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Dissociation of Cohesin from Chromosome Arms
and Loss of Arm Cohesion during Early
Mitosis Depends on Phosphorylation of SA2

Silke Hauf*?®, Elisabeth Roitinger®, Birgit Koch®, Christina M. Dittrich“b, Karl Mechtler, Jan-Michael Peters*

Research Institute of Molecular Pathology, Vienna, Austria

Cohesin is a protein complex that is required to hold sister chromatids together. Cleavage of the Scc1 subunit of
cohesin by the protease separase releases the complex from chromosomes and thereby enables the separation of
sister chromatids in anaphase. In vertebrate cells, the bulk of cohesin dissociates from chromosome arms already
during prophase and prometaphase without cleavage of Scc1. Polo-like kinase 1 (Plk1) and Aurora-B are required for
this dissociation process, and Plk1 can phosphorylate the cohesin subunits Scc1 and SA2 in vitro, consistent with the
possibility that cohesin phosphorylation by Plk1 triggers the dissociation of cohesin from chromosome arms. However,
this hypothesis has not been tested yet, and in budding yeast it has been found that phosphorylation of Scc1 by the
Polo-like kinase Cdc5 enhances the cleavability of cohesin, but does not lead to separase-independent dissociation of
cohesin from chromosomes. To address the functional significance of cohesin phosphorylation in human cells, we have
searched for phosphorylation sites on all four subunits of cohesin by mass spectrometry. We have identified numerous
mitosis-specific sites on Scc1 and SA2, mutated them, and expressed nonphosphorylatable forms of both proteins
stably at physiological levels in human cells. The analysis of these cells lines, in conjunction with biochemical
experiments in vitro, indicate that Scc1 phosphorylation is dispensable for cohesin dissociation from chromosomes in
early mitosis but enhances the cleavability of Scc1 by separase. In contrast, our data reveal that phosphorylation of
SA2 is essential for cohesin dissociation during prophase and prometaphase, but is not required for cohesin cleavage
by separase. The similarity of the phenotype obtained after expression of nonphosphorylatable SA2 in human cells to
that seen after the depletion of Plk1 suggests that SA2 is the critical target of Plk1 in the cohesin dissociation pathway.
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Introduction onset of anaphase by the anaphase-promoting complex/
cyclosome, leading to their proteasome-dependent degrada-

Faithful inheritance of the genome depends on its accurate
replication and correct distribution to the two daughter cells.
In eukaryotes, the two copies of a chromosome that are
generated in S-phase (sister chromatids) remain connected
until they are separated in anaphase of mitosis. This physical
association (cohesion) allows the mitotic segregation machi-
nery to handle sister chromatids as entities that have to be
distributed to opposite poles. Sister chromatid cohesion
depends on cohesin, a protein complex that is highly
conserved in evolution and consists of at least four subunits:
two “structural maintenance of chromosomes” proteins,
Smcl and Smc3, the so-called “kleisin” subunit Sccl (also
called Rad21 or Mcdl), and Scc3 (reviewed in [1]). Cells of
humans, Xenopus, and other higher eukaryotes contain two
mitotic orthologs of Scc3, called SA1 and SA2. Cohesin
complexes in these cells contain either SA1 or SA2, but not
both [2,3].

In order to segregate sister chromatids to opposite poles in
anaphase, cohesin has to be removed from chromosomes. In
budding yeast, the prevalent mode of cohesin removal is by
proteolytic cleavage of the Sccl subunit at the onset of
anaphase by the endopeptidase separase [4,5]. Prior to
anaphase, separase is kept inactive by its inhibitor securin
[5,6,7,8,9,10], and in vertebrate cells also by inhibitory
phosphorylation mediated by Cdkl [11]. Both securin and
Cdk1’s activating subunit cyclin B are ubiquitinated at the
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tion and to separase activation (reviewed in [12]).

In higher eukaryotes, removal of cohesin from chromo-
somes occurs in at least two steps. During prophase and
prometaphase, the bulk of cohesin dissociates from chromo-
somes without Sccl cleavage [3,13]. Only minor amounts of
cohesin (an estimated 10%) remain on chromosomes up to
metaphase, preferentially at centromeres [10,14]. A similarly
minor amount of cohesin, presumably the chromosome-
bound fraction, is cleaved by separase at the onset of
anaphase [10]. As in budding yeast, the cleavage of Sccl is
essential for anaphase to occur [15]. Two mitosis-specific
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protein kinases are required for the cleavage-independent
removal of cohesin from chromosome arms: Plk1, called Plx1
in Xenopus, and Aurora-B [16,17,18]. Plk1/Plx1, but not
Aurora-B, can phosphorylate the cohesin subunits Sccl and
SA2 in vitro [16,17], and is required for their phosphorylation
in Xenopus egg extracts [16]. In these extracts, the ability of
cohesin to bind to chromatin correlates inversely with its
phosphorylation state [16]. This observation, and the finding
that PIkl is required for cohesin dissociation from chromo-
somes, raise the possibility that phosphorylation of cohesin
by PIkl leads to its cleavage-independent dissociation from
chromosomes. However, it is unknown whether Plk1’s critical
target in the cohesin dissociation process is cohesin itself, and
whether cohesin phosphorylation is required for dissociation
of the complex from chromosomes. So far, the functional
relevance of cohesin phosphorylation has been studied only
in budding yeast. In this organism, Sccl is also phosphory-
lated by a Polo-like kinase, called Cdcb, but this modification
does not seem to result in cohesin’s dissociation from
chromatin; rather, it renders Sccl more susceptible to
cleavage by separase [19,20].

To test whether cohesin phosphorylation is required for its
dissociation from chromosome arms during prophase and
prometaphase, and to address whether this modification
could explain the requirement for PIkl in this process, we
have searched for phosphorylation sites on all four subunits
of the human cohesin complex by mass spectrometry. We
have identified numerous mitosis-specific sites on Sccl and
SA2, mutated them, and expressed wild-type and non-
phosphorylatable forms of both proteins stably at physio-
logical levels in cultured human cells. The analysis of these
cell lines, in conjunction with biochemical experiments in
vitro, imply that Sccl phosphorylation is dispensable for
cohesin dissociation from chromosomes in early mitosis, but
enhances the cleavability of Sccl by separase. In contrast, our
data reveal that phosphorylation of SA2 is essential for
cohesin dissociation during prophase and prometaphase, but
is not required for cohesin cleavage by separase. The
similarity of the phenotype obtained after expression of
nonphosphorylatable SA2 (this study) to that seen after the
depletion of PIk1 [18] strongly suggests that SA2 is the critical
target of PIk1 in the cohesin dissociation pathway.

Results

Identification of Mitosis-Specific Phosphorylation Sites
on Human Cohesin

The SA1, SA2, and Sccl subunits of vertebrate cohesin
complexes are phosphorylated specifically in mitosis [2,14,16].
To be able to analyze the functional relevance of these
modifications, we mapped mitosis-specific phosphorylation
sites on human cohesin by mass spectrometry. We prepared
lysates from HelLa cells that had been arrested either at the
G1I/S transition (interphase) by hydroxyurea or in mitosis by
the spindle poison nocodazole, and immunoprecipitated
SA1- and SA2-containing cohesin complexes with antibody
447, which recognizes the C termini of both SA1 and SA2 [3].
Separation of the isolated proteins by SDS-PAGE and
staining with silver (Figure 1A) or cohesin-specific antibodies
(Figure 1B) demonstrated reduced electrophoretic mobility
of both SA1 and SA2 when the complexes had been isolated
from mitotic cells, indicating that the mitosis-specific
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phosphorylation of these subunits was preserved during the
isolation procedure. This notion was confirmed by immuno-
blotting with phosphothreonine-specific antibodies. This
assay yielded a pattern that was consistent with the presence
of phosphothreonine residues on SAl, SA2, and Sccl in
mitosis, whereas no phosphothreonine signal was detected on
cohesin subunits isolated from interphase cells (Figure 1B).

To identify phosphorylation sites, purified cohesin com-
plexes were digested with various proteases in solution and
analyzed by high performance liquid chromatography-elec-
trospray ionization-tandem mass spectrometry (HPLC-ESI-
MS/MS). In total, 28 phosphorylated serine or threonine
residues were identified. Of these, 18 could be assigned
unequivocally to specific residues, whereas in ten cases it
could not be determined which of several serine and
threonine residues in a given peptide was phosphorylated
(Figure 1C and Table 1). Two sites each were found in Smcl
and Smc3, ten in Sccl, and 14 in SA2. We were unable to
identify phosphorylated peptides derived from SA1, presum-
ably because SAl-containing cohesin complexes are much
less abundant than SAZ2-containing complexes [2,3]. By
analyzing cohesin peptides obtained by digestion with various
proteases, we were able to obtain a sequence coverage of
approximately 80% for each of the subunits (Figure S1 and
unpublished data). This indicates that our analysis was
theoretically able to identify the majority of in vivo
phosphorylation sites on cohesin subunits, although we
cannot exclude the possibility that some sites have gone
undetected.

The phosphorylation sites we identified on Smc1 and Smc3
were present in complexes from both interphase and mitotic
cells, and we therefore did not analyze them any further. Two
of these sites (Ser’®® and Ser”™ in Smcl) have been shown to
be phosphorylated by the ATM kinase in response to DNA
damage [21,22]. Only one of the sites in Sccl (Ser'®), and
none in SA2, was found phosphorylated in interphase. All
other sites were only identified in cohesin samples from
mitotic cells. These results confirm that Sccl and SA1/2 are
specifically phosphorylated in mitosis.

Since PIk1/PIx1 can phosphorylate Sccl and SA1/SA2 in
vitro and is required for the phosphorylation of these
subunits in Xenopus egg extracts [16], we compared the
sequence surrounding the identified sites to the consensus
sequences that have been reported as binding and phosphor-
ylation sites for PIkl. The C-terminal Polo box domain of
PIk1 binds to phosphorylation sites for which the consensus
S-[pT/pS]-[P/x] has been proposed [23]. These phosphoryla-
tion sites are thought to be generated by proline-directed
kinases, such as Cdkl, that “prime” the substrate for
subsequent recognition by Plk1l. Once bound to the substrate,
PIk1 is thought to phosphorylate sites that are distinct from
the one that is recognized by the Polo box. Based on in vitro
phosphorylation experiments using peptides derived from
the phosphatase Cdc25C, Nakajima et al. [24] have proposed
the consensus (E/MD)-x-(S/T)®-x-(E/D) for Plkl phosphoryla-
tion-sites, where ® signifies a hydrophobic amino acid,
whereas Barr et al. [25] have suggested the consensus
(EDIQ)-x-(SIT)®. One putative phosphorylation site in Sccl
(Thr'®%) and three putative sites in SA2 (Ser'®® Thr''?* and
Ser''”®) match the Polo box-binding consensus sequence,
although none of these sites contains a proline residue at the
+1 position (these are putative sites because they are present
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Figure 1. Identification of Mitosis-Specific Phosphorylation Sites on Human Cohesin

(A and B) Cohesin was immunoprecipitated by antibody 447 (which recognizes SA1 and SA2) from extracts prepared from HeLa cells that were
either arrested in S-phase by hydroxyurea (HU) or in mitosis by nocodazole (Noc). Cohesin was eluted by buffer of low pH and analyzed by (A)
silver staining and (B) immunoblotting with antibodies to cohesin subunits and phosphorylated threonine (P-Thr).

(C) Schematic representation of the phosphorylation sites on Sccl

and SA2 that were identified by mass spectrometry, and of the mutant

versions of the proteins that have been generated. The star indicates a phosphorylation site that was found in both interphase and mitotic Sccl.
All SA2 constructs used for in vitro experiments lack the 69 N-terminal amino acids. SA2-WT-myc and SA2-12xA-myc cell lines contain the

entire open reading frame of 1,231 amino acids.
DOI: 10.1371/journal.pbio.0030069.g001

in peptides in which the exact identity of the residue carrying
the phosphomoiety could not be determined; Table 1). We
also note that, although Cdkl can phosphorylate SA1/2 in
vitro [2], it does not appear to be essential for cohesin
dissociation in human cells and Xenopus egg extracts [3,16].
Two phosphorylation sites in Sccl (Thr'** and Thrgm) match
the consensus proposed by Nakajima et al. [24]. These two
sites, in addition to one in Sccl (Ser*®) and three in SA2
(Thr!1%? Ser!137
proposed by Barr et al. [25]. These findings are consistent
with the possibility that at least some of the sites in Sccl and
SA2 are directly phosphorylated by PIk1.

Alignment of multiple sequences showed that most of the
amino acid residues that we found to be phosphorylated in
mitotic human Sccl and SA2 were conserved in orthologs
from other vertebrates, but not in more distantly related
cukaryotes such as Drosophila, Caenorhabditis elegans, or yeast,
where the homology to human cohesin subunits is in overall
much lower (unpublished data). When we considered the

4. .
and Ser'®?Yy conform with the consensus

’
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distribution of the sites, we found that Sccl phosphorylation
sites strikingly clustered around the two separase cleavage
sites, whereas SA2 phosphorylation sites were concentrated
in the C terminus of the protein (Figure 1C). Clustering of
Sccl phosphorylation sites in the vicinity of separase cleavage
sites has also been observed in budding yeast [19]. This
indicates that, although individual sites on Sccl are not
conserved from yeast to human, the overall pattern of
phosphorylation is conserved. Evolutionary conservation of
the overall mitotic phosphorylation pattern, but not of
individual sites, has also been observed in the case of the
anaphase-promoting complex/cyclosome [26].

Phosphorylation of Scc1 Is Required for Efficient Cleavage
by Separase In Vitro

In budding yeast, phosphorylation of Sccl by the Polo-like
kinase Cdcb enhances the rate of cleavage by separase both in
vitro and in vivo [19,20]. We therefore analyzed whether
treatment of human Sccl with Plkl similarly increases its
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Table 1. Phosphorylation Sites Identified in Cohesin Subunits

Protein Number Phosphorylation Site Mitosis  S-Phase
Sccl 1 SIS*SPKV +
2 LNQS'*RVE +
3 EEIT'*“MRE +
4 GNIS'®ILQ ++ +
5 REGS'7°AFE +
10 MLVS185T186T187T1885189NLL +
6 IDIT3"2VKE +
7 LQES***VME +
8 MEAS**°RTN +
9 IDES**°AMP +
SA2 1 RIVS3”’MT37°LDK +
2 DNNS®**ADG +
3 DTMS'%8vIS +
4 SGIS'00451005RGS +
5 REQT'"°LHT'""?pyMm ++
6 MMQT''8pQL ++
7 QLTS3 T2 MR ++
8 PEDS'"*FMS' Oy Yp ++
9 PMQT'"“EHH ++
10 HHQT''*'PLD ++
11 RRGT'¢°s"161| ME ++
12 VMMS'77S178EGR +
13 DFDT'"*MDI +
14 MDES' VLG +
Smcl EGSS?7QGE + +
DSVS*4GS%°QRIST7OS77IYA + +
Smc3 GSQS'*’QDE + i+
ERGS1081GS1083QS108551OSGVPS + +

Where two or more residues are marked, the phosphorylation site could not be unequivocally assigned to any one
of the adjacent residues.

+, phosphorylated; ++, highly phosphorylated.

DOI: 10.1371/journal.pbio.0030069.t001

cleavability by separase (Figure 2). We activated purified
human separase-securin complexes by securin destruction in
mitotic Xenopus egg extracts and incubated the activated
separase with *S-labeled recombinant Sccl as a substrate.
Under these conditions, separase cleaves Sccl at the same
sites that are cleaved at anaphase onset in vivo, Arg172 and
Arg%o ([15]; Figure 2A). When untreated Sccl was incubated
with separase, efficient cleavage could only be detected at the
more N-terminal site, resulting in the formation of one N-
terminal and one C-terminal cleavage product which could
be seen by Phosphorimager analysis (Figure 2A and 2B). The
C-terminal cleavage product could also be detected by
immunoblotting using antibodies to a myc-epitope tag on
the C-terminus of Sccl (Figure 2A). When the cleavage
reaction was carried out in the presence of active recombi-
nant Plk1, cleavage at the first Sccl site was slightly enhanced,
and cleavage at the second site now became apparent (Figure
2A and 2B), consistent with the possibility that phosphor-
ylation of Sccl by Plk1l increases the cleavability of Sccl. A
cleavage product that corresponds to the fragment in
between the two cleavage sites could not be detected under
these conditions (Figure 2A), indicating that separase cleaves
either one or the other site in one Sccl molecule, but not or
only rarely both.

We suspected that the observed enhancement of Sccl’s
cleavability in the presence of Plkl might be due to
phosphorylation at two sites that are directly adjacent to the
cleavage sites, Ser'”® and Ser454, which we had found to be
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phosphorylated in mitosis in vivo (Table 1). We therefore
mutated these two residues to alanine, thereby creating
mutant Sccl-S'PAIS**A (see Figure 1C), and tested the
cleavability of this mutant in the absence or presence of Plkl
in vitro. Scc1-S'"’AIS*™*A could still be cleaved at the first site,
and this reaction was still slightly enhanced in the presence of
Plk1, but cleavage at the second site was completely abolished
even in the presence of Plkl (Figure 2A and 2B). This result
suggested that cleavage at Arg450 of Sccl by separase depends
on phosphorylation of Ser*”*. The analysis of a Sccl mutant in
which only Ser*™* was changed to alanine (Scc1-S*7*A)
confirmed this notion (unpublished data; see Figure 2C for a
related result). Next, we asked whether the enhancement of
cleavage at Arg172 upon incubation with PIkl is due to
phosphorylation of any of the other residues we had identified.
We therefore created a Sccl mutant in which nine of the ten
identified phosphorylation sites were mutated to alanine
(Scc1-9xA; see Figure 1C). Mutation of the tenth site was not
possible for technical reasons. When Scc1-9xA was incubated
with active separase, we found, as expected, that cleavage at
Arg450 was abolished, but cleavage at Arg172 did occur and was
still enhanced by the addition of Plkl (unpublished data). At
present, it is therefore unclear how Plk1 enhances cleavage of
Sccl at Arg'”% The effect could be due to phosphorylation of
one or more of the serine and threonine residues at positions
185-189 (Table 1), which were not included in our mutational
analysis; alternatively, it might be due to phosphorylation on
one or more residues that our mass spectrometry analysis
failed to identify. It also remains a formal possibility that Plk1
enhances cleavage at Arg172 by phosphorylating separase
rather than cohesin.

Scc1 Phosphorylation Is Not Essential for the Dissociation
of Cohesin from Chromosome Arms and for Progression
through Mitosis

To address the physiological significance of Sccl phos-
phorylation and the resulting enhanced cleavability of Sccl,
we generated cell lines that stably express Scc1-$**A or Sccl-
9xA (Figure 3; see also Figure 1C). To be able to distinguish
the ectopically expressed Sccl proteins from endogenous
Sccl, we tagged the Sccl mutants with nine myc epitopes at
their C termini. We have shown that such a tag does not
detectably compromise the ability of Sccl to assemble into
cohesin complexes [10] that can establish cohesion [15]. Since
expression of mutant Sccl could have deleterious effects on
cells, we furthermore used a doxycycline-regulatable pro-
moter to be able to control the level of expression. To avoid
potential overexpression artifacts, we screened by immuno-
blotting for cell lines in which the ectopically expressed Sccl
is present in amounts that are similar to the amounts of
endogenous Sccl when expression is fully induced by
doxycycline (Figure 3A). Immunoprecipitation of the ectopi-
cally expressed Sccl with myc antibodies, followed by SDS-
PAGE and silver staining, revealed that the mutated forms of
Sccl could associate with Smc1, Smc3, and SA1/2 into cohesin
complexes (Figure 3B; note that endogenous untagged Sccl
does not coimmunoprecipitate with Sccl-myc, indicating that
only one Sccl molecule is present per cohesin complex).
Sucrose density gradient centrifugation experiments in
conjunction with immunoblotting showed that most of the
ectopically expressed Sccl was incorporated into cohesin
complexes (Figure S2A). These observations indicate that any
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Figure 2. PIk1 Facilitates Cleavage of Human Scc1 by Separase In Vitro

(A) Recombinant, **S-labeled, wild-type and mutant Sccl (see Figure 1C) tagged with 9xmyc at the C terminus were incubated with human
separase. Recombinant human GST-Plk1 was added to the reaction mixtures where indicated. Samples were withdrawn from the reactions at the
indicated time points and analyzed by SDS-PAGE followed by immunoblotting (anti-myc) and Phosphorimager analysis (**S exposure). Arrows
indicate full length Sccl-myc (fl), C- and N-terminal fragments resulting from cleavage at Argl 2 (Ct #1, Nt #1, respectively), and C- and N-
terminal fragments resulting from cleavage at Arg*” (Ct #2, Nt #2, respectively). The lower parts of the membrane or gels were exposed longer
than the upper parts. The enhancement of cleavage at Arg172 by Plk1 can be seen particularly well by comparing the intensities of the N-terminal
fragments (Nt #1). Note that in the autoradiographs a band can be seen (particularly clearly in the lanes representing the zero time points) that
has almost the same electrophoretic mobility as cleavage product Ct #1. This band is distinct from Ct #1 because it migrates a slightly shorter
distance and because it is also present in the absence of separase. This band was therefore not included in the quantification in (B).

(B) Quantification of the abundance of Sccl-myc and the Sccl-myc cleavage fragments in the assay shown in the left autoradiograph of (A). For
the quantification, autoradiographs of identical exposure were used. The sum of the intensities of full-length and all cleavage fragments was set
to 100%. Signal intensities for N- and C-terminal fragments resulting from cleavage at the same site were summed.

(C) Chromatin fractions were prepared from HelLa cells stably expressing either wild-type Sccl-myc or the mutant Sccl-$***A-myc, and were
incubated in either interphase or mitotic Xenopus egg extract. Mitosis-specific cleavage of Sccl was detected by immunoblotting with myc
antibodies.

DOI: 10.1371/journal.pbio.0030069.g002

phenotypes (but also the absence of phenotypes) that are
observed after ectopic expression of Sccl are not simply
caused by overexpression or by the inability of Sccl to
assemble into cohesin complexes.

To analyze whether mutation of Ser™" abolishes cleavage
of Sccl at Arg450 also when Sccl is part of cohesin complexes
that have been loaded onto chromatin in vivo, we incubated
chromatin from HeLa cells expressing wild-type Sccl, Sccl-
S4B4A, or Sccl-9xA in Xenopus egg extracts. In this assay, Sccl
is cleaved by separase at Arg172 and Arg450 if the Xenopus egg
extract is in a mitotic state [10], presumably because separase
and PIx1 are active under these conditions. Whereas wild-

454

type Sccl was efficiently cleaved at both sites in mitotic egg
extract, we did not observe any fragment resulting from
cleavage at Arg%() when either Sccl-S**A or Sccl-9xA was
analyzed (Figure 2C and unpublished data), further support-

454

Immunofluorescence analysis demonstrated that the local-
ization of Scc1-S**A and Sccl-9xA was very similar to the
one of wild-type Sccl (Figure S2B and unpublished data).
Both mutants were present in nuclei from telophase through
interphase until the next mitosis. In prometaphase, the bulk
of mutant cohesin complexes had dissociated from chromo-
some arms, but small amounts remained at centromeres, even
if prometaphase was prolonged by treatment of the cells with
nocodazole (Figure S2B). Sccl phosphorylation at the nine
mutated sites is therefore essential neither to load cohesin
onto chromatin nor to remove cohesin from chromosome
arms in early mitosis. Furthermore, we were unable to
observe obvious abnormalities at later stages of mitosis and
in the overall ability of cells expressing nonphosphorylatable
Sccl to proliferate (unpublished data), indicating that Sccl
phosphorylation at the mutated sites is not essential for the

ing the conclusion that phosphorylation at Ser " of Sccl is ability of separase to cleave cohesin complexes and to initiate
essential for cleavage at Arg450. anaphase. The finding that cells expressing Sccl in which
@ PLoS Biology | www.plosbiology.org 0423 March 2005 | Volume 3 | Issue 3 | e69
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Figure 3. Characterization of HelLa Cell Lines Stably Expressing Wild-Type
or Mutant Forms of Human Scc1 and SA2

(A) Wild-type Sccl or SA2, or the indicated mutant proteins (see
Figure 1C), all tagged with 9xmyc at the C terminus, were stably and
inducibly expressed in HeLa tet-on cells. After induction by treat-
ment with 2 pug/ml doxycycline for 1-3 d, cell extracts were prepared
from either logarithmically proliferating cells (i, interphase) or from
cells arrested in mitosis by nocodazole (m, mitosis), then immuno-
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blotted. In the case of Sccl cell lines (upper blots), only data from
interphase extracts are shown. Exogenous protein was detected by
immunoblotting with myc antibodies (lower blots). Since the 9xmyc-
tag caused a reduced mobility in SDS-PAGE compared to the
endogenous protein, Sccl- and SA2-immunoblots (upper blots)
revealed the relative amounts of exogenous and endogenous protein
in the different cell lines. The position of molecular weight markers is
indicated on the right side.

(B) Extracts were prepared from the different cell lines as indicated.
Immunoprecipitation was performed using myc antibodies, followed
by SDS-PAGE and silver staining. As a control, the cohesin complex
was immunoprecipitated from untransfected HeLa tet-on cells using
antibodies to SA2.

(C) Extracts were prepared from SA2-WT-myc or SA2-12xA-myc
expressing cells, and fractionated by sucrose density gradient
centrifugation (5%-30% sucrose), followed by immunoblotting with
antibodies recognizing the proteins indicated on the right (inp. =
input/unfractionated sample of the extract).

DOTI: 10.1371/journal.pbio.0030069.g003

residue 454 cannot be phosphorylated and in which cleavage
at Arg450 is therefore compromised (see Figure 2C) do not
show anaphase defects is in agreement with our previous
observation that Sccl cleavage at Arg172 is sufficient for the

viability of HeLa cells [15].

Phosphorylation of SA2 Is Essential for the Dissociation of
Cohesin from Chromosomes during Prophase and
Prometaphase

The observation that nonphosphorylatable Sccl mutants
bind chromatin in interphase and dissociate from chromo-
some arms normally in early mitosis implied that the
requirement for PIkl in cohesin dissociation and the
inhibitory effect of cohesin phosphorylation on chromatin
binding [16,18] cannot be explained by Scc1 phosphorylation.
We therefore asked whether phosphorylation of SA2 might
control the association of cohesin with chromosomes. We
generated a mutant of SA2 in which serine/threonine residues
at 12 sites found to be phosphorylated in mitosis in vivo were
mutated to alanine; this mutant was called SA2-12xA (see
Figure 1C). We C-terminally tagged this mutant and wild-type
SA2 with myc epitopes and expressed both in HeLa cells in a
stable and inducible manner, employing the same strategy
that we had used for Sccl. Also in this case we isolated cell
lines in which the levels of ectopically expressed SA2 are
similar to the levels of endogenous SA2 (Figure 3A).
Immunoprecipitation experiments with myc antibodies and
sucrose density gradient centrifugation showed that both the
tagged SA2 wild-type and SA2-12xA proteins were incorpo-
rated into cohesin complexes (Figure 3B and 3C).

Since SA2 phosphorylation can be catalyzed by purified
PIk1 in vitro and depends on Plx1 in Xenopus egg extracts [16]
we asked whether SA2-12xA had lost the ability to be
phosphorylated by Plkl. When purified cohesin complexes
were incubated with Plk1 and **P-y-ATP, approximately 50 %
less radiolabel was incorporated into SA2-12xA than into
wild-type SA2, whereas phosphorylation of Sccl in the same
complexes was not affected (Figure 4A). Because both
budding yeast and human Polo-like kinases can phosphor-
ylate many sites in vitro that are not phosphorylated in vivo
[26,27], it is possible that the residual phosphorylation of
SA2-12xA by PIkl in vitro occurs on sites that are not
phosphorylated in vivo. We therefore analyzed the phosphor-
ylation of wild-type and mutant forms of SA2 under more
physiological conditions by incubating 35S labeled recombi-
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Figure 4. Mutations of the C-Terminal Phosphorylation Sites and C-
Terminal Deletions Decrease the Mitotic Phosphorylation of SA2

(A) Cohesin complexes containing wild-type SA2-myc or SA2-12xA-
myc were immunopurified by myc antibodies from the respective cell
lines. Similar amounts of cohesin were incubated with recombinant
GST-PIk1, and the amount of phosphorylation was quantified by **P
incorporation followed by SDS-PAGE, silver staining (top) and
Phosphorimager analysis, and quantification using the software
program Image]. )

(B and C) In vitro-translated, *’S-labeled SA2 tagged at the N
terminus with 9xmyc was incubated in interphase Xenopus egg
extracts, which were induced to enter mitosis at time point 0 min
by addition of nondegradable cyclin B A90 and okadaic acid. Samples
were collected at the indicated time points and analyzed by SDS-
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PAGE followed by Phosphorimager analysis. The autoradiographs in
(B) show phosphorylation site mutants and in (C) they show C-
terminal deletion mutants (see Figure 1C). The slower-migrating
band represents myc-SA2, whereas the faster-migrating band is
presumably generated by translation initiation at an internal start
codon.

DOI: 10.1371/journal.pbio.0030069.g004

nant SA2 in mitotic Xenopus egg extracts. SA2 phosphoryla-
tion in these extracts depends on PIx1 [16] and causes an
electrophoretic mobility shift (Figure 4B). This shift was
partially abolished when three C-terminal phosphorylation
sites were mutated (mutant SA2-6/7/11; see Figure 1C), and
no shift could be seen with SA2-12xA (Figure 4B). These
results indicate that most mitosis-specific phosphorylation
sites have been removed from SA2-12xA. The finding that
mitosis-specific phosphorylation sites in SA2 are clustered in
the C terminus was also confirmed by generating deletion
mutants in which SA2 was progressively shortened from the C
terminus (see Figure 1C), because SA2’s mobility shift was
completely abolished when at least 124 C-terminal residues
were removed (Figure 4C).

To be able to address the physiological relevance of SA2
phosphorylation, we first had to determine whether cohesin
complexes containing tagged SA2 behave normally in human
cells. Immunofluorescence imaging of wild-type SA2-myc
showed a localization pattern that is very similar to the
pattern found for Sccl [10,14,15,18]. SA2-myc was nuclear in
interphase, and mainly present in a soluble form in the
cytoplasm during mitosis (unpublished data). When we
extracted mitotic cells to remove the soluble pool, we found
a minor fraction bound to chromatin, and in prometaphase
and metaphase, SA2-myc was enriched at centromeres as
compared to chromosome arms (Figure 5A). Therefore, the
tag in SA2 does not seem to interfere with the behavior of
cohesin complexes containing SA2-myec.

When we analyzed the intracellular distribution of the
SA2-12xA mutant by immunofluorescence microscopy, we
found that this protein was also nuclear throughout
interphase and that the nuclear signal could only partially
be reduced by removing soluble cohesin complexes by
preextraction (unpublished data), indicating that complexes
containing SA2-12xA can associate with chromatin like wild-
type cohesin. In stark contrast to wild-type SA2, however,
SA2-12xA was not strongly enriched at centromeres of
prometaphase and metaphase chromosomes, but instead
was almost equally abundant on chromosome arms and on
centromeres (Figure 5A). A very similar distribution of
cohesin on chromosome arms and centromeres has been
observed after depletion of Plkl by RNA interference [18].

These observations indicate that phosphorylation of SA2 is
not required for the loading of cohesin onto chromatin, but is
essential for its dissociation from chromosome arms during
early mitosis. However, it also remained possible that cohesin
complexes containing SA2-12xA simply dissociated from
chromosomes more slowly than wild-type complexes. To
address this possibility, we analyzed cells in which prometa-
phase was prolonged by treatment with nocodazole. Under
these conditions, complexes containing wild-type SA2 dis-
sociated completely from chromosome arms within 3 h but
remained at centromeres (Figure 5B), confirming earlier
observations made for Sccl [15,18]. In contrast, SA2-12xA
could still be detected clearly on chromosome arms after 3 h
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Figure 5. Phosphorylation of SA2 Is Required for Cohesin Dissociation from Chromosome Arms during Prometaphase

(A) Logarithmically proliferating HeLa cells expressing SA2-WT-myc or SA2-12xA-myc were extracted prior to fixation, and stained with myc
antibodies. In the upper set of images, kinetochores were labeled with human CREST serum, and DNA was counterstained with DAPL In the
lower set of images, only SA2-myc staining is shown.

(B) SA2-myc expression was induced by different amounts of doxycycline (Dox.), and cells were arrested in prometaphase by nocodazole (Noc.)
treatment for 3 or 10 h. Cells were spun on glass slides, extracted by detergent, fixed, and processed for immunostaining as in (A). Scale bars 10 um.

DOI: 10.1371/journal.pbio.0030069.g005

and even after 10 h of nocodazole treatment (Figure 5B),
excluding the possibility that the dissociation of cohesin
complexes containing this mutant is simply slower than the
dissociation of wild-type complexes.

Cohesin Complexes Containing Nonphosphorylatable SA2
Are Able to Establish Cohesion

It was also possible that the amino acid exchanges in SA2-
12xA had rendered the protein nonfunctional, possibly
resulting in the formation of complexes that bound chromatin
nonspecifically and therefore did not dissociate from chro-
mosomes in mitosis. Thus, we asked whether cohesin
complexes containing SA2-12xA are able to establish sister
chromatid cohesion. To answer this question, we again treated
cells with nocodazole, which normally results in the loss of
cohesion between chromosome arms but not at centromeres,
resulting in the formation of X-shaped chromosomes with
“open arms” that can be seen by chromosome spreading and

i) PLos Biology | www.plosbiology.org

Giemsa staining [18]. In this assay, chromosomes from most
cells expressing wild-type SA2-myc showed the normal “open
arm” phenotype (between 55% and 71%, depending on the
cell line analyzed; Figure 6A). In contrast, only 10% of mitotic
cells expressing SA2-12xA contained chromosomes whose
arms had lost cohesion during the nocodazole arrest, whereas
87% had maintained cohesion between chromosome arms
(Figure 6A). This result strongly indicates that the cohesin
complexes that contain SA2-12xA and that remain on
chromosome arms in prometaphase (see Figure 5B) are able
to establish and maintain cohesion between sister chromatids.

Finally, to further confirm this hypothesis, we asked whether
the ability of SA2-12xA-expressing cells to maintain arm
cohesion during a nocodazole treatment depends on the
amount of ectopic protein that is expressed. We therefore
treated cells containing SA2-12xA transgenes with different
doses of doxycycline and compared the levels of exogenous
SA2 with the arm cohesion phenotype. The levels of mutant
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Figure 6. The Presence of SA2-12xA on Chromosome Arms Correlates
with Cohesion between Sister Chromatid Arms

(A) Cells were cultured in the absence or presence of different
amounts of doxycycline as indicated. After arrest in nocodazole for 3
h, cells were fixed, spread on glass slides, and stained with Giemsa
(photomicrographs, above). Single chromosomes (indicated by a box)
are shown at higher magnification in the lower right corners. The
number of cells with chromosome arms that had opened (arms open)
or that were connected (arms closed) was scored as indicated (bar
graphs, below). Scale bar 10 pm.

(B) Whole-cell extracts were prepared from HeLa cells expressing SA2-
12xA-myc after treatment with increasing amounts of doxycycline (0,
0.2, and 2.0 pg/ml). The ratio of exogenous SA2-12xA-myc to endog-
enous SA2 was visualized by immunoblotting with antibodies to SA2.
The position of molecular weight markers is indicated on the right.
DOI: 10.1371/journal.pbio.0030069.g006

SA2-myc were well controlled by the amount of doxycycline
used (Figure 6B), and there was a clear correlation between the
amount of SA2-12xA and the number of cells whose
chromosomes maintained arm cohesion during treatment
with nocodazole, whereas expression of wild-type SA2-myc had
no significant influence on arm cohesion (Figure 6A). Cells of
the SA2-12xA cell line maintained arm cohesion slightly more
frequently than control cells even if SA2-12xA expression was
not induced, but it is possible that small amounts of the ectopic
protein are also synthesized in the absence of doxycycline.
These observations rule out the possibility that the differ-
ent frequencies with which arm cohesion is observed after
nocodazole treatment in SA2-12xA and control cells are due
to other differences in the cell lines than expression of the
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Figure 7. Phosphorylation of SA2 Is Required for Efficient Resolution of
Sister Chromatid Arms during Prometaphase and Metaphase

(A) HeLa cells expressing SA2-WT-myc or SA2-12xA-myc were
spread on glass slides and chromosomes were stained with Giemsa.
Representative cells from SA2 WT-myc or SA2-12xA-myc cell lines
after induction with 2 pg/ml doxycycline are shown. Scale bar 10 um.
(B) HeLa cells were induced to express SA2-WT-myc or SA2-12xA-
myc by different amounts of doxycycline as indicated, and processed
as in (A). More than 50 cells in prometaphase or metaphase were
selected randomly from each sample. The distance between sister
chromatids was determined for five chromosomes in each cell and
averaged. Light gray bars indicate average values that have been
measured in one or two cells, and darker gray bars indicate average
values that have been measured in three or more cells. Diamonds
indicate the average distance for all cells in a given sample.

(C) Representative immunofluorescence image of normal anaphase in a
cell expressing SA2-12xA-myc. The cell was not extracted prior to fix-
ation, so the soluble pool of SA2-12xA-myc is revealed by myc-staining.
DOL: 10.1371/journal.pbio.0030069.g007

different transgenes. We therefore conclude that cohesin
complexes containing SA2-12xA are able to maintain and
establish cohesion, but that these complexes are unable to
dissociate from chromosomes during prophase and prom-
etaphase. Phosphorylation of SA2 at its C terminus therefore
appears to be essential for the unloading of cohesin from
chromosome arms during early mitosis.

March 2005 | Volume 3 | Issue 3 | e69



Phosphorylation of SA2 Is Required for Efficient Resolution
of Sister Chromatids

Although the major amount of human cohesin dissociates
from chromosomes during early mitosis, the physiological
importance of this process is still unknown. One reasonable
assumption is that cohesin dissociation might be required for
binding of condensin complexes and for condensation of
chromatin. Like cohesin, condensin complexes contain
subunits that are members of the Smc and kleisin protein
families [28,29,30], and cohesin dissociation and condensin
binding normally coincide in cells [3,13]. However, inhibition
of cohesin dissociation by interfering with PIk1/Plx1 or
Aurora-B function in human cells or Xenopus egg extracts
did not affect the binding of condensin and the overall
condensation of chromosomes [16,17,18,31]. In line with these
results, we found that condensin binding, compaction, and
shortening of chromosomes in a prolonged mitotic arrest was
not detectably influenced by expression of SA2-12xA (Figure
S3), further strengthening the notion that condensin binding
does not require the phosphorylation-dependent dissociation
of cohesin complexes from chromosome arms.

Experiments in Xenopus egg extracts showed that in the
absence of Plx1 and Aurora-B, chromosome arms on mitotic
chromosomes remained very close to each other, ie., the
resolution of sister chromatid arms was impaired [17]. In
these experiments, it was difficult to distinguish whether Plx1
and Aurora-B promoted sister chromatid resolution by
inhibiting the dissociation of cohesin or by another,
independent pathway. We therefore examined how chromo-
some structure is influenced by expression of nonphosphor-
ylatable SA2. We noticed that sister chromatid arms often
stayed in closer proximity in SA2-12xA-expressing cells than
in controls (Figure 7A). When we measured the interchro-
matid distance during prometaphase and metaphase, we
found a variation within the same cell line from around 0.4 to
1.1 pm between individual cells (Figure 7B). This variability is
presumably caused by different periods of time that cells have
spent in mitosis; i.e., cells in which the interchromatid
distance was small might have spent shorter time in mitosis
than those in which sister chromatids were more resolved. We
also found that there was some variability between different
cell lines (unpublished data). However, cells expressing wild-
type SA2 did not show any prominent difference in the
average interchromatid distance in the absence or presence
of exogenous SA2, whereas the interchromatid distance was
progressively shortened when SA2-12xA-myc was expressed
in increasing amounts (Figure 7B).

Since resolution of sister chromatid arms happens pro-
gressively during prophase and prometaphase, a reduction in
the average distance between sister chromatids might also be
caused by shortening the time up to metaphase (therefore
leaving cells less time to resolve sister chromatids). However,
when we compared the percentage of different mitotic stages
in SA2-12xA- versus wild-type SA2-expressing cells, we found
no indication of a shortening of prometaphase (unpublished
data). Phosphorylation of SA2 and dissociation of cohesin
from chromosome arms therefore appear to be required for
the efficient resolution of sister chromatid arms.

SA2 Phosphorylation Is Not Essential for Anaphase
The prolonged persistence of cohesin on chromosome
arms and the closer proximity of sister chromatid arms might
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cause defects in anaphase, for example because larger
amounts of cohesin cannot be cleaved efficiently enough, or
because perturbance of chromosome structure might inter-
fere with the separation of sister chromatids. However, we did
not observe obvious anaphase defects in cells expressing
nonphosphorylatable SA2. Furthermore, in all anaphases that
we observed (n > 50), we found that SA2-12xA had
completely disappeared from separating chromatids (Figures
7C and S3B). Sccl cleavage products could be detected in
cells expressing SA2-12xA (unpublished data), consistent
with the interpretation that the loss of SA2-12xA-containing
cohesin complexes from chromatids in anaphase is mediated
by separase. These observations indicate that SA2 phosphor-
ylation is required for the dissociation of cohesin from
chromosome arms during prophase and prometaphase, but
that this dissociation process is not absolutely essential for
the initiation of anaphase. These data also further support
the notion that separase is able not only to cleave cohesin at
centromeres but on chromosome arms as well [18].

Discussion

It has long been known that cohesin’s Sccl and Scc3/SA1/
SA2 subunits are specifically phosphorylated in mitosis
[2,5,14,16,19,32,33]. In budding yeast it has been shown that
phosphorylation of Sccl by Cdcbh enhances the cleavability of
cohesin by separase [19,20]. In vertebrates, however, the
functional significance of these modifications has remained
unclear. The circumstantial evidence in vertebrate systems
that has existed so far points to a role of cohesin
phosphorylation in controlling the ability of cohesin to bind
chromatin [2,16], not in modulating Sccl cleavage by
separase. It was also unclear whether PIkl, a kinase that is
essential for cohesin dissociation from chromosome arms
during prophase and prometaphase [16,17,18], regulates
cohesin in early mitosis by directly phosphorylating Sccl or
SA2, or by modifying other proteins that might be required
for cohesin unloading.

Our analysis of mitotic cohesin regulation in human cells
revealed distinct roles for the phosphorylation of Sccl and
SA2. Phosphorylation of human Sccl enhances the cleav-
ability of this protein by separase, at least at the second of
Sccl’s two cleavage sites (see Figure 2), and thereby shows that
this mode of cohesin regulation is conserved from yeast to
humans. Furthermore, our data imply that Sccl phosphor-
ylation is not required for the dissociation of cohesin from
chromosome arms (see Figure S2), again consistent with the
situation in yeast where Sccl is phosphorylated in mitosis
[19], yet cohesin complexes do not dissociate from chromo-
somes until separase is activated [34,35].

In contrast to the data for Sccl, our results show that SA2
phosphorylation is essential for the dissociation of at least
some cohesin complexes from chromosome arms (see Figure
5), but this modification does not seem to be necessary for the
cleavage of cohesin complexes by separase (Figure 7C and
unpublished data). Cells that express nonphosphorylatable
versions of SA2 are unable to remove all cohesin complexes
from their chromosome arms during prometaphase (see
Figure 5A), even if mitosis is prolonged for many hours by
treatment with spindle poisons (see Figure 5B); presumably as
a consequence, cohesion between sister chromatid arms is not
lost in these cells during prolonged prometaphase arrest (see
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Figure 6). These phenotypes are virtually identical to the
cohesin and cohesion phenotypes of cells in which Plk1 has
been depleted [18]. It has also been observed that PIkl can
phosphorylate Sccl and SA2 in vitro, can thereby decrease
the ability of cohesin to bind chromatin, and is required for
the mitosis-specific phosphorylation of Sccl and SA1/SA2 in
Xenopus egg extracts [16]. Obviously none of these results can
exclude the possibility that kinases other than PIk1 contribute
to SA2 phosphorylation, nor the possibility that Plk1 may also
have to phosphorylate proteins other than SA2 to allow
cohesin dissociation, but the simplest interpretation of all the
data is that Plkl is essential for cohesin unloading because it
is required for SA2 phosphorylation, which in turn is a
prerequisite for cohesin dissociation.

It will be interesting to learn whether this type of
regulation is restricted to human SA2, or whether it also
applies to paralogs and orthologs of SA2. In addition to SA1
and SA2, a meiosis-specific paralog of the Scc3 family exists in
mammals, called SA3 (or STAG3) [36]. Most of the phosphor-
ylation sites that we identified in SA2 are conserved in SAl,
whereas SA3 diverges from SAl and SA2 mostly in its C-
terminal sequence (unpublished data). This difference could
have important implications for the regulation of meiosis I,
where arm cohesion needs to be protected to allow the
separation of homologous chromosomes in anaphase I
(reviewed in [37]), and where chromosome arms do not
separate even if cells are arrested by treatment with spindle
poisons [38]. It is possible that the replacement of SA1/2 by
SA3 renders meiotic cohesin complexes resistant to Plkl-
dependent removal from chromosome arms, and thereby
allows the maintenance of arm cohesion until separase is
activated. Likewise it will be interesting to analyze whether
Scc3 is phosphorylated in budding yeast, in which cohesin
dissociation from chromosome arms in early mitosis has not
been detected.

How Important Are Scc1 and SA2 Phosphorylation In Vivo?

Somewhat unexpectedly, we found that expression of
neither nonphosphorylatable Sccl nor nonphosphorylatable
SA2 blocked progression through mitosis. Although it
remains formally possible that our experiments did not
identify all mitosis-specific phosphorylation sites and that we
therefore did not mutate all critical sites, we consider it more
plausible to think that phosphorylation of these proteins is
not absolutely essential for progression through mitosis, at
least in transformed cultured cells. This notion is supported
by the finding that cohesin can be removed from chromo-
somes (presumably by separase), even in cells in which Plk1
has been depleted and Aurora-B has been inhibited—i.e.,
under conditions where the early mitotic dissociation of
cohesin from chromosome arms is inhibited [18]. The
implication is that the early mitotic dissociation of cohesin
from chromosomes is not absolutely essential for mitosis,
because separase is able to cleave all cohesin complexes that
reside on chromosomes at the metaphase-anaphase transi-
tion. In this respect, human cells therefore appear to be more
similar to budding yeast than previously suspected, in that
HeLa cells can also initiate anaphase without first having to
remove cohesin from chromosome arms.

Likewise, there are similarities between yeast and HeLa
cells in the regulation of Sccl. In both systems, Sccl
phosphorylation enhances its cleavability by separase, but in
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neither case is this modification essential for viability (this
study) [19]. An interesting hint to the possible function of
Sccl phosphorylation comes from the observation that
budding yeast cells lacking the securin Pdsl are viable and
are able to undergo anaphase, but this ability is dramatically
decreased if phosphorylation sites in Sccl are mutated [19].
Since securin not only inhibits separase but is also required
for its activation, yeast cells lacking securin may not have
enough separase activity to cleave cohesin if Sccl is not
phosphorylated. Phosphorylation of Sccl might increase its
affinity for separase, and this effect may simply enhance the
fidelity of anaphase initiation. Securin is also not essential for
viability in human cells, but in its absence the specific activity
of separase is decreased [39]. It would be interesting to test
whether human cells lacking securin require Sccl phosphor-
ylation for viability.

Similarly, it is possible that SA2 phosphorylation and the
resulting dissociation of cohesin from chromosomes in early
mitosis, albeit not being essential, increase the fidelity of
chromosome segregation. It is also conceivable that removal
of cohesin prior to cleavage is not important for mitosis but
for the next interphase. Separase-dependent cohesin removal
destroys the Sccl subunit and thereby renders cohesin
nonfunctional. In contrast, phosphorylation-dependent dis-
sociation appears to leave cohesin intact and might thereby
enable the rapid reloading of cohesin onto chromatin in
telophase, i.e., without the necessity for new Sccl tran-
scription and translation, which is inhibited during mitosis.

How Does SA2 Phosphorylation Lead to Cohesin
Dissociation?

Cohesin is bound to chromatin in an extremely stable
manner ([8]; E.R. and J.M.P, unpublished data), and this may
be related to the fact that Smc1, Smc3, and Sccl form a ring-
like complex, at least in budding yeast [40,41]. It has been
proposed that this protein ring establishes cohesion by
encircling the sister chromatid strands [40]. In this model, it
is easy to imagine how cleavage of Sccl releases cohesin from
chromatin. However, Scc3 binds to Sccl and is not required
for formation of the ring-like complex, and it is therefore not
immediately obvious how phosphorylation of SA2 could lead
to dissociation of cohesin from chromosomes. One possibility
is that SA2 phosphorylation induces a conformational change
in cohesin that opens the ring. Bulk phosphorylation of SA2’s
C terminus, for example, might considerably change its
surface charge, thereby affecting interactions between Sccl
and the Smcl/3 subunits. In its simplest form, this model
would predict that SA2 phosphorylation is sufficient for
opening of the cohesin ring and thus is sufficient for cohesin
dissociation. However, in preliminary experiments, we have
been unable to observe cohesin dissociation when we added
purified active PIkl to chromatin (I. Sumara and J.M.P,
unpublished data), whereas the simultaneous addition of Plk1
and Xenopus egg extracts to chromatin did enable cohesin
dissociation [16]. It is therefore also possible that phosphor-
ylation of SA2 recruits cohesin unloading factors to chroma-
tin (which in the above experiment might have been
contributed by the Xenopus extract), which then somehow
enable the dissociation of cohesin from chromosomes. In
budding yeast and C. elegans, cohesin needs additional factors
for its loading onto chromatin [42,43]. Cohesin might
similarly need aid for unloading, at least in the absence of
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Sccl cleavage. If such additional factors exist and interact
with SA2, the cell lines we created might provide a means to
isolate the relevant molecules by differential purification of
cohesin complexes containing wild-type SA2 and SA2-12xA.

If SA2 phosphorylation results in cohesin unloading by
somehow enabling the opening of the cohesin ring without its
cleavage, it would be conceivable that this reaction is simply
the reverse of the loading process, during which the cohesin
ring presumably also has to be opened transiently [44].
However, a prediction of this model would be that SA2
phosphorylation would also be required for the loading of the
cohesin complex, whereas we find that complexes containing
nonphosphorylatable cohesin can efficiently associate with
chromatin and even establish functional cohesion. It is
therefore more plausible to hypothesize that SA2 phosphor-
ylation is a modification that is specifically used to remove
cohesin from chromosomes in early mitosis by enabling a
reaction that is not simply the reverse of the loading reaction.

Which Cohesin Complexes Are Regulated by SA2
Phosphorylation?

SA2 phosphorylation is required for the dissociation of
cohesin from chromosome arms, but it does not seem to
affect the behavior of cohesin at centromeres. As a
consequence, sister chromatid arms are resolved much
farther from each other than centromeres during a normal
prometaphase, and they can lose cohesion completely if
prometaphase is prolonged, whereas cohesion at centromeres
is protected. How is this regulation achieved? Recent work in
fission yeast has shown that members of the Mei-S332 family
of proteins [45] are required for the persistence of cohesin at
centromeres in meiosis I [46,47,48,49]. These proteins, called
shugoshins or Sgol, are thought to protect centromeric
cohesin in anaphase I from premature cleavage by separase,
but they are also found at centromeres in mitotic Drosophila
and budding yeast cells [49,50]. In an associated paper by
McGuinness et al. [61], we show that an ortholog of Sgol is
also required for the persistence of cohesin at centromeres
and for the maintenance of sister chromatid cohesion during
prometaphase in human cells. Remarkably, Sgol-depleted
cells do not show cohesion defects if a nonphosphorylatable
form of SA2 is expressed. This observation implies that
cohesin normally persists at centromeres because Sgol
protects cohesin in this chromosomal domain from phos-
phorylation. To test this hypothesis it will be important to
determine whether SA2 phosphorylation does occur at
centromeres. Our identification of in vivo phosphorylation
sites on SA2 may be an important prerequisite for achieving
this goal, because it should enable the generation of
phosphospecific antibodies. Likewise, it will be interesting
to learn how Sgol prevents or antagonizes SA2 phosphor-
ylation, and whether the same mechanism is able to protect
centromeric cohesin from separase in meiosis 1.

Previous work has highlighted the difference in the
regulation of cohesin complexes between chromosome arms
and centromeres [10,18], but several observations suggest that
there may also be important differences among different
populations of cohesin complexes on chromosome arms.
When we compared Sccl cleavage in cells expressing either
wild-type or nonphosphorylatable SA2, we noticed that the
levels of Sccl cleavage products in the latter cells were only
slightly increased, if at all (unpublished data). If all complexes
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containing nonphosphorylatable SA2 remained on chromo-
some arms until prometaphase, we would instead expect to
see more Sccl cleavage in cells containing these complexes
than in cells containing wild-type SA2. Furthermore, we
noticed that the immunofluorescence intensity of SA2-12xA-
myc in interphase cells from which soluble cohesin complexes
had been removed by preextraction was clearly higher than
the intensity of SA2-12xA-myc on prometaphase and
metaphase chromosomes, and in subcellular fractionation
and immunoblotting experiments we found that a fraction of
SA2-12xA still became soluble in nocodazole-arrested cells
(unpublished data). We made similar observations in immu-
nofluorescence experiments in which we analyzed the
chromosome association of Sccl-myc in Plkl-depleted cells.
Also in these cells, some cohesin still seemed to dissociate
from chromosome arms, despite the depletion of Plkl (T.
Hirota and ]J.M.P, unpublished data). The observation that
some cohesin complexes do dissociate from chromosome
arms even if PIk1 is depleted or if these complexes contain
nonphosphorylatable SA2, whereas others do not, cannot
simply be explained by slow dissociation kinetics of cohesin
under these conditions, because those complexes that persist
on chromosome arms can still be found there after 10 h of
prometaphase arrest (see Figure 5B). We therefore favor the
hypothesis that there are, in fact, two distinct populations of
cohesin on chromosome arms: one whose dissociation
depends on Plk1 activity and SA2 phosphorylation, and one
whose dissociation does not. Since the population of cohesin
complexes whose dissociation depends on Plkl and SA2 is
able to establish cohesion (see Figure 6), it is possible that
those complexes that seem to be able to dissociate without
Plk1 and SA2 phosphorylation are bound to chromatin in a
manner that does not establish cohesion. Such binding modes
must exist, because cohesin rebinds to chromatin in telophase
[3,13], i.e., long before sister chromatids have been generated
by DNA replication. This speculative model makes important
predictions, for example that cohesin dissociation from
unreplicated DNA should not depend on SA2 phosphoryla-
tion; we will attempt to test this prediction in the future.

Materials and Methods

Cell lines and growth conditions. Hela cells expressing myc-
tagged human Sccl were described previously [15]. HeLa cells
expressing mutated Sccl, wild-type SA2, or mutated SA2 were
generated by transfecting Hela tet-on cells (Clontech, Palo Alto,
California, United States) with the pTRE2-hygro vector (Clontech)
containing the respective ¢cDNA and a 9xmyc tag fused in frame.
Hygromycin-resistant clones were selected by growth in medium
containing 400 pg/ml hygromycin, and were tested for expression of
the myc-tagged protein by immunoblotting after induction with 2
pg/ml doxycycline for 1-3 d. Untransfected HeLa cells were grown
in DMEM supplemented with 10% FCS, 0.2 mM L-glutamine, 100 U/
ml penicillin, and 100 pg/ml streptomycin. For growth of stably
transfected HeLa tet-on cells, the medium was supplemented with
200 pg/ml G418 and 100 pg/ml hygromycin. Hydroxyurea and
nocodazole were used at concentrations of 2 mM and 330 nM,
respectively.

cDNA mutagenesis. Serine or threonine residues in human Sccl
and SA2 were changed to alanine by mutation of the respective
c¢DNAs using the Quick Change Site-Directed or Multi Site-Directed
Mutagenesis kit (Stratagene, La Jolla, California, United States).
Where the phosphorylated site could not be assigned to a certain
residue within a peptide, we mutated all possible candidate sites to
alanine residues. C-terminally truncated versions of SA2 were
generated by PCR. For in vitro translation, cDNAs were cloned into
pcDNA 3.1 (—)/Myc-His A (Invitrogen) modified to contain a 9xmyc
cassette. The expression of ¢cDNAs as *°S-methionine- and *°S-
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cysteine-labeled proteins was performed using a coupled tran-
scription-translation system in rabbit reticulocyte lysate (Promega,
Madison, Wisconsin, United States).

Antibodies. Antibodies specific to phosphorylated threonine were
from Cell Signaling Technology (Beverly, Massachusetts, United
States; #9381). To detect myc-tagged protein, we used either
polyclonal, affinity-purified rabbit anti-myc antibody (Gramsch
Laboratories, Schwabhausen, Germany; #CM-100), or monoclonal
9E10 mouse-anti-myc antibody [10]. Polyclonal antibodies to human
Sccl, SA1, SA2, Smcl, Smc3, and Smc2 have been described [3,10,30].
Anti-INCENP peptide antibody was raised in rabbit, and the serum
was affinity purified. The following peptide was used for immuniza-
tion: TDQADGPREPPQSARRKRSYC. Human CREST serum was a
kind gift of A. Kromminga (Institut fiir Immunologie, Pathologie und
Molekularbiologie, Hamburg, Germany).

Protein purification and fractionation. Endogenous cohesin was
purified from HeLa cell extracts by immunoprecipitation using
purified SA2 peptide antibodies (antibody 447) crosslinked to Affi-
Prep protein A beads (Bio-Rad, Hercules, California, United States) as
described [3,16]. For mass spectrometric analysis, cohesin precipitates
were first washed with IP buffer (20 mM Tris-HCI [pH 7.5], 100 mM
NaCl, 0.2% Nonidet P-40, 20 mM B-glycerophosphate, 10% glycerol,
1 mM NaF, and 0.5 mM DTT) [3] supplemented with 400 mM NacCl,
followed by a wash step with IP buffer not containing detergent.
Cohesin was eluted from the antibody beads by addition of 1.5 bead
volumes of 100 mM glycine (pH 2.2). The samples were titrated to
pH 8.5 by addition of NH,;HCOj3 to a final concentration of 200 mM.
Cohesin complexes containing myc-tagged subunits were immuno-
purified with rabbit anti-myc antibodies (Gramsch Laboratories,
#CM-100) using similar conditions. Sucrose density gradient centri-
fugation was performed as described [15].

Mass spectrometry. A volume of 100 ul of immunopurified cohesin
(isolated from about 10 mg of total HeLa protein) was reduced with
1 pug of DTT for 1 h at 37 °C and alkylated with 5 pg of iodoacetamide
for 30 min at room temperature in the dark. The proteins were
digested in solution with one of the following proteases or
combination of proteases: 200 ng of trypsin for 4 h at 37 °C, followed
by addition of another 200 ng of trypsin and further incubation for
4 h at 37 °C; 400 ng of Glu-C for 8 h at 25 °C; 400 ng of trypsin
overnight at 37 °C followed by 400 ng of Glu-C for 8 h at 25 °C; 400 ng
of chymotrypsin or elastase for 4 h at 25 °C (all proteases were
sequencing grade; Roche, Basel, Switzerland); or 300 ng of subtilisin
(Fluka, from Sigma-Aldrich, St. Louis, Missouri, United States) for
30 min at 37 °C. Generated peptides (100-pl sample) were separated
by reversed phase nano-HPLC (LC Packings, Sunnyvale, California,
United States) and analyzed using an ion trap mass spectrometer
(ThermoFinnigan, from Thermo Electric, Waltham, Massachusetts,
United States) as described by Mitulovic et al. [52]. All tandem mass
spectra were searched against the human nonredundant protein
database by using the SEQUEST program (ThermoFinnigan). Any
phosphopeptide matched by computer searching algorithms was
verified manually.

In vitro Sccl cleavage assays. In vitro cleavage assays were
performed as described [10] with the exception that for the assays
in Figure 2A, in vitro-translated human wild-type or mutant Sccl-
myc was used as substrate. To isolate human separase, purified
polyclonal antibodies generated against recombinant human sepa-
rase were used (kindly provided by I. Waizenegger). In some reactions
human GST-PIk1 (16) was added in a concentration of approximately
50 nglul.

SA2 electrophoretic mobility shift assays. Xenopus interphase egg
extracts were supplemented with 1/20 volume of in vitro-translated
35S labeled SA2, which had C-terminal deletions or mutations of
phosphorylation sites. All SA2 constructs used in this assay lacked the
69 N-terminal amino acids, because the start codon was initially
misassigned. Extracts were induced to enter mitosis by addition of
cyclin B A90 and 1 pM okadaic acid as described in Sumara et al. [3].
Samples were collected at the indicated time points and analyzed by
SDS-PAGE followed by Phosphorimager analysis (Storm, Amersham
Biosciences, Little Chalfont, United Kingdom).

In vitro phosphorylation assay. SA2-myc or SA2-12xA-myc
containing cohesin complexes were purified by immunoprecipitation
with affinity-purified rabbit anti-myc antibody (Gramsch Laborato-
ries, # CM-100). Conditions of the in vitro phosphorylation assay have
been described [26].

Microscopy. For immunofluorescence microscopy, cells were
either grown on coverslips or spun onto glass slides using a Cytospin
centrifuge (Shandon brand, available from Thermo Electric). Cells
were extracted with 0.1% Triton X-100 prior to fixation to remove
the soluble pool of cohesin. Fixation, immunostaining, and image
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acquisition were performed as described [10]. Chromosome spreads
followed by Giemsa staining were performed as described [31].

Quantification of interchromatid distance. On pictures of chro-
mosome spreads, a line scan was performed across chromosome arms
orthogonal to the long axis of the chromosome using MetaMorph
software (Universal Imaging, Downingtown, Pennsylvania, United
States). On the line scan, the distance from peak to peak was
measured. Five chromosomes were thus analyzed per cell, and the
resulting distances were averaged. More than 50 cells were randomly
picked per cell line, and thus analyzed.

Supporting Information

Figure S1. Phosphorylation Sites in Human Sccl and SA2

Sites for Sccl (A) and SA2 (B) are shown. The sites marked in red and
blue were found to be phosphorylated in mitosis by mass spectrom-
etry. Residues marked in red were unambiguously identified, whereas
in the regions marked in blue the phosphorylated residue could not be
assigned with certainty. The separase recognition sites on human Sccl
(A) are indicated in green. Peptides identified by mass spectrometry
are highlighted in yellow. The residues at which SA2 was truncated for
the assay in Figure 4C are also indicated (B).

Found at DOIL: 10.1371/journal.pbio.0030069.sg001 (1.2 MB EPS).

Figure S2. Phosphorylation of Sccl Is Not Required for Dissociation
of Cohesin from Chromosome Arms during Prometaphase and
Metaphase

(A) Extracts were prepared from HeLa cells expressing Sccl-S*7A-
myc or Sccl-9xA-myc and fractionated by sucrose density gradient
centrifugation (5%-30% sucrose), followed by immunoblotting
with antibodies recognizing the proteins indicated on the right
(inp. = input/unfractionated sample of the extract).

(B) HeLa cells expressing Sccl WT-myc or Scc1-9xA-myc were either
grown logarithmically (0 h Noc) or arrested in prometaphase for 5 h
by nocodazole (5 h Noc). Cells were extracted prior to fixation, and
stained with myc-antibodies. Kinetochores were labeled with human
CREST (calcinosis, Raynaud phenomenon, esophageal dysmotility,
sclerodactyly, telangiectasias) serum, and DNA was counterstained
with DAPI. Scale bar, 10 pm.

Found at DOT: 10.1371/journal.pbio.0030069.sg002 (870 KB JPG).

Figure S3. Condensation or Condensin Binding Is Not Impaired in
SA2-12xA-Expressing Cells

(A) Untransfected HeLa tet-on cells and HeLa cells expressing SA2-
WT-myc, or SA2-12xA-myc were arrested with nocodazole for 10 h.
Cells were fixed, spread on glass slides, and stained with Giemsa. For
each sample, one representative cell is shown. The small bars next to
one of the chromosomes in all panels have the same length.

(B) HeLa cells expressing SA2-WT-myc or SA2-12xA-myc were
spread on glass slides, extracted prior to fixation, and immunostained
as indicated, using an antibody against human Smc2 to reveal
condensin. Scale bars in (A) and (B), 10 pm.

Found at DOI: 10.1371/journal.pbio.0030069.sg003 (721 KB JPG).

Accession Numbers

GenBank accession numbers for proteins discussed in this paper are
human Sccl (NP__006256) and human SA2 (NP__006594).
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