0.4.2) R package was adopted for the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis and Gene Ontology (GO) functional
annotation to investigate the biological functions of key modules
and genes. In our study, we identify over-represented GO terms
in three different categories: biological processes, molecular
function and cellular component, and over-represented KEGG
pathway terms. Furthermore, FDR < 0.05 was considered to be
statistically significant.

Construction and Analysis of the Risk
Prognosis Model
The 491 TCGA samples were random as a 0.5:0.5 ratio divided
into the training and test sets as previously described (Wang
et al., 2020). Then, using the training set samples, the genes were
further identified using a univariate Cox regression analysis of
the survival coxph function package in the R language, where
p < 0.01 was used as the threshold to optimize the data. Least
absolute shrinkage and selection operator (Lasso) regression
analysis was then used to reduce the number of genes, resulting
in 17 genes. Next, the Akaike information criterion (AIC) was
utilized to optimize the data, and a total of eight genes were finally
identified for further use. The corresponding eight genes were
used to build a prognostic risk score model.

The formula of the risk score model is described as:
RiskScore = 0.20799×RGS16+ 0.2492×LYVE1− 0.8828×

MAP2K7− 0.2654×PIK3R3− 0.5666×ZNF66
+0.6486×hnRNPC+ 0.7821×ANP32A+ 0.5284×AIMP1

We used TCGA training set to test whether the gene markers
were independent prognostic factors, and multivariate Cox
regression analysis was used. Receiver operating characteristic
(ROC) curve was depicted using the timeROC package in
R. Samples in H (High) set had a significantly higher score
compared to those in the L (Low) set, where “0” was used to
divide the two sets. A Kaplan–Meier (KM) curve was drawn.
Significance was defined as P < 0.05.

Module and Clinical Trait Association
Prognosis Analysis
The relationship between different clinical traits and OS time
survival curves were plotted from the KM estimates. For the 8-
mRNAsi based signature associations, some groups were clearly
distinct to high or low expression groups.
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FIGURE 1 | Correlation between mRNAsi and clinical characteristics in HNSCC. (A) The different expressions of mRNAsi between normal and tumor samples.
(B) The different expressions of mRNAsi between gender-specific samples. (C) The different expressions of mRNAsi between different age samples. (D) The different
expressions of mRNAsi between drinking alcohol status samples. (E) The different expressions of mRNAsi between different HPV status samples. (F)The different
expressions of mRNAsi between different T staging. (G) The different expressions of mRNAsi between different N staging samples. (H) The different expressions of
mRNAsi between different Grade grading samples. (I) The different expressions of mRNAsi between different Stage staging samples. (J) The different expressions of
mRNAsi between smoking status samples.

Gene Set Enrichment Analysis and Gene
Set Variation Analysis (GSVA)
The R package was employed to perform the gene set enrichment
analysis (GSEA) analysis of the key genes. Meanwhile, the
“gene set variation analysis (GSVA)” R package was used to
find the most associated pathways with the 8-mRNAsi based
signature. Based on the different functions according to the score
of each sample, the correlation between these functions and
risk was further calculated, and the most associated pathways
were identified.

Cell Culture
Human HNSCC cell lines FaDu, JHU011 and HN8 were
kindly provided by the Xiangya Hospital of Central South
University. FaDu cell was cultured in MEM medium (Sigma,
MO, United States), JHU011cell was cultured in RPMI-1640
and HN8 cell was cultured in DMEM medium (Sigma, MO,
United States). All the medium were supplemented with 10% FBS
and 1% penicillin/streptomycin, maintained on plastic plates and
incubated at 37◦C with 5% CO2.

RT-qPCR Assay
According to the manufacturer’s protocol, total RNA of cells
was extracted using TRIzol (Life Technologies, Carlsbad,
CA, United States). After cDNA synthesis (All-in-One First-
Strand cDNA Synthesis kit, GeneCopoeia Inc, Santa Cruz,
CA, United States), the quantitative real-time polymerase chain
reaction (qPCR) experiment was carried out using All-in-One
qPCR Mix (GeneCopoeia Inc, United States) on ABI 7500HT
System (Applied Biosystems, Foster City, CA, United States)
using primers were described as Supplementary Table 1. The
PCR detailed reaction conditions were as follows: 95◦C for 5 min

followed by 40 cycles of 95◦C for 10 s, 60◦C for 20 s and 72◦C
for 20 s. GAPDH was used as the internal control in this study.
The relative expression of target genes was controlled to GAPDH
and 2−11CT method was calculated to evaluate relative mRNA
levels. All the experiments were run in triplicate.

RESULTS

Relationship Between mRNAsi and
Clinical Characteristics in Head and
Neck Cancer
mRNA expression-based stemness index is a particular stemness
index, which is considered to be a biomarker in CSCs. 78
cases of expression data from pluripotent stem cells were
downloaded from PCBC. Here, mRNAsi in HNSCC tissues was
significantly higher than that of normal tissues (p = 0.0064)
(Figure 1A). Moreover, to discover the correlation of mRNAsi
with the corresponding clinical characteristics, the downloaded
information contains the gender, age, disease stage, tumor
stage classification, node stage classification, clinical grade,
HPV status, smoking status, and alcohol status. The result
of the Kruskal–Wallis test showed that male patients had a
significantly higher mRNAsi than female patients (p = 0.022)
(Figure 1B). Meanwhile, there was a difference in mRNAsi
in the smoking status group (p = 0.04) (Figure 1J). And the
result of Kruskal–Wallis test indicated that HPV positive patients
had a significantly higher mRNAsi than HPV negative patients
(p = 2.5e-07) (Figure 1E). In terms of age, alcohol status,
tumor classification, node classification, and disease stage, no
significant difference in the mRNAsi was present among the
tumor tissues (Figure 1).
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FIGURE 2 | Identify mRNAsi basedgene modules in HNSCC. (A) Cluster analysis. (B) Analysis of network topology for various soft-thresholding powers. (C) Gene
dendrogram and module colors. (D) Results of correlation between twenty modules and each clinical phenotype. (E) Correlation of blue modules and genes.
(F) Correlation of yellow modules and genes.
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WGCNA: Head and Neck Cancer Stem
Cell Index and Gene Expression Analysis
Weighted gene co-expression network analysis analyzes the
molecular interactions according to the co-expression network
(Tian et al., 2018). Here, the expression profiles of protein-
coding genes were selected according to 500 gene expression
profiles of head and neck cancer from the TCGA database.
Hierarchical clustering was then used to analyze sample
clustering (Figure 2A). To this effect, β = 9 (Figure 2B) was
chosen as a soft scale to ensure a scale-free network, culminating
with 20 gene modules for further analysis (Figure 2C).

The correlation of mRNAsi with clinical factors like gender,
age, TNM classification, and clinical stage was examined, as
shown in Figure 2D, where the most significant positive
correlation module with mRNAsi is the blue module, and
the most negative correlation module with mRNAsi is the
yellow module. And these two modules contain 1518 genes,
and all the genes are shown in Supplementary Table 2.
The module membership in the blue module was shown in
Figure 2E and the module membership in the yellow module
was shown in Figure 2F.

Gene Modules Functional Annotation
Analysis
This study employed GO and KEGG for the functional
enrichment analysis of the blue and yellow modules. For
the blue module, the study results show that all the top 10
significantly enriched factors with GO, Biological process (BP),
Cellular component (CC), and KEGG pathways were obtained,
as presented in Supplementary Figure 1. Notably, p53 signaling
pathway, DNA replication and cell cycle are related to cancer, as
we found in KEGG pathway analysis. Then for the yellow module,
we can also get the results that the top 10 significantly enriched
factors with GO, BP, CC, and KEGG pathways were presented in
Supplementary Figure 2. Among all enriched KEGG pathways,
the PI3K-Akt signaling pathway, MAPK signaling pathway and
ECM–receptor interaction are related to cancer.

Construct a Gene Prognostic Risk Model
Based on mRNAsi
mRNAsi-Related Gene Prognostic Risk Models
The 491 samples were selected from TCGA and were randomly
divided into training sets and test sets (Table 2). Additionally,
246 patients from the training set were used in the following
survival analysis. According to the univariate Cox regression
model and Lasso cox regression model, 17 genes were acquired
for subsequent analysis. Afterward, AIC was used to optimize the
data, and a total of eight genes were finally identified to analyze:
RGS16, LYVE1, MAP2K7, PIK3R3, ZNF66, hnRNPC, ANP32A,
and AIMP1.

The KM curves showed that, except for LYVE1 and PIK3R3,
the remaining six genes had significantly divided the samples
from the training set into two groups, high risk groups and low
risk groups (Figure 3).

The riskscore of the training set was calculated according to
the expression level of each sample, and the distribution of RS is
shown in Figure 4A. The OS time of patients with high RS was

TABLE 2 | Clinical information statistics for TCGA train set and test set.

Clinical Features TCGA-train TCGA-test P

OS
0 146 134 0.3417

1 100 111

T Stage
T1 18 15 0.4751

T2 64 77

T3 72 58

T4 86 91

TX 6 4

N Stage
N0 112 125 0.4721

N1 40 39

N2 82 68

N3 2 5

NX 10 8

M Stage
M0 233 234 0.396

M1 4 1

MX 9 10

Stage
I 10 15 0.3178

II 46 34

III 41 49

IV 149 147

Grade
G1 30 30 0.5258

G2 145 148

G3 63 54

G4 0 2

GX 8 11

Gender
Male 180 181 0.9401

Female 66 64

Age
≤60 129 113 0.1904

>60 117 132

found to be significantly lower than ones with low RS. RGS16,
LYVE1, hnRNPC, ANP32A, and AIMP1 with high expression
represent risk factors. Moreover, ZNF66, PIK3R3, and MAP2K7
attained the opposite result, making them protective factors. We
further applied the timeROC package to analyze the prognosis
of 1-, 3-, and 5-year survival rates. Accordingly, the model was
found to exhibit that 1-year AUC 0.74, 95% CI 0.66–0.81, 3-year
AUC = 0.78, 95% CI 0.72–0.84, and 5-year AUC 0.77 95% CI
0.69–0.85 (Figure 4B).

Additionally, riskscore was utilized to make the zscore, where
all zscore samples greater than zero were included in the high
risk group, while the rest of the samples smaller than zero
were divided into the low risk group. Finally, 118 high risk
samples and 128 low risk samples were obtained, the survival
time between high and low risk samples was significantly
(p < 0.0001; Figure 4C).

Risk Model Verification
To verify the robustness of the 8-mRNAsi based signature model,
we calculated a riskscore in TCGA test set and an external dataset
(GSE41613). Regarding the TCGA test dataset (Supplementary
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FIGURE 3 | Kaplan–Meier curves of eight signatures (in the TCGA training set).

Figure 3), we found the same results as the training set was
yielded for, where ROC analysis showed that the 5-year AUC was
up to 0.70. The survival time between high and low risk samples
was significantly different (p < 0.0001). For the GSE41613
database (Supplementary Figure 4), ROC analysis showed that
the average 1-, 3-, and 5-year AUC for the 8-mRNAsi based
signature was close to 0.67, 95%, the relationship between the
expression of the eight genes and risk score is also consistent with
the training set.

Risk Model and Analysis of Clinical Features of
Prognosis
A series of KM curves graphs were made to analyze the
prognosis. As shown in Figure 5, patients with HNSCC were
analyzed according to nine clinical features (tumor classification,
Node classification, disease stage, grade, gender, age, alcohol
status HPV status and smoking status). The meaning of the
four different smoking status in Figure 5I was as follows:
Lifelong Non-smoker (less than 100 cigarettes smoked in
Lifetime) = Tabacco1; Current smoker (includes daily smokers
and non-daily smokers or occasional smokers) = Tabacco2;
Current reformed smoker for > 15 years (greater than 15
years) = Tabacco3; Current reformed smoker for ≤15 years (less
than or equal to 15 years) = Tabacco4. The results showed that
only the stage group and HPV status were related to OS time
(p < 0.05) (Figures 5C,H), and the prognosis was worse with
increasing disease stage and with HPV negative patients.

To further explore the influence of clinical features on the
OS of the 8-mRNAsi based signature, all clinical features were
stratified. Then, every stratified feature was divided into high-risk
and low-risk groups. As shown in Figure 6, the 8-mRNAsi
based signature acted as a risk factor for patients with different
clinical characteristics.

We performed univariable and multivariable Cox regression
analysis to evaluate the 8-mRNAsi based signature related
HR, 95% CI of HR, P-value. Clinical characteristics, including

alcohol status, age, tumor stage classification, node stage
classification, pathological grade, disease stage, and riskscore,
were systematically analyzed. Our results from the TCGA
database showed that riskscore from either univariable (HR =
1.913, 95% CI 1.642-2.228, p = 2.0E-16) or multivariable Cox
regression analysis(HR = 1.872, 95% CI 1.613-2.173, p = 2.0E-
16) are significantly correlated to survival (Table 3). And the
same result can be obtained in node stage classification and
disease stage. In node stage classification group, univariable
(HR = 1.205, 95% CI 1.045-1.389, p = 0.010) or multivariable
Cox regression analysis (HR = 1.195, 95% CI 1.015-1.406, p =
0.032) are correlated to survival (Table 3). Meanwhile, in disease
stage group, univariable (HR = 1.345, 95% CI 1.138-1.589, p =
5.0E-04) or multivariable Cox regression analysis (HR = 1.310,
95% CI 1.056-1.625, p = 0.014) are significantly correlated to
survival (Table 3).

Relationship Between Riskscore and
Signaling Pathway
To analyze the KEGG functional enrichment score for each
sample in the training set, GSVA was utilized in the R software
package for the GSEA analysis.

The scores were calculated from each sample with different
functions to acquire the ssGSEA score of each function
corresponding to each sample, where the relationship between
functions and riskscore was further verified. The function with a
correlation greater than 0.25 was selected, as shown in Figure 7A.

Here, 13 cases had a positively correlated with the
sample risk score, while two had a negative correlation.
The most related ten KEGG pathways were chosen and
were clustered based on their enrichment score (Figure 7B).
Accordingly, among all pathways, the riskscore rises as
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES,
KEGG_NITROGEN_METABOLISM, and KEGG_TGF_BETA_
SIGNALING_PATHWAY rises, and for KEGG_REGULATION_
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FIGURE 4 | Performance of the 8-mRNAsi based signature model with TCGA training set. (A) Survival time, survival status and 8-genes expression of Riskscore in
the training set. (B) ROC Curve and AUC of 8-gene signature Classification. (C) The KM survival curve distribution of 8-gene signature in the training set.

OF_AUTOPHAGY, KEGG_TASTE_TRANSDUCTION, KEGG
_ABC_TRANSPORTERS, the riskscore decreases as
they increase.

Expression Level of Eight mRNAsi in
HNSCC Cell Lines as Detected by a
RT-qPCR Assay
We tested the expression levels of eight mRNAsi in FaDu,
JHU011, and HN8 cell lines by a RT-qPCR assay. The results
showed that RGS16, LYVE1, hnRNPC, ANP32A and A1MP1
were highly expressed in all cell lines. And ZNF66, PIK3R3 and
MAP2K7 were lowly expressed in three cell lines (Figure 8).

DISCUSSION

Many advanced therapeutic and diagnostic methods have been
carried out in modern HNSCC treatment, though their effects
remain inadequate as the oncologists anticipated. CSCs, due to
their strong self-renewal ability, are thought to play an essential
role associated with invasive potential, tumor growth and
therapeutic resistance in response to the development of HNSCC
(Peitzsch et al., 2019). Therefore, identifying therapeutic targets
for CSCs would be significant in anti-cancer treatment. As a type
of heterogeneous malignancy, a molecular analysis of HNSCC
tissues demonstrates high intratumoral heterogeneity determined
by clonal evolution of the CSCs populations (Yang et al., 2020).
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FIGURE 5 | The KM curves of different clinical characteristics. (A) KM curves of different tumor classifications. (B) KM curves of different node classifications. (C) KM
curves of different disease stages. (D) KM curves of different cancer grades. (E) KM curves of different genders. (F) KM curves of young (age ≤ 60) and elderly
(age > 60) ages. (G) KM curves of different alcohol status. (H) KM curves of different HPV status. (I) KM curves of different smoking status.

In the present study, the correlation of mRNAsi indices between
normal tissues and HNSCC tissues were presented based on
the OCLR machine-learning algorithm (Malta et al., 2018).
In line with previous studies regarding other cancers (Malta
et al., 2018; Lian et al., 2019), a significantly higher level of
mRNAsi was observed in HNSCC tissues compared to that in
normal tissues. By comparing the mRNAsi with the clinical
characteristics, which revealed that mRNAsi had a significant rise
in HPV positive patients, and that male patients had a higher
mRNAsi indices than female patients. This result may suggest
a potential correlation of HPV status with CSCs. One study of

four HPV negative HNSCC cell lines were infected with HPV
genome, which resulted in tumor cells have increased growth
and self-renewal capacity (Lee et al., 2015). Zhang reported a
study of six oropharyngeal HNSCC tumor specimens, where
HPV positive tumors had a higher proportion of CSCs compared
to HPV negative tumors in six specimens of HNSCC, which
was attributed to p53 inactivation by HPV (Zhang et al., 2014).
P53 is an essential target of HPV-E6/E7 proteins that bind
to p53 resulting in the deregulation of p53 and causing a
more proliferative state (Jin and Xu, 2015). Conversely, Tang
determined that CSCs population are not affected by HPV in
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FIGURE 6 | KM curves showing the OS of each subgroup of HNSCC patients with high or low riskscores. (A) KM curves of high and low risk samples in the young
(age ≤ 60). (B) KM curves of high and low risk samples in the elderly (age > 60). (C) KM curves of Female samples. (D) KM curves of Male samples. (E) T1+T2 KM
curves of high and low risk samples. (F) T3+T4 KM curves of high and low risk samples. (G) N0+N1 KM curves of high and low risk samples. (H) N2+N3 KM curves
of high and low risk samples. (I) Stage I+II KM curves of high and low risk samples. (J) Stage III+IV KM curves of high and low risk samples. (K) G1+G2 KM curves
of high and low risk samples. (L) G3+G4 KM curves of high and low risk samples. (M) KM curves of drinking samples. (N) KM curves of non-drinking samples.
(O) KM curves of HPV negative samples. (P) KM curves of HPV positive samples. (Q) Tabacco1 KM curves of high and low risk samples. (R) Tabacco2+3+4 KM
curves of high and low risk samples.
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TABLE 3 | Univariate and multivariate COX regression analyses of clinical factors.

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age 1.017 1.005 1.030 0.007 1.022 1.008 1.035 0.001

Alcohol 1.025 0.792 1.326 0.850 0.927 0.710 1.212 0.581

T 1.099 0.962 1.256 0.164 0.907 0.776 1.059 0.216

N 1.205 1.045 1.389 0.010 1.195 1.015 1.406 0.032

Grade 1.096 0.915 1.313 0.318 1.051 0.867 1.274 0.612

Stage 1.345 1.138 1.589 5.0E-04 1.310 1.056 1.625 0.014

RiskScore 1.913 1.642 2.228 2.0E-16 1.872 1.613 2.173 2.0E-16

FIGURE 7 | GSVA-derived clustering heatmaps of different pathways. (A) Clustering of correlation coefficients between KEGG pathways and RiskScore with a
correlation greater than 0.25 with risk scores. (B) The correlation between the KEGG pathway and the risk score is greater than 0.25, and the ssGSEA score in each
sample changes with the increase in risk score. The horizontal axis represents the sample, and the risk score increases in turn from left to right.

HNSCC (Tang et al., 2013). These databases suggested that the
current understanding of the relationship between HPV status
and CSCs is still weak. It will be interesting to perform additional
research for the underlying mechanism.

By applying WGCNA, an important system in bioinformatics
used to generate gene co-expression networks to detect gene
modules and identify key genes (Langfelder and Horvath, 2008;
Li et al., 2018), gene modules that were correlated with mRNAsi
indices based on the gene expression profile of HNSCC samples
were initially identified. In these modules, blue one had the most

considerable positive correlation with mRNAsi indices, while
yellow one had the opposite. Functional annotation could be
beneficial in evaluating the impact of these gene modules on
HNSCC. Regarding the blue module, major biological processes
were involved in regulating the mitotic phase, organelle fission
and negative regulation of the cell cycle. KEGG enrichment
pathways in the blue module encompassed DNA replication, p53
signaling pathway and the cell cycle. KEGG enrichment pathways
in the yellow module were mainly involved in ECM–receptor
interactions, PI3K-Akt signaling pathways, and MAPK signaling

Frontiers in Genetics | www.frontiersin.org 11 October 2020 | Volume 11 | Article 566159

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-566159 October 23, 2020 Time: 18:58 # 12

Tian et al. 8-mRNAsi Signatures for Predicting HNSCC

FIGURE 8 | The transcriptional expression level of eight mRNAsi in HNSCC
cell lines.

pathways. These signaling pathways have been demonstrated to
facilitate cell survival, self-renewal and apoptosis inhibition in
many CSCs (Huang et al., 2017; Chen et al., 2020; Liao et al., 2020;
Qin et al., 2020).

Key genes selected from mRNAsi correlated modules are
currently employed in practice. Pan et al. (2019) screened 13
key genes based on mRNAsi associated gene modules in bladder
cancer, which was shown to be related to stem cells. Pei et al.
(2020) selected 12 mRNAsi based genes to be correlated with
the survival of breast cancer patients. Zhang et al. (2020) showed
13 genes enriched in the cell cycle, which were increased due to
the pathological stages of lung adenocarcinoma. These studies
signified that there are inextricable links between key gene
expressions and OS of patients. However, substantial evidence
demonstrating that key genes may have predictive features in the
clinical characteristics of cancer patients not yet elucidated. In
the present study, 8-mRNAsi based signatures were established
in predicting HNSCC. The riskscore was generated in samples
of HNSCC based on expression patterns of these eight genes,
which can serve as an independent predictor for OS in HNSCC
patients (Table 2). The 8-mRNAsi based signature may also easily
divide the HNSCC samples into high risk and low risk groups
according to their various clinical characteristics required in the
prognostic model for its potential use in clinical practice. Similar
to our work, Cao and collaborators have evaluated the correlation
between a three lncRNA signature patients OS with HNSCC by
a log-rank test and univariable Cox regression. By OPLS-DA
analysis and fold change selection, the three lncRNA signatures
that can categorize patients into high and low risk groups have
the highest predictive capacity. Comparatively, the same point
is that univariable and multivariable Cox regression analysis
were used to select the related genes in both studies. Otherwise,
WGCNA and Lasso were performed in our study as the methods
of dimensionality reduction for analyzing and selecting CSCs
associated mRNA in HNSCC patients.

The 8-mRNAsi based prognostic model in our signatures
includes RGS16, LYVE1, hnRNPC, ANP32A, AIMP1, ZNF66,
PIK3R3, and MAP2K7, in which several genes have been
reported to be linked with stemness features or be involved
in cancer progression. LYVE1, lymphatic vessel endothelial

hyaluronan receptor-1, has been identified as a biomarker of
yolk sac endothelium and definitive hematopoietic stem and
progenitor cells (HSPCs) by Lyve1-Cre labeling, where most
HSPCs and erythro-myeloid progenitors were Lyve1-Cre lineage
traced (Lee et al., 2016). LYVE1 was thought to contribute
to lymphangiogenesis in malignant tumors (Jackson et al.,
2001). In the development of human embryonic stem cells,
heterogeneous nuclear ribonucleoproteins (hnRNPs) has been
identified as a critical regulator of physiologically relevant
alternative cleavage and polyadenylation (APA) events that
contribute to carcinogenesis by modulating the expression of
genes that regulate cell proliferation and metastasis (Fischl
et al., 2019). Silencing of hnRNPC can inhibit migratory and
invasive activities by promoting miRNA-21 in brain tumor cells.
Increased hnRNPC has been shown to contribute to cancer
stemness and invasive potential in cancers (Park et al., 2012;
Kleemann et al., 2018; Wu et al., 2018). However, the exact
molecular function of hnRNPC needs to be explored in cancer
stemness. ANP32A, acidic leucine-rich nuclear phosphoprotein-
32A, expressed in normal tissue as well as multiple malignant
tumors, several recent studies have indicated thatANP32A plays a
significant role in cell proliferation, signal transduction, and other
biological processes. Overexpression of ANP32A was associated
with lymph node metastasis, which predicted poor survival in
oral squamous cell carcinoma (OSCC) patients. Mechanical study
indicates that ANP32A promotes tumor cell growth and may
involve the inactivation of p38 and phosphorylation of Akt (Yan
et al., 2017). AIMP1 was identified as a cytokine that secretes
in response to hypoxia and cytokine stimulation for involving
cell proliferation regulation. A series of studies have shown that
AIMP1 can enhance wound healing by the mediation of fibroblast
proliferation via ERK, and N-terminal domain (amino acids 6–
46) of AIMP1 was responsible for the stimulation of fibroblast
proliferation (Park et al., 2005; Han et al., 2006). AIMP1 peptide
increased the expression of cyclin D1 and c-myc by stabilizing β-
catenin through FGF receptor 2 (FGFR2)-mediated activation of
Akt, which promotes the proliferation of bone marrow-derived
mesenchymal stem cells (Kim et al., 2013). ZNF66 is a member
of the zinc finger transcription factor family which encounters
many members and the gene coding for this protein is located on
chromosome 19 in a fragile site region. Low mRNA expression
of ZNF66 is shown in head and neck cancers according to the
TCGA dataset.1 However, the correlations between the features
of CSCs and ZNF66 is still unclear, and additional studies need
to be performed to explore the role of ZNF66 in the stemness of
HNSCC. PIK3R3 is one of the regulatory subunits of PI3K that
positively correlates with cell proliferation signatures (Phillips
et al., 2006). Furthermore, the expression of PIK3R3 increased
in neoplastic tissues compared to non neoplastic in patients with
gastric cancer (Zhou et al., 2012). However, higher expression of
PIK3R3 has been reported in cancer patients with satisfactory
colorectal cancer outcomes as it facilitated the apoptosis of
cancer cells (Ibrahim et al., 2018). MAP2K7 is a mitogen-
activated protein kinase, encodes MMK7 and acts through the
JNK pathway for cell cycle arrest and suppression of epithelial
cancers (Schramek et al., 2011).

1https://www.proteinatlas.org
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The robustness of the 8-mRNAsi based signature was validated
across the TCGA test set and an external data set (GSE41613).
Although these findings have been validated in HNSCC
cell lines, further validation is still required in matched
tissues of HNSCC patients. Additionally, the molecular process
and signaling pathway obtained across the TCGA cases
alone are inadequate and need to be confirmed through
further investigation.

CONCLUSION

In our eight mRNAsi based signature, high expression of
RGS16, LYVE1, hnRNPC, ANP32A, and AIMP1 are correlated
with a high risk of death as these genes focus in promoting
cell proliferation and tumor progression, similar to stem cells.
Regarding the other three genes, higher expression levels of
ZNF66, PIK3R3, and MAP2K7 are associated with a low risk
of death. Interestingly, the molecular functions of these genes
mainly concentrate on repressing the cell cycle and fostering
apoptosis. Moreover, the present GSEA analysis discovered
the mechanism regarding the KEGG pathway, which underlies
the riskscore of the 8-mRNAsi based signature. Accordingly,
to the best of our knowledge, all genes in the proposed
mRNAsi based prognostic model have not been studied in
HNSCC and may offer insight into the development of targeted
therapies for HNSCC.
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