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Abstract
Given the importance of high blood pressure, it is important to control and maintain a
constant blood pressure level in the normal state. The main aim of this article is to design
a model predictive controller with a genetic algorithm (GA) for the regulation of arterial
blood pressure. The present study is an applied cross‐sectional study. In order to do this
research, studies related to designing mathematical models for blood pressure regulation
and mechanical models for heart muscle and pressure sensors are investigated. Then, a
model predictive controller with GA is designed for blood pressure control. All control
and design operations are performed in the MATLAB software. According to the
viscoelasticity of blood, transducer, and injection set, we can assume the mechanical
model as Mass, Spring, and Damper. Initially, the patient's blood pressure is lower than
normal, and after controlling, the patient's blood pressure returned to normal. By using a
GA‐based model predictive control (MPC), mathematical validation, and mechanical
model, the patient's blood pressure can be adjusted and maintained. The simulation result
shows that the GA‐based MPC offers acceptable response and speed of operation and
the proposed controller can achieve good tracking and disturbance rejection.

1 | INTRODUCTION

Haemodynamically, blood pressure is the force that imparts
blood to the walls of the veins in which it flows. Normally,
blood pressure increases and decreases continuously
throughout the day, but if left elevated for a long time, it can
damage the heart increasing the risk of heart attack [1,2].

Hypertension is a serious medical condition that raises the
risk of heart attack, stroke, and sightlessness leading to pre-
mature death. Of the approximately 1.2 billion people with
high blood pressure, only 1%–5% of the population keeps it
under control. An unhealthy diet, inactivity, alcohol, and red
meat are the main reasons for high blood pressure [3,4]. The
above‐mentioned reasons and the complications of hyperten-
sion determine the blood pressure of a person which is espe-
cially important for the surgeons (during and after surgery).
Hypertension often occurs in the early hours after surgery. In
fact, some pills are used to treat high blood pressure after heart
surgery or heart valve replacement. In recent years, with the
development of intelligent systems to solve many complex
problems, patient monitoring and medical data analysis have

been developed using predictive systems‐based computer‐
aided systems and impeller optimisation methods and many
other intelligent techniques [5]. In this regard, due to uncer-
tainty in various medical issues, model predictive control
(MPC) is a powerful tool for intelligent decision‐making sys-
tems in the medical field and has an important role in medicine
[6–14]. The combination of predictive controllers and intelli-
gent methods is a very efficient and powerful way to control
systems with limited inputs and outputs.

In fact, the controller is aware of the input and output
restrictions and will in no way produce an input signal that
violates the restrictions. Extensive research has been done on
the combination of predictive model control and intelligent
optimisation methods, which will be discussed further below.
In Ref. [15], an MPC with particle swarm optimisation (PSO) is
provided which according to the patient status, adjusts the
drug injection to maintain mean arterial pressure (MAP) at the
regulated value. On the other hand, in Ref. [16], a fractional‐
Order PID controller has been designed to reduce MAP in
cardiac patients after surgery. The fractional‐order PID
controller is used to divide the injection of sodium
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nitroprusside (SNP) in a controlled approach into the patient's
cardiovascular system to reduce high blood pressure.

Generally, the goal of controllers is to control the amount
of drug being injected into the body, which in turn controls
blood pressure and reduces complications during surgery and
post‐operative treatment. In Ref. [17], a proportional‐integral‐
derivative (PID) controller is designed to regulate CO and MAP
by simultaneous injection of two drugs, both of which are
nitroprussides (sodium and dopamine). The Ziggler–Nichols
method is used to adjust the PID controller gate. Then, the PID
gene is optimised using a GA and then the data is obtained
from the deployment, elevation, and integrated square error as a
target function. All medical instruments that connect to the
body have viscoelasticity; additionally the tissue has the same as
fats apart from muscles and veins. Also, the blood pressure of
the body according to these specifications can be modelled as
Spring, Mass, and Damper. Using mechanical elements to
simulate blood pressure acts as the innovation. In Ref. [18], a
fractional‐order PI controller is designed for regulating of Mean
arterial blood pressure (MABP). Merits of the new design can
be named as to give better disturbance rejection for sensitive
and insensitive patients. Therefore, the technique proposed a
simple robust controller. In Ref. [19], a new method using
Back‐Propagation Neural Networks (BPNN) was used to
calculate blood pressure, which according to the results shows
that blood pressure is measured continuously. According to the
investigations, eight features were extracted according to the
time and frequency amplitudes related to the real‐time pulse
signals measured by a pressure sensor to apply to the BPNN. It
should be noted that this sensor is used to calculate systolic and
diastolic blood pressure.

The drug injection control system is an electromechanical
device that allows intravenous drug injection into the human
body and increases its effectiveness by monitoring the rate and
timing of drug release. Controlling moderate MAP and cardiac
output during clinical practice is highly needed. The type‐2‐fuzzy
logic controller based on PID is considered forMAP control and
it is observed that the designed controller is robust under con-
ditions of uncertainty, external disturbances, and noise [20].

Hence, the purpose of this study is to control blood pres-
sure based on a combination of MPC with the metaheuristic
optimisation method. The proposed approach improves the
sensitivity of the blood pressure control system. Indeed, the
MPC is an effective strategy for controlling non‐linear systems,
and delay systems can optimise responses of the system when
the system is under the states and control constraints. Due to
using the GA method is expected to improve the responses.

The rest of this article is divided as follows. The blood
pressure model and model prediction controller based on a
genetic algorithm (GA) will be described in Sections 2 and 3,

respectively, and the model prediction controller is optimised
using a GA. The mechanical model of the heart muscle will be
considered in Section 4. Section 5 is dedicated to present the
simulation results and the resultant discussion. Finally, this
article is concluded in Section 6.

2 | BLOOD PRESSURE MODEL

Blood pressure is actually the average blood pressure over a heart
period and is determined by the cardiac output, vascular resis-
tance, and central venous blood pressure. Sustained control of
MAP is important in the prevention of acute life‐threatening
conditions such as stroke and the reduction of hypertensive
diseases. Previous studies have shown thatMAP ismore accurate
than the predicted metabolic syndrome among elderly people
with hypertension determined by systolic, diastolic, and pulse
pressure [21]. Today, themost important cause of death in a heart
attack is hypoxia‐ischaemic brain injury [17]. However, if the
MAP is below the threshold of automatic adjustment, it may lead
to additional ischaemia and brain injury, and if theMAP is higher
than the threshold of automatic adjustment, it may cause
excessive strain which may lead to increased brain oedema and
worsened brain injury [22]. Therefore, keeping blood pressure at
an optimum range using the relationship between oxygen satu-
ration and blood pressure in the brain tissue area is critical for
survival in such patients [22].

Hypotensive anaesthesia (anaesthesia by lowering blood
pressure) is widely used in general surgeries, which results in
decreased intraoperative bleeding and requires postoperative
blood transfusion. On the other hand, this anaesthesia requires
multiple injections of drugs to regulate key physiological vari-
ables such as alertness, heart rate, MAP, and respiratory rate
[23]. The purpose of this control system is to reduce the MAP
of the patient by adjusting the dose of nitroprusside and the
drug. The controlled drug delivery structure to adjust MAP is
shown in Figure 1.

In Figure 1, an injection pump, injection accessories, and
body tissue as a mechanical model are explained. According to
Figure 1, the controller based on the error between the set‐
point and the patient's measured blood pressure provides a
suitable control signal for proper injection of the drug into the
injection pump.

In this form, the electrical signal is sent to a mechanical
environment and is excited by the mechanical elements and
eventually converted into an electrical signal. We considered a
mechanical source as a source that is excited using an electrical
signal. The mechanical source then generates a mechanical
signal in a mechanical environment, and this signal is eventually
converted to an electrical form and then used to control.

F I GURE 1 Structure of controlled drug delivery
to adjust MAP
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The MAP model is considered as follows [24]:

ΔMAPðsÞ
SNPðsÞ

¼
Kð1þ T 3sÞ� θs

ðð1þ T 3sÞð1þ T 2sÞ � αÞð1þ T 1sÞ
ð1Þ

where, ΔMAP is blood pressure changes, SNP is drug injection
rate, K patient sensitivity to drug, T1, T2, and T3 drug effect
time constants, θ system delay, and α The constant is the
circulation of the drug.

3 | MODEL PREDICTIVE CONTROL

MPC is a control technique, that is used to control a process
which includes a set of constraints. MPC is an advanced
controller for controlling industrial processes in which the
physical constraints on the system can be considered during
design. MPC operates based on iterative optimisation of a cost
function with a finite horizon at each sampling time, and the
control action generates based on the past, present, and future
information.

Figure 2 is shows the MPC strategy. It should be noted that
the first step of the control strategy is implemented, and the
plant state is sampled again, and the calculations are repeated
starting from the new current state, and a new control and the
path of the new predicted state are obtained.

The prediction horizon is continuously moved forward, and
for this reason, MPC is also called the receding horizon control.

MPC has been used as a very practical and successful
control method with a simple configuration and it also has
been known as a practical controller, that is it able to consider
multivariate systems and control the online optimization pro-
cess. The main structure of the MPC strategy with horizon
control is shown in Figure 3 using the following method [25]:

1. At every instant, the behaviour indicated by the plant as well
as future plant outputs are calculated in the first place by
using a dynamic process model based on the most recent
observation from system inputs and outputs.

2. Control signal inputs are calculated by minimising the signal
error tracking the difference between the predicted output

and the signal of the desired path to follow the trend as
much as possible by considering the objective function and
constraints.

3. While other control signals are removed as a result of the
following sampling instant, merely the first control signal is
applied within the plant.

4. The updated value went along with Step 1.

The cost function and would be demonstrated as follow:

J ¼ ∑
P

i¼1
μiðŷðt þ i|tÞ � wðt þ iÞÞ2

þ ∑
M

i¼1
λiðuðt þ iÞ � uðtþ i � 1ÞÞ2

ð2Þ

where, P is the prediction horizon, M is the control horizon, μi
and λi are weighting coefficients. ŷðt þ i|tÞ, w(t þ i), u(t þ i)
are predicted output, desired output, and future control signal,
respectively, and the constraints considered as below:

xðtþ 1Þ ¼ f ðxðtÞ; uðtÞÞ; ð3Þ

yðtÞ ¼ gðxðtÞ; uðtÞÞ; ð4Þ

u
�

≤ ‖ uðtÞ‖ ≤ �u; ð5Þ

x
�

≤ ‖ xðtÞ‖ ≤ �x: ð6Þ

where, u
�
, �u are lower bound and upper bound of signal

control, x
�
, �x are lower bound and upper bound of state of the

system, respectively.
The main goal is to minimise the cost function Equation

(2) by considering constraints Equations (3)–(6).

4 | GENETIC ALGORITHM

On the basis of natural selection theory, GA is a means of
resolving constrained and unconditioned (unrestricted) opti-
misation problems (issues), which constantly alter the popu-
lation of single answers. People from the most recent
generation at GA such as parents, are chosen which are later

F I GURE 2 The strategy of model predictive control [25]
F I GURE 3 Block diagram of MPC [25]
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utilised to make children. It is important to note that these
children themselves are members of the upcoming generation.
Among generations that appear consecutively, the number of
responses is seen to have developed to an optimal (optimum)
response. Considering other features GA, it can be said that
several optimisation problems for which standard optimisation
algorithms were not compatible to solve, could be resolved
[26].

At each stage, GA uses three basic rules to create the next
generation of the current population:

� Selection rules, select individual answers called parents.
� Displacement laws, combine parental characteristics to form

their next‐generation child.
� Mutation laws, randomly apply changes to one (or both)

parents to form the offspring of the next generation.

The differences between theGA and the classical derivation‐
based optimisation algorithm are summarised in Table 1.

One of the key benefits of using GA‐basedMPC is its ability
to manage a variety of objective functions and processing
models without changing the structure of the controller.

5 | MODEL PREDICTIVE CONTROL
STRUCTURE BASED ON GA

GA‐based control uses the process model to search for control
movements, which meet process constraints and optimise a
cost function. On the other hand, due to the high computa-
tional load in MPC and its slowness, the GA‐MPC method can
increase the speed of the system and significantly reduce the
computational volume. MPC structure based on GA is shown
in Figure 4 [27].

Adjusting the input weight matrix can greatly fluctuate the
closed‐loop control system. Therefore, using the MPC‐GA
approach can reduce these fluctuations to some extent and
improve the system response. The following steps describe the
operation of the GA‐MPC algorithm:

1. While making use of the process model, examine process
outputs.

2. By doing a GA search in order to find optimal control
motion through which the cost function is increased to an
optimum level and the limitations (constraints) of the
process are satisfied.

3. The optimal control movements created in Step 2 are
implemented to the process.

4. Step 1 to three applies to time.

The flowchart of the algorithm of the GA based on MPC
is shown in Figure 5.

6 | THE MECHANICAL MODEL OF
THE HEART MUSCLE

The cardiovascular system is actually a mechanism of blood
transfusion that delivers nutrients to the tissues and organs of
the body and eliminates toxic waste.

This cycle involves the heart, and most importantly the
heart muscle that circulates blood and blood vessels, which
transfers blood to various organs as well as the lung, thereby
activating the pulmonary arteries to exchange oxygen and
carbon dioxide in the lungs.

Blood is transmitted from the aorta to the arteries, arteries,
and capillaries. The blood flow to the cardiovascular system is
under the laws of mass, motion, and interaction with the arterial
wall. Choosing the right model size depends on the goals and
accuracy you are looking for. Parametric models of distribution
operate mainly on uniform distribution and take into account
fundamental variables such as pressure, flow, and volume of the
muscle to each muscle or organ at any given moment.

This approach provides conventional differential equation
heart muscle modelling to evaluate the pervasive distribution of
pressure, flow, and blood volume across a range of physiological
conditions. Mathematical models of blood flow, with their non‐
destructive properties, facilitate the study of pathological and
physiological forms, and the calculation of pressure and flow
profiles can be part of potential future diagnostic tools.

On a patient‐specific basis, profiles can be compared with
physiological cases showing normal or pathological blood flow.
Investigating the dynamics of neuromuscular reflex movements

F I GURE 4 Model predictive control structure based on GA [27]

TABLE 1 Comparison of the classical algorithm with GA

Classical algorithm Genetic algorithm

In each computational step, a point is created. The sequence of these points
tends to the optimal answer.

In each computational step, a set of points is created. The best point in the
population tends to the optimal answer.

The next point determines the sequence with definite calculations. The next‐generation population is determined by calculations using random
numbers.
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can provide valuable insights into the status of patients with
hypertensive disorders. Consider a patient who sits comfortably
with his or her shoulder and elbows with adjustable support and
does not perform any activity that increases or decreases heart
rate and is in a constant position. Then, over time t ¼ 0, the
pressure suddenly increases and the heart muscle begins to act
quickly. Mx Indicates a momentary change in heart muscle
function, which is considered here to be an increase in pressure.
M represents an effort made in response to increased pressure by
the heart muscle. Given these conditions, we will rewrite
Newton's Second Law as follows [15]:

MxðtÞ − MðtÞ ¼ J€θ ð7Þ

where, J is the point where the heart resides.
The heart muscle response consists of systole and diastole,

and in order to avoid complexity, we assume that the muscle
contraction produced by Mx is simplified to a mechanical
model of the heart muscle as follows (Figure 6) [28]:

It should be noted that in this mechanical system, muscle
contraction, transducer and its set can be summed as mas,
spring, and damper, which can show the vascularity of the
cardiac muscle, transducer and its set. M is regarded as a force
while it is in torque. Subsequently, the ‘displacement’ action is
actually the reaction of the heart muscle with angular varia-
tions θ to θ1. Likewise, the degree of myocardial stiffness (k)
and the viscosity change (B ) parameter are considered as
constant units. The equations of motion for the muscle
model are:

MðtÞ ¼ kðθ � θ1Þ ð8Þ

and considering (B )

MðtÞ ¼M0ðtÞ þ B _θ1 ð9Þ

M0 is a torque that is produced by the heart muscle at the
same conditions and M0(t) is actually a temporal operator. By
combining the two equations above, a kinetic equation is
obtained that determines the dynamics of the system as well as
θ changes in the torque applied by hypertension. The equation
will be as follows:

BJ
k

:::

�þ J€θ þ B _θ ¼MxðtÞ − M0ðtÞ ð10Þ

As stated in the mechanical model of the heart, muscle
tissue is modelled by mechanical elements. In this model, the
spring is used as muscle tissue tension, the damper as the
spring‐resistance, and the spring stabiliser.

We draw the concern to this point that damper can
mention the resistance of the injection, muscle and injection
liquid, spring and mass are noted as viscoelacity of these three
items. Assume mass, spring, and damper in one block box. In
this block box, mass and spring can be named for the added
viscoelacity and damper also be added to the resistance system.
Block box (Mass, Spring, and Damper) is drawn, fixed, and
simulated in Simulink toolbox of MATLAB. Simmechanic is

F I GURE 5 Flowchart GA‐based MPC approach

F I GURE 6 Heart muscle model
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one part of SIMULINK which can place the sensor and
monitor the measurement online. Sensors in SimMechanic can
produce mechanical signals. We transfer the mechanical signals
to electrical signals to m‐file and run the mechanical model in
Simmechanic, and transfer mechanical data to m‐file that can
be noted as innovation; additionally we also run one me-
chanical black box as the system's resistance and viscoelacity
has merits and demerits that will be explained.

7 | SIMULATION RESULTS AND
COMPARISONS

Regular and multi‐parameter implementations since the control
system performance simulation time aremainly related to the
execution of the control algorithm, and it is sufficient to
compare the execution time of the control algorithms to
compare the total run time of the simulation for different
controllers.

7.1 | Trajectory tracking

For the first simulation, it is assumed that the model of the
system operates as follows [15]:

GPðsÞ ¼
ΔMAPðsÞ
SNPðsÞ

¼
5ð1þ 30sÞe� 60s

1þ 130sþ 4600s2 þ 30000s3

ð11Þ

Simulation is performed in MATLAB and Simulink envi-
ronments It can be assumed that the runtime in other software
environments is proportional to the time taken in MATLAB
software. Figure 7, shows the unit step response of the open‐
loop system.

The first design step is changing the continuous model to
discrete model. First, we discretise the continuous system using

zero‐order hold with a sampling time of 1 (Ts ¼ 1). Therefore,
the discrete system will be as follows:

GPðzÞ ¼ z� 60
b2z2 þ b1 zþ b0

z3 þ a2 z2 þ a1 zþ a0
ð12Þ

where,

b0 ¼ � 0:002233; b1 ¼ � 1:543� 10� 5; b2 ¼ 0:002403;

a0 ¼ � 0:8578; a1 ¼ 2:712 ; a2 ¼ � 2:854

Figure 8 shows the unit step response of the open‐loop
discrete system. According to Equation (6), the system output
will be as follows:

yðkÞ ¼ � a2 yðk � 1Þ � a1 yðk � 2Þ � a0yðk � 3Þ
þ b2uðk � 61Þ þ b1 uðk � 62Þ þ b0uðk � 63Þ

ð13Þ

Now, the design of controller parameters will be dis-
cussed. In cost function Equation (2), we consider M ¼ 2,
μi ¼ 1, and λi ¼ 0:1. Given the values presented above, and
considering the cost function relationship, this function
would be:

J ¼ ∑
P

i¼1
ðŷðt þ i|tÞ � wðt þ iÞÞ2

þ ∑
2

i¼1
0:1ðuðt þ iÞ � uðtþ i � 1ÞÞ2 ð14Þ

The limitation of the drug infusion rate is the constraint of
the proposed controller [29]:

u ≤ 2
�
ml
h

�

ð15Þ

F I GURE 7 The step response of the system
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Given that the GA is involved in optimisation, the
following figure shows the convergence performance of this
algorithm in each iteration. Due to the long simulation time,
these quantities gradually converge to zero. This demonstrates
the high capability of the algorithm to find the optimal point
without the need for sophisticated computation. The param-
eters of the GA adjustment are summarised in Table 2.

In Figure 9, the convergence process of GA is shown.
Only after several iterations, the fitness value reaches the
smallest.

We then plot the complete system response presented in
Figure 10 for the desired output of the step signal. Figure 10
shows the response of the controlled system. As we can see in
Figure 10, the system response follows the desired output.

The initial visit blood pressure for the patient is considered
40 mmHg. As shown in Figure 10, the system response follows
the desired output and in the first second reaches normal
blood pressure.

7.2 | Investigation of the effect of
parameter P

Investigating the effect of parameters is a reliable way to check
how a control approach works, and by applying the changes to
each one, we can find out how the control system works and
use it in designing or improving previous designs.

Overall, this review provides a comprehensive overview of
the performance of the controller under different conditions.
In Figure 11, the influence of the prediction horizon (P ) on the
system response is shown. As the horizon increases, the
computational volume increases, but the signal becomes softer
and has a lower jump than lower values. On the other hand,
this increase makes the system slower. As the prediction

F I GURE 8 The step response of the discrete system

F I GURE 9 GA convergence process

TABLE 2 Genetic algorithm adjustment parameters

Parameters Values

Mutation probe 0.005

Crossover probe 0.7

No. of generations 10

Population size 100

Insertion rate 1
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horizon decreases, the system speed increases, but on the
contrary, the amount of jump increases.

Additionally, Integral Absolute Error (IAE), Integral
Square Error (ISE), and Mean Square Error (MSE) error
criteria are presented for different values of P in Table 3.

7.3 | Disturbance effect

The following is a review of the effect of the perturbation on the
patient, which is the effect of diuretics that is mainly used in
patients with renal impairment, and its major side effect is the
reduction of the patient's blood pressure. The disturbance is

considered to be sinusoidal and also can be noted as the
heartbeat, injection device, percentage of injection material and
nervous system. The amplitude of this perturbation is 10.
Figure 12 demonstrates that the effect of drug‐induced
perturbation has been eliminated.

Also, Table 4 shows IAE, ISE, and MSE error criteria with
and without disturbance.

In this section, we consider the unit step as the reference
value. The output (MAP) and the control signal (Drug infusion
rate) of the proposed GA‐based MPC control system are
shown in Figures 13 and 14.

Figure 14 shows that the constraint of the control signal is
satisfied according to Equation (15).

7.4 | Comparison of GA‐based MPC with
PID controller, MPC, and PSO‐based MPC

The comparison in Figure 15 proves that the performance of
the GA‐based MPC is much better than the optimised PID
controller [24], PSO‐based MPC, and MPC.

F I GURE 1 0 The output response of the system
with GA‐based MPC (P ¼ 20, M ¼ 2)

F I GURE 1 1 MAP for different values of
Prediction Horizon (P )

TABLE 3 Error criteria for different values of P and M ¼ 2

Prediction horizon (P) ISE MSE IAE

P ¼ 5 3.02 0.107 5.25

P ¼ 20 2.10 0.011 4.42

P ¼ 40 2.14 0.012 4.65
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It should also be noted that the system always responds
faster than other controllers. This is one of the main benefits
of MPC. With significant advances in system response, this
control approach is applicable to a wide range of patients.

Additionally, the comparison between the performances of
the controllers is shown in Table 5.

8 | CONCLUSION

Among the advanced control methods, MPC has been in place
for decades, as the most successful advanced process control
method has found a good place in various industries.

MPC can be described, firstly, by foretelling the future
output of the system, and secondly, by calculating future
output signal online which is carried out by means of bringing
the target function to the lowest level under state and input
constraints. On the final stage, they apply to real systems and
then the stages covered so far are again duplicated by
measuring state, output, and input variables.

Therefore, the presence of a proper model of the real
system is a prerequisite for the design of interpolation control.
The approaches that are nowadays more favoured are the
combination of this controller with meta‐heuristic methods
and optimisation algorithms. Therefore, in this study, hyper-
tension control strategy using a predictive control technique
and its combination with GA are presented. The main focus
of this article is to evaluate the performance of the GA based
on MPC strategy that has been used to achieve optimal SNP
drug infusion rate to regulate MAP and also to apply this
method to the cardiac muscle mechanical model and using
this mechanical model is the main difference compared with
Ref. [15]. The GA optimisation method was used to adjust the
controller parameters. After lowering blood pressure to a

F I GURE 1 2 The effect of drug disturbance on
the patient

TABLE 4 Error criteria in the presence of disturbance (M ¼ 2,
P ¼ 20)

Disturbance effect ISE MSE IAE

Without disturbance 2.10 0.011 4.42

With disturbance 2.20 0.014 4.63
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F I GURE 1 3 Output response (MAP) of the
system with GA‐based MPC (P ¼ 20, M ¼ 2)

F I GURE 1 4 Control signal corresponding with GA‐based MPC to set point responses

F I GURE 1 5 The step response (MAP) for
MPC‐GA, MPC‐PSO MPC, and the PID controller
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normal control value, the MAP returns to normal and remains
stable at approximately 80 mm Hg by performing drug in-
jection and taking into account the physical limitations of the
injection pump. The results indicate that the GA‐based MPC
has better performance than PID controller with the delay
and the limit of the control signal.

As can be seen from the results of parameter changes, the
large forecast horizon will provide more stability for the
closed‐loop system. Therefore, the idea of the forecast
horizon has a significant impact on the design of a stable
predictor controller. Of course, choosing large quantities for
the forecast horizon increases the optimisation calculations.
Changes to the control horizon also allow the control of the
large horizon control to be activated, making the system
slower and less mobile for smaller values of the control ho-
rizon. In general, this study focuses on the control of MAP.
Other haemodynamic variables were not considered. In order
to bring the results of this research to real and practical blood
pressure control systems, the heart muscle mechanical model
has been used and mainly mechanical systems have many
limitations in their performance, as well as its configuration
and relationship with the controller which actually has an
electrical nature put a lot of restrictions. The simulation re-
sults achieve the main objectives and the algorithms provide
good performance.

However, the following suggestions for future research are
available:

� Applying and testing the control approach presented in
clinical trials using animals.

� Implement interactive MIMO control instead of using SISO
control loop.

� Provide model patient models to further manage physio-
logical parameters such as mean pulmonary artery pressure
as output and adjust it by injecting phenylephrine as input
and also considering patient stress and age as impactful
parameters on blood pressure.

Obtain real patient information and use a neural network
to obtain a non‐linear model that best describes the patient's
response to various drugs.
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