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Abstract

Genes generate transcripts of various functions by alternative splicing. However, in most tran-

scriptome studies, short-reads sequencing technologies (next-generation sequencers) have

been used, leaving full-length transcripts unobserved directly. Although long-reads sequencing

technologies would enable the sequencing of full-length transcripts, the data analysis is diffi-

cult. In this study, we developed an analysis pipeline named SPLICE and analyzed cDNA

sequences from 42 pairs of hepatocellular carcinoma (HCC) and matched non-cancerous liv-

ers with an Oxford Nanopore sequencer. Our analysis detected 46,663 transcripts from the

protein-coding genes in the HCCs and the matched non-cancerous livers, of which 5,366

(11.5%) were novel. A comparison of expression levels identified 9,933 differentially expressed

transcripts (DETs) in 4,744 genes. Interestingly, 746 genes with DETs, including the LINE1-

MET transcript, were not found by a gene-level analysis. We also found that fusion transcripts

of transposable elements and hepatitis B virus (HBV) were overexpressed in HCCs. In vitro

experiments on DETs showed that LINE1-MET and HBV-human transposable elements pro-

moted cell growth. Furthermore, fusion gene detection showed novel recurrent fusion events

that were not detected in the short-reads. These results suggest the efficiency of full-length

transcriptome studies and the importance of splicing variants in carcinogenesis.

Author summary

Genes generate transcripts of various functions by alternative splicing. However, in most

transcriptome studies, short-reads sequencing technologies (next-generation sequencers)
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have been used, leaving full-length transcripts unobserved directly. In this study, we devel-

oped an analysis pipeline named SPLICE for long-read transcriptome sequencing and

analyzed cDNA sequences from 42 pairs of hepatocellular carcinoma (HCC), and

matched non-cancerous livers with an Oxford Nanopore sequencer. Our analysis detected

5,366 novel transcripts and 9,933 differentially expressed transcripts in 4,744 genes

between HCCs and non-cancerous livers. An analysis of hepatitis B virus (HBV) tran-

scripts showed that fusion transcripts of the HBV gene and human transposable elements

were overexpressed in HBV-infected HCCs. We also identified fusion genes that were not

found in the short-reads. These results suggest that long-reads sequencing technologies

provide a fuller understanding of cancer transcripts and that our method contributes to

the analysis of transcriptome sequences by such technologies.

Introduction

Hepatocellular carcinoma (HCC) is the third-leading cause of death worldwide and the sev-

enth most common form of cancer [1]. Common etiological factors in liver carcinogenesis

include infection by hepatitis B virus (HBV) or hepatitis C virus (HCV), but other factors,

such as alcohol intake, metabolic diseases, and exposure to specific carcinogens also play sig-

nificant roles [2]. These factors cause liver inflammation, leading to cirrhosis and result in

malignant transformations in hepatocytes [2]. To elucidate the molecular mechanisms under-

lying liver carcinogenesis, genetic and transcriptional aberrations have been investigated [3–

7]. These previous studies identified numerous somatic mutations and differentially expressed

genes (DEGs), and have led to the discovery of liver cancer-associated pathways, such as apo-

ptosis, Wnt signaling, chromatin remodeling, and lengthening telomeres [3–7]. In HBV-

infected liver cancers, HBV integrations and HBV-human fusion transcripts have been identi-

fied [8]. Fusion genes have been investigated, but recurrent fusions were rare [9]. Although

these studies have expanded our knowledge of HCCs, our understanding of liver carcinogene-

sis is far from complete [10,11]. To obtain deeper insight into the mechanism responsible for

HCCs, applications of novel technologies and analysis of new aspects of genetic and transcrip-

tional aberrations are needed.

We aimed to analyze full-length transcripts for HCCs in the present study. The majority of

previous transcriptome studies have used microarrays or short-reads sequencing technologies,

and therefore lacked information on full-length transcripts that may assist in the detection of

splicing variants expressed from each gene. Protein sequences are specified by the mRNA

sequences of transcripts; thus, the direct observation of transcripts should provide essential

information about carcinogenesis. Indeed, several recent studies have suggested that tran-

script-specific functions contribute to carcinogenesis in breast and ovarian cancers [12–14]. In

HCCs, a recent study analyzed short-reads RNA-seq data and detected oncogenic splicing

changes in the AFMID gene [15]. These splicing changes were estimated to occur at the early

stage of HCC carcinogenesis and were associated with patient survival [15]. Overall, previous

studies strongly suggest that splicing variants have important roles that are not recognized

without an analysis of full-length transcripts.

One promising approach to observe transcripts is RNA-seq using long-reads sequencers

[16], but their application in cancer research is still limited [17–21] for reasons such as high

error rates in the long-reads sequencing [22] and the complexity or heterogeneity of the cancer

genome. To overcome this problem and identify cancer-related transcriptional changes, we

developed a method for analyzing RNA-seq data obtained by a long-reads sequencer, MinION
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(Oxford Nanopore). In this study, we sequenced 42 pairs of cDNA from HCCs and matched

non-cancerous livers that were previously used for whole-genome sequencing (WGS) and

RNA-seq of short-reads [4,23,24]. We developed an analysis method named SPLICE and ana-

lyzed the long-reads data. Among the reads mapped to coding genes, 61.7% contained entire

coding sequences, and a total of 46,663 transcripts were detected in the protein-coding genes

in the HCCs and matched livers, of which 5,366 (11.5%) were novel. A comparison of expres-

sion levels found 9,933 differentially expressed transcripts (DETs) in 4,744 genes. Interestingly,

746 genes with DET were not detected by the gene-level analysis. Exonization of transposable

elements (TEs) was also identified. In the analysis of HBV transcripts, fusion transcripts of the

HBV HBx gene and human TEs were overexpressed in HBV-infected HCCs. These results

suggest that long-reads sequencing technologies provide a fuller understanding of cancer tran-

scripts and that the SPLICE method contributes to the analysis of transcriptome sequences by

such technologies.

Results

cDNA sequencing with Oxford Nanopore sequencer

We sequenced cDNA from MCF-7 cells and previously published 42 cancer and their matched

non-cancerous liver pairs (S1 and S2 Tables and S1 and S2 Data) [4]. cDNA was generated

by reverse transcription with a SMARTer PCR cDNA synthesis kit (TakaraBio), and sequenc-

ing libraries were constructed using the SQK-LSK109 library construction kit (Oxford Nano-

pore) according to the manufacturer’s instruction. We performed one run for each sample

using flowcell R9.4 (Oxford Nanopore). The data yield ranged from 4.6 Gbp to 20.6 Gbp (aver-

age 12.7 Gbp), and the number of reads was 3,061,266 to 14,873,634 (average 9.1 M reads)

(S2 Data).

Construction of analysis pipeline and evaluation of the SPLICE method

To analyze the long-reads data, we constructed an analysis pipeline named SPLICE (see Meth-

ods) (Fig 1A). Long-reads sequencers have the capability to sequence entire cDNA end-to-end

[25], allowing us to capture full-length transcripts without assembly [26]. However, long-reads

sequencers also have high error rates [22], which could lead to incorrect conclusions about

splicing variants and their expression levels. To overcome these obstacles, we analyzed error

patterns and developed an analysis pipeline.

Reads were mapped to the reference genome sequence (hg38), reference transcriptome

sequence (GENCODE (version 28), and RefSeq (release 88)) using minimap2 software [27].

We found that false-positive splicing aberrations were caused by alignment errors at splicing

junction sites, mapping errors due to highly homologous genomic regions, and artificial chi-

meric reads (Fig 1B). The following describes how the SPLICE pipeline removed possible

error patterns from the mapping results (S1 Fig). (1) Reads were mapped to the reference

genome and the reference transcriptome sequences, and reads were removed if the number of

matched bases in a read to the reference genome sequence was smaller than that to the refer-

ence transcriptome sequence (removal of mapping errors). (2) For the identification of novel

transcripts (novel splicing variants), we evaluated the error rate within ± 5-bp regions from

splicing junction sites and removed candidates for error rates≧ 20% (removal of alignment

errors around splicing sites). (3) Because fusion gene candidates can be generated by mis-liga-

tion of two transcripts during the library preparation, we removed fusion gene candidates that

contained primer sequences for cDNA synthesis between two genes (removal of artificial chi-

meras). (4) Mapping errors due to highly homologous genomic regions also can cause fusion

gene candidates; thus, we compared the results of mapping to the reference genome and the
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reference transcriptome sequences and removed candidates if both results did not detect the

same fusion genes (removal of mapping errors). (5) We removed a transcript if the expression

level was less than 1% the total amount of the gene expression (removal of possible artificial

chimeras). Using these filters, we estimated the expression level of transcripts and identified

novel transcript candidates from long-reads, which we classified into transcripts with “novel

exon length”, “novel exon combination”, and “novel exon” (Fig 1C).

Fig 1. Overview of the SPLICE pipeline and HCC sequencing library. (A) Workflow of the SPLICE pipeline and data analysis of this study.

Reads with an average base quality score< 15 were removed from the input FASTQ files. The read sequences were mapped to the reference

genome, reference transcriptome sequences, and remapped soft-clipped regions (≧ 60 bp). Candidates corresponding to the error patterns or

low-frequency transcripts were removed. The final data were used for the subsequent data analyses. (B) Error patterns in cDNA-seq using

MinION. Alignment errors caused by sequencing errors, artificial chimeras, and mapping errors of highly homologous genes can result in

errors. (C) Classification of patterns of novel transcripts. "Novel exon length" contains known exons with different lengths from the reference

database. "Novel exon combination" has a different exon combination from the reference database. “Novel exon” contains exons expressed from

regions that are not overlapped with known exons. (D) Composition of the transcripts. The stacked bar chart shows the distribution (%) of

detected transcripts by transcript type. The total number of transcripts is shown above the bars. (E,F) Comparison of expression levels of known

and novel transcripts. Transcript abundance was measured in reads per million reads (RPM), and log10 converted values for RPM+1 are shown

in the violin plot. P-values were calculated by the Wilcoxon rank-sum test. (E) Comparison in HCC samples. (F) Comparison in non-cancerous

liver samples.

https://doi.org/10.1371/journal.pgen.1010342.g001
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To evaluate this method, we sequenced cDNA obtained from the MCF-7 cell line and ana-

lyzed it with the SPLICE pipeline. As a result, 13,424,802 reads (99.5%) were mapped (S1

Table). We calculated the number of reads mapped to each transcript per 1 million reads to

estimate the expression levels. The numbers of reads of each transcript were then summed by

each gene and compared to the expression level by short-reads sequencing technology [28].

The gene expression levels between long- and short-reads showed a strong correlation

(p< 2.2 × 10−308, r = 0.80) (S2 Fig).

Comparison of SPLICE method with other tools

We evaluated the detection performance of splicing variants and fusion genes. Although sev-

eral Nanopore long-reads RNA-seq analysis pipelines exist [21,29–34], to the best of our

knowledge, no software can detect both splicing variants and fusion genes. In this study, we

used sequence data from MCF-7 and an HCC sample (RK107C) and compared the perfor-

mance of SPLICE and four other methods (TALON [34], FLAIR [21], StringTie [31], and

Bambu [29]) for the splicing variant detection and SPLICE and two other methods (LongGF

[32] and JAFFAL [30]) for the fusion gene detection. In the analysis of splicing variants,

SPLICE identified the third highest number of transcripts after FLAIR and StringTie (S3A

Fig). For MCF-7, SPICE had the highest concordance rate with IsoSeq MCF-7 transcriptome

data (see Data access) for known transcripts and second highest for novel transcripts (S3B

Fig).

We next compared the fusion genes detected from MCF7 by SPLICE, LongGF, and JAF-

FAL. Previously known BCAS3-BCAS4 [35] was detected only by SPLICE, and BCAS3-ATXN7
was detected by SPLICE and LongGF (S4A and S4B Fig). In HCC, AC138969.4-PDXDC1 was

detected only by SPLICE, C8B-PAH was detected by SPLICE and JAFFAL, three fusions

(GCH1-SERPINA6, ABCD3-C1orf123, and CPS1-WNT10B) were detected by SPLICE and

LongGF, and two fusions (TBC1D23-TF and NBEAL1-RPL12) were detected only by LongGF.

One of the fusions (NBEAL1-RPL12), detected only by LongGF, could not be validated by PCR

(S4B Fig). These results indicate that SPLICE had the highest accuracy for detecting fusion

genes. Based on these results, we considered our analysis pipeline to have sufficient accuracy

for analyzing transcript aberrations in cancers.

Analysis of HCC and non-cancerous liver samples

We then analyzed the sequence data from HCCs and matched non-cancerous livers. After fil-

tering low-quality reads (average base quality score< 15), we obtained an average of 9,043,803

reads (12.9 Gbp on average) in the HCCs and 9,013,602 reads (12.4 Gbp on average) in the liv-

ers (S2 Data). The average mapping rates were 98.9% for the HCCs and 97.3% for the livers

(S2 Data). Using the SPLICE pipeline, we identified transcripts supported by≧ 3 reads and

obtained a total of 60,011 non-redundant transcripts in the HCCs and 51,506 in the livers (Fig

1D). Of these, 66.5% and 70.8% were known protein-coding transcripts, 7.9% and 7.4% were

novel protein-coding transcripts, 17.8% and 16.0% were known non-coding transcripts, and

7.8% and 5.8% were novel non-coding transcripts in the HCCs and the livers, respectively (Fig

1D). We then compared the expression levels of known and novel transcripts. The average

expression levels of novel transcripts were lower than those of known transcripts for both pro-

tein-coding and non-coding transcripts in the HCCs and the livers (p< 2.2 × 10−308 for pro-

tein-coding, p< 2.2 × 10−308 for non-coding) (Fig 1E and 1F).

Among reads mapped to known protein-coding transcripts, 61.7% had full-length coding

sequences (CDSs) (S5A and S5B Fig). The percentage of reads mapped to the full-length CDS

region was negatively correlated with the length of genes (S5C Fig). The percentages of reads
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containing the full-length CDS were correlated with RIN (RNA Integrity Number) values of

the RNA samples (p = 9.8 × 10−6, r = 0.46) (S6 Fig), indicating the importance of RNA quality

for identifying full-length transcripts. We then compared the gene expression levels between

previous short-reads and our long-reads data [4] and found high correlations (p< 2.2 × 10−308

in all samples, average r = 0.79) (S7 Fig).

Features of novel exons

We identified novel exons by comparing the exon locations in the GENCODE (version 28)

and RefSeq (release 88) databases. Our analysis identified 767 and 531 novel exons in 4,769

and 3,786 transcripts of protein-coding genes in the HCCs and matched non-cancerous livers,

respectively. Most (92.0%) were the first or last exon of the transcripts (Fig 2A). Since TEs are

known to be exonized by tissue-specific or cancer-induced hypomethylation of the genome

[36], we calculated the percentage of TE-derived novel exons. In the analysis, novel

exons> 70% covered by TEs were considered TE-derived novel exons. The percentage of TE-

derived novel exons was significantly higher than that of TE-derived known exons in the first,

last, and middle exons (p = 5.9 × 10−153 for the first exon, p = 2.2 × 10−106 for the last exon,

p = 1.7 × 10−79 for middle exon) (Fig 2B and S3 Table). A permutation test showed that the

novel first exon was significantly enriched in L2 antisense, ERV1 antisense, and ERVL-MaLR

sense (Fig 2C). The novel last exon was significantly enriched in Alu sense, and the middle

exon was significantly enriched in Alu antisense, ERVL-MaLR antisense, and ERV1 antisense

(Fig 2C). These results showed that exonized repeat families and strands differ by their posi-

tion in the transcripts.

To estimate the biological importance of the novel exons, we estimated their evolutional

conservation using a conservation score obtained by 100 species. The average conservation

score of the novel exon region was significantly lower than that of the known exon region

(p< 2.2 × 10−308) (Fig 2D), suggesting that most of the novel exons had less importance in

evolutional aspects. However, a part of novel exons was highly conserved (Fig 2E and S3

Data), suggesting that they had important biological functionalities.

Identification of significantly differentiated genes and transcripts

One of the most important features of the long-reads transcriptome is detecting DETs. Thus,

by comparing the expression level between HCCs and matched non-cancerous livers, we

aimed to find DEGs and DETs. DETs are transcripts that show significant differentiation in

expression level between HCCs and matched non-cancerous livers. DEGs are genes obtained

by comparing the total amount of transcripts within a gene between HCCs and the livers. We

estimated the expression level based on the number of reads and compared them using edgeR

software [37]. Our analysis identified 4,744 DEGs and 9,933 DETs after adjusting for multiple

testing (FDR < 0.01) (Fig 3A and S4 Data) [38]. A Reactome pathway analysis [39] for genes

with up-regulated DETs was conducted, and genes with the terms “M Phase”, “Cell cycle,

Mitotic”, and “Cell cycle” were significantly enriched (S5 Data). Among the genes with DETs,

746 genes (935 transcripts) were not detected as DEGs (DET-specific genes) (Fig 3B and S4

Data). To know the features of the DET-specific genes, we compared the numbers of tran-

scripts identified in this study and transcription start sites (TSSs) of each gene in the database.

DET-specific genes had a significantly larger number of transcripts than DEGs

(p = 6.2 × 10−41) (Fig 3C) and also had a larger number of multiple TSSs (Fig 3D)

(p = 5.2 × 10−13).

Among the 9,933 DETs, 200 transcripts (99 genes) were from previously reported driver

genes (Fig 3E and S6 Data) [4,41,42], and 13 genes (16 transcripts) were DET-specific. Of

PLOS GENETICS Long-read RNA sequencing for liver cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010342 August 4, 2022 6 / 28

https://doi.org/10.1371/journal.pgen.1010342


these, transcripts of the MET oncogene (XM_006715990.2, XM_011516223.1) were up-regu-

lated in HCCs, and tumor suppressor genes, such as HLA-B (ENST00000359635.9,

ENST00000450871.6) and APC (NM_000038.5), were down-regulated (S6 Data). Transcripts

from 16 HCC driver genes (ALB, APOB, ASH1L, CDKN2A, CPS1, CTNNB1, DHX9, IDH1,

IL6ST, NCOR1, NFE2L2, NRAS, NSMCE2, NUP133, SETDB1, and XPO1) were significantly

differentiated (S6 Data) [4,41,42]. Of these, transcripts from ASH1L, CDKN2A, CTNNB1,

DHX9, NRAS, NSMCE2, NUP133, SETDB1, and XPO1 were up-regulated in the HCCs and

other transcripts were down-regulated. ALB is known to be highly expressed in the liver, and 3

Fig 2. Features of novel exons. (A) Patterns of transcripts with novel exons. (Left panel) Bar graph showing the

number of transcripts by the position of the novel exon. (Right panel) Schematic diagram of the location of novel

exons. The novel exons are shown in red. (B) Percentage of TE-derived exons in novel and known exons by exon

position. The stacked bar chart shows the distribution of TE-derived exons. The total number of exons is shown above

the bars. Statistical significance of the total abundance of TE-derived exons between the known and novel exons was

calculated by Fisher’s exact test. (C) The number and enrichment of TE-derived novel exons. TEs were classified by

repeat family, and the sense or antisense strand for the gene strand was distinguished. The statistical significance was

examined by a permutation test. P-values were adjusted by Bonferroni correction (AdjP). (D) Average conservation

scores between novel and known exon regions. For each gene, the average conservation scores were calculated based

on the phastCons scores database (100 vertebrates). P-values were calculated by the Wilcoxon rank-sum test. (E) List of

transcripts with novel exons with high average conservation scores. The 10 candidates are shown in order of average

conservation score.

https://doi.org/10.1371/journal.pgen.1010342.g002
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Fig 3. Landscape of significantly differentiated transcripts between HCCs and matched non-cancerous livers. (A) Volcano plot of

DETs in cancers and non-cancerous livers. Red and blue dots represent transcripts that were significantly up- and down-regulated

(FDR< 0.01), respectively. (B) Venn diagram of the number of genes with DETs and DEGs. (C) Comparison of the average number of

transcripts per gene for each item in the Venn diagram in B. P-values for the abundance of transcripts per gene in DET-specific and

DEG-specific genes were calculated by the Wilcoxon rank-sum test. The numbers of transcripts in each gene were compared for DET-

specific genes and other genes and for DEG-specific genes and other genes. (D) Percentage of genes with multiple TSS for each item in

the Venn diagram in B. P-values for the enrichment of genes with multiple TSS in DET-specific and DEG-specific genes were calculated

by Fisher’s exact test. The numbers of TSS in each gene were compared for DET-specific genes and other genes and for DEG-specific

genes and other genes. (E) The landscape of DETs in driver genes. Twenty up-regulated and down-regulated DETs are shown in order of

lower FDR. Heatmap showing the expression differences (log2(fold change)) in cancer and matched non-cancerous livers. (F) Schematics

diagram of the structural differences in L1-MET (XM_006715990.2) and other MET transcripts. L1-MET has the L1-derived first exon

shown in red. (G) Bar chart showing expression differences between cancers and matched livers in MET transcripts. The red bar

represents the MET transcript with the L1 antisense promoter, and black bars represent MET transcripts with the canonical promoter. P-

values were obtained using quasi-likelihood methods in EdgeR software [40]. The Benjamini-Hochberg method was used for multiple

testing correction (FDR). (H) Effect of L1-MET overexpression on the proliferation of HepG2 and Huh-7 cell lines assessed by CCK-8. P-

values were calculated by the one-sample t-test (n = 3). (I) Effect of L1-MET knockdown on the proliferation of HepG2 and Huh-7 cell

lines assessed by CCK-8. P-values were calculated by the one-sample t-test (n = 3). Error bars represent the standard error of the mean. N.

S.: Not significant.

https://doi.org/10.1371/journal.pgen.1010342.g003
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major transcripts (ENST00000503124.5, ENST00000415165.6, and ENST00000295897.8) were

detected in HCCs and matched livers (S6 Data).

We then focused on genes that had both significantly up-regulated and down-regulated

transcripts (referred to as bi-directionally significantly expressed (BiExp) genes). Our analysis

identified 80 BiExp genes (270 transcripts) (S7 Data). Among them, AFMID, which is a previ-

ously reported oncogenic BiExp gene [15], was successfully detected in our analysis (S8 Fig).

Among the 746 DET-specific genes, 42 were BiExp genes. As expected, DEGs had a smaller

percentage of BiExp genes than did DET-specific genes (p = 1.6 × 10−15) (S4 Table), as BiExp

genes had both up- and down-regulated transcripts whose expression levels canceled out each

other.

Exonization of TEs in HCCs

In the HCCs, a transcript of MET (XM_6715990.2) was ranked first among the significantly

up-regulated DET-specific driver genes (FDR = 4.8 × 10−8) (Fig 3E and S6 Data). A previous

study reported that the first exon of XM_006715990.2 is L1-derived, and this transcript is

expressed by the L1 antisense promoter (referred to as L1-MET) (Fig 3F) [43]. L1-MET was

remarkably up-regulated in HCCs compared to other MET transcripts with the canonical pro-

moter (Fig 3G). Since the role of L1-MET in HCCs is largely unknown, we performed overex-

pression and knockdown experiments of L1-MET in the HepG2 and Huh-7 cell lines. The

overexpression of L1-MET and canonical MET (NM_001127500.2) increased cell proliferation

(Figs 3H and S9), and the knockdown decreased cell proliferation of both cell lines (Figs 3I

and S10), indicating that L1-MET contributes to the proliferation of HCC cells. Since the exo-

nization of TEs was observed in HCCs and livers (Fig 2B), we next focused on cancer-specific

TE-derived exons (n = 829) (S5 Table). We found that they were significantly enriched in the

first and last exons (p = 7.6 × 10−43 for the first exon, p = 3.9 × 10−7 for the last exon) (S11 Fig).

An analysis of repeat families showed that L1 sense and antisense, L2 antisense, ERVL sense

and antisense, ERVL-MaLR sense, and LTR sense were significantly enriched in the first exon

of cancer-specific transcripts (S5 Table). The liver-specific TE-derived exons were also signifi-

cantly enriched in the first and last exons (p = 2.9 × 10−6 for the first exon, p = 0.0012 for the

last exon) (S11 Fig), and by repeat families, the L2 antisense was significantly enriched in the

first exon (p = 8.6 × 10−5) (S6 Table).

Expression from HBV

We then analyzed reads containing the HBV genome sequence in 18 HBV-positive patients.

Of these samples, 13 HCCs and 10 matched non-cancerous livers expressed transcripts having

the HBV genome sequence (HBV transcript) (S12 Fig). We classified transcripts having the

HBV genome sequence into HBV-only and HBV-human fusion transcripts. We estimated

transcriptional start and end sites and analyzed these locations on the HBV genome. Most of

the TSSs of HBV transcripts were clustered in the upstream region of the PreS2 gene (around

1 bp– 100 bp in the HBV reference genome) (Figs 4A and S12) as shown in a previous study

using the CAGE method [44]. We then compared the expression levels of the transcripts with

the HBV sequences. Expression levels were estimated by log10 converted support reads per

million reads (log10(RPM)) for each sample. The expression levels of each HBV transcript

were significantly different between HCCs and the livers (p = 0.046) (Fig 4B); however, the

comparison of the total amounts of HBV transcript was not (S13A Fig), suggesting that the

transcript-level analysis with long-reads can detect significantly differentiated transcripts from

HBV.
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Fig 4. Identification of HBV-human genome fusion transcripts. (A) Visualization of the RNA-seq coverage in the HBV genome region in

HCCs and non-cancerous livers. (Upper panels) Schematic diagram of the HBV genome structure. (Middle panels) Bar chart of the

breakpoints in HBV-human fusion transcripts. (Lower panels) Coverage of HBV transcripts (HBV alone) and HBV-human fusion

transcripts are shown in blue and red. The y-axis shows the total number of support reads (raw counts). (B) Expression levels of HBV-human

fusion transcripts in HCCs and livers. Transcript abundance was measured in reads per million reads (RPM), and log10 converted values for

RPM+1 are shown in the boxplot. P-values were calculated by the Wilcoxon rank-sum test. (C) Percentage of HBV-human fusion transcripts

in HCCs and livers. The stacked bar chart shows the distribution (%) of detected transcripts by type. The total number of transcripts is shown

above the bars. The pie chart shows the percentage of HBs-FN1 fusion transcripts in HBs-human CDS in the livers. (D) Expression levels of

HBx-human non-coding fusion transcripts in HCCs and livers. P-values were calculated by the Wilcoxon rank-sum test. (E) Expression

levels of HBx-human TE fusion and HBx human non-TE fusion transcripts in HCCs. P-values were calculated by the Wilcoxon rank-sum

test. (F) Expression levels of HBV transcripts integrated into TE regions and those integrated into non-TE regions. P-values were calculated

by the Wilcoxon rank-sum test. (G) Schematic diagram of HBx-human TEs fusion transcripts. (H) Effect of HBx-TE fusion on the cell

proliferation of HepG2 and Huh-7 cell lines assessed by CCK-8. Error bars represent the standard error of the mean. P-values were calculated

by the one-sample t-test (�p< 0.1, ��p< 0.05, ���p< 0.01) (n = 3).

https://doi.org/10.1371/journal.pgen.1010342.g004
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Thirty and 146 HBV-human genome fusion transcripts were detected in the HCCs and

matched livers (S8 Data), and all were selectively expressed in the respective tissues. Break-

points of HBV-human fusion transcripts were clustered in the HBs gene region (450 bp– 470

bp) and downstream of the HBx gene region (1750 bp– 1840 bp) (middle panel of Fig 4A).

Therefore, we focused on HBs and HBx genes and classified HBV-human fusion transcripts

into “HBs-human CDS fusion”, “HBs-human non-coding fusion”, “HBx-human CDS fusion”,

“HBx-human non-coding fusion”, “Other HBV genes-human CDS fusion”, and “Other HBV

genes-human non-coding fusion” (Fig 4C). Forty HBs-human CDS fusion transcripts were

detected in the livers but not in the HCCs (Fig 4C). Among them, 32 (80.0%) were HBs-FN1
fusion transcripts (Fig 4C) [45]. Expression levels were then compared between the HCCs and

matched livers in these categories (Figs 4D and S13A). HBx-human non-coding fusion

showed higher expression levels in the HCCs than in the livers (p = 6.1 × 10−5) (Fig 4D); how-

ever, other categories did not show significant differences (S13B Fig). Previous studies

reported that LINE1(L1), a retrotransposon, forms the HBx-L1 fusion transcript and induces

carcinogenesis in HCCs [46,47]. We thus focused next on HBx-human TE fusion and identi-

fied 4 HBx-LINE fusion transcripts, 2 HBx-SINE fusion transcripts, and 1 HBx-LTR fusion

transcript in HCCs (S13C Fig). The expression level of HBx-human TE fusion was signifi-

cantly higher than that of HBx-human non-TE fusion in HCCs (p = 0.015) (Fig 4E).

The expression pattern of HBx-human TE fusions suggests their important roles in carcino-

genesis. Therefore, we examined a possible mechanism for the promotion of expression and

their functional effect on cell proliferation. Our samples in this study have been used in a pre-

vious WGS study, and genomic locations of HBV integrations have been determined [4]. The

WGS identified 44 HBV integration sites, and 17 of them were integrated into TE regions. A

comparison of their expression levels showed that integrations into the TE regions result in a

higher expression than into the non-TE regions (p = 0.027) (Fig 4F). We then analyzed the

role of HBx-human TE fusions on cell proliferation with an overexpression experiment of full-

length HBx-TE fusions and canonical HBx in liver cancer cell lines (HepG2 and Huh-7) (Figs

4G and S9). We found that HBx-TE fusions significantly increased cell growth in both cells

(Fig 4H).

Fusion genes

We detected 164 cancer-specific fusion transcripts (S9 Data). Although recurrent fusion

events of the same gene pairs were not detected, six genes, SENP6, TBRG1, SDC2, ABCD3,

LGSN, and LDLR, appeared recurrently but fused with different partners (Fig 5A). We experi-

mentally validated all candidates (12/12) by RT-PCR (Fig 5B and S7 Table). Within the sam-

ples of the current study, 15 have been subjected to fusion gene detection by short-reads in the

ICGC pan-cancer study [24] (S14A Fig). A comparison between the short- and long-reads

revealed that 41 out of 50 fusions (82.0%) were not detected in the short-reads and only 9

fusions (8.0%) were commonly detected (Fig 5C). We considered three explanations for the

low overlap. (1) Since most of the fusion genes missed by short-reads had very low expression

levels (S14B Fig), many fusion genes with low expression levels were missed by the single

approach. (2) In addition, 28.9% of transcripts in long-reads lacked the 5’ region (S5 and S14C

and S14D Figs). Therefore, fusion genes whose breakpoints are located in the 5’ region are dif-

ficult to detect using long-reads. (3) Since artificially truncated cDNA can be produced by

internal poly-A priming without priming to poly-A at the 3’end of the mRNA, fusion genes

with breakpoints in the 3’region may also be missed. This comparison suggests that a combina-

tion of short- and long-reads can detect more fusion genes.
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We also compared the fusion genes and structural variations (SVs) detected by previous

WGS [4,23]. Among the 164 fusion transcripts, 21 had SVs that can cause the fusion tran-

scripts, and their expression levels were significantly higher than other fusions (p = 4.2 × 10−6)

(Fig 5D). This result suggests that there are many sub-clonal fusion genes, and their expression

levels are lower than clonal fusion genes. Although the functional importance of sub-clonal

fusion genes is currently unknown, deeper RNA-seq would detect more of them.

Expression profiles of HBV- and HCV-infected HCCs

Our non-cancerous liver samples have hepatitis by infection with HBV or HCV. To examine

the influence of HBV and HCV on hepatitis and HCC, we performed a clustering analysis for

16 HBV-infected, 24 HCV-infected, and 2 dually infected samples in HCCs and non-cancer-

ous livers, respectively (Fig 6A). In the non-cancerous livers, most HBV- and HCV-infected

tissues were in separate clusters, whereas the HCCs were not separated (Fig 6A). Next, we ana-

lyzed genes with significantly differentiated transcripts between HCV and HBV samples. In

the HCV- and HBV-infected livers, 284 and 68 transcripts were significantly up-regulated,

respectively (Fig 6B and 6C). Highly expressed transcripts in the HCV-infected livers were sig-

nificantly enriched in immune system-related pathways, especially in the interferon signaling

pathway (Fig 6D and S8 Table). Transcripts up-regulated in the HBV-infected livers had no

significantly enriched pathways. For the HCV- and HBV-infected HCCs, we performed the

same analysis and found that immune system-related pathways were slightly enriched in DETs

Fig 5. Identification of fusion genes. (A) Circos plot of recurrent fusion genes. The genes shown in red are recurrent fusion genes. (B)

PCR validation of the recurrent fusion genes. The results of an electrophoresis of each fusion gene in cancer (T) and matched non-

cancerous livers (N) are shown. (C) Venn diagram of fusion genes detected by long- and short-reads sequencers. We compared 15

HCC samples in which short-reads RNA-seq was analyzed in the ICGC study [24]. (D) Expression levels between fusion genes

supported and not supported by SVs according to WGS. P-values were calculated by the Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pgen.1010342.g005
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only in the HCV-infected HCCs, but not as pronounced as in the non-cancerous livers (Fig 6C

and S8 and S9 Tables). Genes of cell cycle-related pathways were significantly up-regulated in

both HBV- and HCV-infected HCCs, as in all HCCs (Fig 6D and S5 and S10 and S11 Data).

Discussion

In this study, we used a long-reads sequencer (Oxford Nanopore) for a comprehensive analysis

of transcriptional abnormalities in HCCs and non-cancerous livers. We first developed an

analysis pipeline (SPLICE) to analyze full-length transcripts (Fig 1A and 1B). SPLICE

removed possible errors around splicing junction sites and pseudo-fusion transcripts by con-

sidering alignment and mapping errors (Fig 1B). To our knowledge, SPLICE is the only long-

reads RNA-seq pipeline that can detect both splicing variants and fusion genes. While most

long-reads RNA-seq analysis pipelines for detecting splicing variants use short-reads RNA-seq

Fig 6. Comparison of expression profiles of HBV- and HCV-infected HCCs. (A) Clustering by the transcriptome of 16 HBV-infected

tissues, 24 HBV-infected tissues, and 2 dually infected tissues in HCCs (upper) and in matched non-cancerous livers (lower). Clinical and

pathological information of the samples is shown in the lower panels. (B, C) Volcano plots of DETs in HBV- and HCV-infected tissues.

Light blue and orange dots represent transcripts that were significantly up-regulated in HBV- and HCV-infected tissues with FDR< 0.01.

(B) Comparison in non-cancerous liver samples. (C) Comparison in HCC samples. (D) Schematic diagram of the expression profiles of

HBV- and HCV-infected tissues.

https://doi.org/10.1371/journal.pgen.1010342.g006
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data for the alignment correction of splice junctions [21,31,34], SPLICE considers error rates

around splicing sites (S3C Fig) and can obtain accurate results using only long-reads RNA-seq

data (S3 Fig). SPLICE also identified a larger number of fusion genes than existing software

(S4 Fig). A comparison with short-reads showed high concordances in the estimation of gene

expression levels, suggesting that our analysis was reliable (S7 Fig).

In the analysis of HCCs and matched livers, 15.7% and 13.2%, respectively, of transcripts

were not found in the database and considered novel (Fig 1D). The expression levels of the

novel transcripts were significantly lower than those of known transcripts, and deeper

sequencing is expected to detect a larger number of novel transcripts (Fig 1E and 1F). Our

analysis identified novel exons. the majority of which were first and last exons (Fig 2A). The

novel first exons can be produced by TSSs from unknown alternative promoters and may con-

tribute to tissue-specific or disease-associated mRNA regulation. Novel last exons can cause

new UTRs and may affect the stability of mRNA. Since the average conservation scores of

novel exons were lower than those of known exons, most novel exons are assumed to not have

important functions (Fig 2D). However, some novel exons were highly conserved and could

have essential functions for biological activities (Fig 2D and 2E). In the MYT1L gene, for

example, a highly-conserved novel exon was detected (Fig 2E), and only a transcript with the

novel exon was expressed. This transcript was significantly down-regulated in HCCs (S15 and

S16 Figs). Previous studies reported that the expression of MYT1L is neuron-specific [48] and

has been suggested to play a critical role in neuronal differentiation and maintenance [48,49].

Our analysis identified a new transcript with the novel exon of this gene in the liver. Several

studies suggested that MYT1L suppresses the proliferation of glioblastoma, and this transcript

could have tumor-suppressive effects in HCCs as well [50,51].

This study also identified the exonization of TEs. Interestingly, 30–50% of novel exons in

protein-coding genes were derived from TEs (Fig 2B), suggesting that TEs can be a source of

the functional diversity of genes [52]. Strands of the exonized TEs were not random, and pat-

terns were different among the location of the exons (Fig 2C); first and middle exons had

higher percentages of TEs encoded on opposite (antisense) strands, whereas the opposite pat-

tern was observed in TEs of the last exons (Fig 2C). A previous study suggested that the anti-

sense of LINE1 has a promoter function and can start transcription [43,53]. This observation

can partly explain the strand bias of TEs of first exons. The strand bias of TEs of the middle

exon can be caused by the asymmetric distribution of TEs in introns. TEs on sense strands

generate harmful poly-A signals in introns, resulting in the reduction of TEs in sense strands

in introns [54,55]. Alu has polyadenylation signals in the sense strand that can generate the last

exons, which can explain the strand bias of Alu of the last exon (Fig 2C) [56].

A comparison of expression levels between HCCs and non-cancerous livers showed the dif-

ferentiation of several transcripts with TEs. A transcript with a TE-derived exon from an

important oncogene, MET, (L1-MET) was significantly overexpressed in HCCs (Fig 3F and

3G). L1-MET was reported to be involved in the progression of colorectal cancer and bladder

cancer [43,57], and this transcript also promoted the proliferation of HCCs (Fig 3H and 3I).

Since L1-MET is suggested to be regulated by the L1 antisense promoter (Fig 3F) [43,53,57],

its expression is independent of other MET transcripts. Indeed, 6 transcripts were observed in

MET; however, only L1-MET was highly overexpressed in HCCs (Fig 3G). Another oncogenic

TE fusion event was found in the HRH1 gene (L2-HRH1). Our study identified 3 transcripts

from the HRH1 gene; however, only L2-HRH1 (NM_001098211.1) was significantly upregu-

lated in HCCs, and the overexpression of L2-HRH1 promoted cell proliferation (S17 Fig). The

HRH1 gene is known to promote the progression of HCCs [58], and our finding of the fusion

events suggests an activation mechanism of the HRH1 gene. Additionally, TE fusion tran-

scripts were identified in HBV-infected HCCs (HBx-TE fusion) (Fig 4G). The overexpression
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of HBx-TE fusion increased cell proliferation in the cell lines (Fig 4H), suggesting that HBx-

TE has a similar function as canonical HBx [59]. Since the expression levels of the integrated

HBV to the TE regions were significantly higher than those of the non-TE regions (Fig 4F),

integrations into TE regions may cause the constitutive expression of HBV genes via TE pro-

moters. These results strongly suggest the important role of TEs on gene expression. Most TEs

are repressed by several inactivation mechanisms; however, epigenetic changes in cancer cells

can activate TEs as promoters, resulting in the aberrant regulation of oncogenes [60].

Most RNA-seq studies identified DEGs but far fewer DETs. In this study, we detected 9,933

DETs (Fig 3A). Seven hundred forty-six genes with DETs were not detected by the gene-level

analysis (DET-specific genes), indicating that the analysis of transcripts benefits the detection

of novel driver genes (Fig 3B). Our analysis also showed possible mechanisms for regulating

splicing variants. DET-specific genes had a higher number of transcripts per gene and a higher

percentage of transcripts with multiple TSSs (Fig 3C and 3D). This observation suggests that

multiple transcripts regulated by different promoters canceled each other out, and thus expres-

sion differences were not detected in the gene-level analysis. We also found 80 genes with both

significantly up-regulated and down-regulated transcripts (BiExp genes) (S7 Data). In addi-

tion to the previously reported AFMID gene [15], genes related to aberrant cell proliferation

(CEACAM1, CASP8, LDHB, SPINT2) [61–64] were detected as BiExp genes (S7 Data). Each

transcript in BiExp genes is regulated differently and have different functions.

We then compared the expression level of transcripts in HCCs and non-cancerous livers

upon HBV or HCV infection (Fig 6). A clustering analysis did not separate HBV- and HCV-

infected HCCs, whereas the livers were clustered into three groups: HCV cluster, HBV cluster,

and cluster with both types (Fig 6A). This observation suggests that the difference in virology

mainly affects the phenotype of the livers (Fig 6D). A pathway analysis for genes differentiated

between HCV- and HBV-infected livers showed an enrichment of immune-related genes (S8

Table). This result is consistent with previous studies [65,66] and suggests that HBV and HCV

may induce different expression changes but that similar mechanisms work after cancer devel-

opment (Fig 6A and S8 and S9 Table and S10 and S11 Data).

Although we obtained many interesting discoveries by analyzing full-length transcripts, our

study has limitations that should be addressed in future studies. First, our analysis did not

determine the structure of the entire CDS for 38.3% of the mapped reads. The majority of the

incomplete transcripts lacked 5’ regions (S5B and S5C Fig), which can be explained by the

process of cDNA synthesis and degradation of RNA samples. cDNA synthesis starts from the

3’end and, therefore, the inactivation of reverse transcriptase or degradation of RNA samples

results in cDNA lacking the 5’ end (S6 Fig). This mechanism can also affect fusion-gene detec-

tion (Figs 5 and S14C and S14D). Improvements in cDNA synthesis and the use of high-qual-

ity RNA can increase the rate of full-length transcripts. Second, the accuracy of the analysis

depends on the sequencing error rate. Although several filters were applied to currently avail-

able high-error reads (Figs 1B and S1), sequencing errors can still affect the accuracy of the

result. With improvments in sequencing technologies and basecallers, the identification of

larger numbers of splicing changes with high accuracy should be possible in the future (S10

Table). Third, our study identified a higher expression of HBx-human TE transcripts that pro-

moted cell proliferation (Fig 4G and 4H). However, the detailed biological mechanisms of the

transcripts are not clear. A previous study reported that HBx-LINE1 can change the expression

levels of epithelial-mesenchymal transition markers [47]; however, our analysis did not detect

significant changes in these genes (S18 Fig). Since the HBx-human transcripts may, at least in

part, explain the carcinogenesis of liver cancer, further functional analysis is needed.

To conclude, here we developed the SPLICE pipeline for transcriptome analysis using a

long-reads sequencer. Validation with the MCF-7 cell line and PCR showed the reliability of
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our analysis. Using this method, we analyzed the full-length transcript of HCCs. We detected

746 genes with DETs, which were otherwise difficult to detect by short-reads sequencers. We

also detected chimeras of TEs and cancer-related genes and found that they promote the pro-

liferation of HCC cell lines. In the analysis of fusion genes, we found 6 recurrent genes that

fused with other genes. Additionally, by comparing HBV- with HCV-infected livers, a signifi-

cant difference in immune-related gene expression levels was detected. Our results strongly

suggest that the direct observation of transcripts with long-reads sequencing contributes to

understanding the true picture of transcript aberration in cancer.

Methods

Ethics statement

All subjects gave informed consent to participate in the study following International Cancer

Genome Consortium (ICGC) guidelines. Institutional review boards at Institute of Physical

and Chemical Research (RIKEN) and the University of Tokyo, and all groups participating in

this study approved this work (RIKEN; H20-11(16), the University of Tokyo; 2020097G). All

participants have provided written consent to participate in the study.

Samples

This study was conducted following the principles of the Declaration of Helsinki. RNA from

HCCs and adjacent non-cancerous livers from 42 patients was used for this study. These sam-

ples have been used for short-reads sequencing and reported by several previous studies (S1

Data) [4,23,24], and a list of somatic mutations (point mutations, short indels and structural

variations), gene expression levels, and fusion genes by short-reads analysis are available

[4,24]. RNA sample qualities were evaluated with RIN (RNA Integrity Number) values using

Bioanalyzer (Agilent), and samples with RIN values� 8 were selected. RNA from 16 HBV-

infected HCCs, 24 HCV-infected HCCs, 2 dually infected HCCs, and their matched non-

cancerous livers were sequenced.

Library preparation and cDNA sequencing

Full-length cDNA was synthesized from total RNA (1 μg) using the SMARTer PCR cDNA

Synthesis kit (Clontech) according to the manufacturer’s instructions. For primer digestion,

cDNA samples were treated with exonucleaseI(NEB) at 37˚C for 30 min. After purification

with Agencourt AMPure XP magnetic beads (Beckman Coulter), libraries were constructed

using the Ligation Sequencing Kit (SQK-LSK109) (Oxford Nanopore) according to the manu-

facturer’s protocol. Libraries were sequenced on a SpotON FlowCell MKI(R9.4) (Oxford

Nanopore) using the MinION sequencer (Oxford Nanopore). Basecalling from raw data

(FAST5 format) was performed using Guppy software (version 3.0.3) (Oxford Nanopore).

Analysis pipeline

We constructed an analysis pipeline named SPLICE (Fig 1A). Low-quality reads (average base

quality < 15) were filtered out. Reads were mapped to the reference genome sequence (hg38),

the reference transcriptome sequence (GENCODE (version 28), and RefSeq (release 88)) using

minimap2 software (v2.17) [27]. For reads mapped to the reference genome sequence, a≧
60-bp unmapped region (soft-clipping regions) was re-mapped to the reference genome

sequence (hg38). Since sequencing errors near splicing junctions can lead to errors in predic-

tions of the splicing sites, we compared the mapping results to the reference genome and the
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reference transcriptome sequence and removed reads if the number of matches to the refer-

ence genome sequence was smaller than that to the reference transcriptome sequence.

In the present study, we analyzed sequence data from MinION, but our method is applica-

ble to data from PromethION and flongle as well.

Identification of known transcripts

The genomic locations of known transcripts were obtained from GENCODE (version 28) and

RefSeq (release 88), and transcripts that were commonly registered in both annotations were

unified to GENCODE transcript IDs (Fig 1A). We assigned each exon in the transcripts to the

exons in the database if the positions of the splicing junction sites at both ends of the tran-

script’s exon and reference exon were perfectly matched. We then considered the combination

of the exons and transcript ID in the database were assigned. Transcripts that were not found

in the database were classified as novel. For the annotation, we did not consider UTR lengths

for the classification, because the qualities of the ends of the reads were low. Reads that con-

tained all coding exons of transcripts in GENCODE or RefSeq were classified as “full-length

CDS”. When reads had a part of the exons of a known transcript but did not cover all the

exons, they were classified as “partial-length CDS”. Among partial-length CDSs, if the refer-

ence transcripts had two or more exons and reads had only one exon, we removed the candi-

dates as highly truncated reads. For partial-length CDSs reads annotated to multiple known

transcripts, we annotated them to the longest known transcript among matched known tran-

scripts. After the annotation, we removed transcripts if the percentage of the expression level

of a transcript was less than 1% the total expression of the gene.

Identification of novel transcripts

Reads that were not annotated as known transcripts were classified as “novel exon length”,

“novel exon combination”, or “novel exon” (Fig 1C). “Novel exon length” reads contain

known exons with different lengths from the reference database. As described above, a change

of splicing junction sites� 5-bp was considered a length change. If splicing junction sites

changed < 20 bp for a known splicing junction site, we evaluated the mismatch rate within ± 5

bp regions from splicing junction sites and removed the candidates for error rates≧ 20%.

Novel exons were defined as expressed regions that were not overlapped with known exons.

Novel exon candidates were removed if they were expressed only in a single novel exon. We

removed candidates if the percentage of their transcript expression level was< 1% the total

expression level of the gene.

Identification of fusion genes

Reads mapped to two protein-coding genes were considered fusion gene candidates. Possible

errors in fusion gene candidates were filtered out as follow. (1) Because mapping errors due to

highly homologous genomic regions can cause fusion gene candidates, we compared the

results of mapping to the reference genome and the reference transcriptome sequences and

removed candidates if both were inconsistent (Fig 1B). (2) Because fusion gene candidates can

be generated by mis-ligation of two transcripts during the library preparation, we removed

candidates that contained primer sequences for cDNA synthesis between two genes (Fig 1B).

(3) Because artificial chimeric reads may be generated from highly expressed genes, there is a

higher chance of mis-ligation in the library preparation; thus, we removed candidates if their

percentage of transcript expression level was < 1% the average expression level of both genes.

(4) Candidates with low expression levels (support reads < 3) in two or more samples in the

matched non-cancerous livers were removed as artifacts. (5) Candidates were removed as
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read-through transcripts if the two transcripts were the same strand and were in close proxim-

ity to each other in the genome (< 200,000 bp).

We further compared fusion genes with SVs detected by previous WGS [4,23]. If the break-

points of an SV were located in intron or exon regions of the fusion gene, the SV was consid-

ered a possible cause of the fusion gene.

Benchmarking

To evaluate the performance of SPLICE, we compared it to four widely adopted long-reads

RNA-seq analysis pipelines: TALON [34], FLAIR [21], StringTie [31], and Bambu [29]. For

this comparison, we used MCF-7 and HCC (RK107C) sequence data. We randomly extracted

1 M reads from the MCF-7 and HCC (RK107C) sequence data using Seqtk (v1.3) (params:

sample -s1 1000000). Reads were mapped to the reference genome sequence (hg38) with mini-

map2 (v2.17) (params: -ax splice—MD), and the output SAM files were converted to BAM

files and sorted with samtools (v1.7) [67]. GENCODE v28 and RefSeq release 88 annotation

databases were used in all data processes.

For the benchmarking of TALON (v5.0), we corrected aligned reads with TranscriptClean

(v2.0.3) [68]. Next, we ran the talon_label_reads module to flagging reads for internal priming

(params:—ar 20). The TALON database was initialized by running the talon_initialize_data-
base module (params:—l o —5p 500 —3p 300). Then we ran the talon module to annotate the

reads (params:—cov 0.8—identity 0.8). To output transcript abundance, we first obtained a

whitelist using the talon_filter_transcripts module (params:—maxFracA 0.5—minCount 5)

and then performed transcript quantification using the talon_abundance module based on the

whitelist.

For the benchmarking of FLAIR (v1.5), the sorted BAM file was converted to BED12 using

bin/bam2Bed12.py. Then we corrected misaligned splice sites with the flair-correct module.

High-confidence isoforms were defined from the corrected reads using the flair-collapse mod-

ule (params: -s 3—generate_map).

For the benchmarking of StringTie (v2.2.1), Stringtie was performed with input files con-

sisting of long-reads alignments and reference annotations (params: -L -c 3).

For the benchmarking of Bambu (v2.0.0), Bambu was performed with input files consisting

of long-reads alignments, reference annotations, and the reference genome (hg38) (params:

min.readCount = 3).

Candidates with low expression levels (support reads < 3), antisense, and intergenic tran-

scripts were excluded from the comparison.

Assessing the performance of fusion gene detection in SPLICE and other

tools

To compare the fusion genes detected by SPLICE, LongGF [32] and JAFFAL [30], we used 1

M reads randomly extracted from the MCF-7 and HCC (RK107C) sequence data as described

above.

For the benchmarking of LongGF (v0.1.2), reads were mapped to the reference genome

sequence (hg38) with minimap2 (v2.17) (params: -ax splice—MD), and the output SAM files

were converted to BAM files and sorted with samtools (v1.7). We then ran the longgf module

and obtained the list of fusion genes (params: min-overlap-len 100 bin_size 50 min-map-len

200 pseudogene 0 secondary_alignment 0 min_sup_read 3).

For the benchmarking of JAFFAL (v2.2), we ran the JAFFAL.groovy module with zipped

fastq files.
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In this comparison, close gene pairs (< 200,000 bp) were not considered, because they can-

not be distinguished from read-through transcripts [69] without information on SVs.

Permutation test

We performed a permutation test to examine the skew of the distribution of repeat types and

strands. Random sequences corresponding to novel exon lengths were extracted from within

the gene regions, and overlapping repeat types and their strands were obtained. This procedure

was repeated 1,000,000 times, and the distributions of repeat types and their strands were used

as a null distribution. The adjustment of the multiple testing was performed using Bonferroni’s

correction.

Comparison of gene expressions between HCCs and non-cancerous livers

To compare expression levels in HCCs and matched non-cancerous livers, we used edgeR soft-

ware [37]. The number of mapped reads for each transcript was normalized using the trimmed

mean of M value (TMM) normalization method [40]. Differential expression analysis was per-

formed using the quasi-likelihood method [70]. The Benjamini-Hochberg method was used

for multiple testing correction [38].

Clustering analysis

To compare the expression profiles in HBV- and HCV-infected tissues, we applied k-means

clustering to the RNA-seq data. For the log10 converted value of TMM normalized RPM+1,

we filtered out candidates with a variance < 0.1. We performed k-means clustering and then

excluded candidates that were not involved in the clustering by the variance analysis (p-

value < 1 × 10−5).

Cell lines

HepG2 and Huh-7 cell lines were purchased from JCRB Cell Bank. Huh-7 was maintained in

Dulbecco’s modified Eagle’s medium (DMEM; Nacalai tesque), and HepG2 was maintained in

DMEM with high glucose (Nacalai tesque). All culture media contained 10% fetal bovine

serum (FBS; Gibco) and 50 units/50 μg/mL penicillin-streptomycin (Nacalai tesque).

Gene overexpression

Cancer-related splicing variants were overexpressed in HepG2 and Huh-7 cell lines (S11

Table). The expression vectors were constructed from the pIRES2-AcGFP1-Nuc vector (Clon-

tech). The target sequence was amplified with cloning primers from cDNA (S11 Table) and

inserted into the EcoR1 site of the pIRES2-AcGFP1-Nuc vector using the In-Fusion HD Clon-

ing Kit (Clontech) according to the manufacturer’s protocol. The plasmid was amplified in E.

coli DH5α Competent Cells (Takara Bio) and purified using the QIAGEN Plasmid Mini Kit

(QIAGEN).

The cells were seeded in 24-well and 96-well plates at a concentration of 1×104/mL from

60% confluent cells. After 48 h of incubation, the expression vectors were transfected into the

cells using Lipofectamine 3000 (Invitrogen) according to the manufacturer’s protocol. An

empty vector of pIRES2-AcGFP1-Nuc was used as control. The medium was changed 2 h after

the transfection. For the expression analysis, cells were cultured in 48-well plates, and RNA

was extracted 48 h after the transfection. For the cell proliferation assay, cells were cultured in

96-well plates, and cell numbers were measured using the CCK-8 kit (DOJINDO) 96 h after

the transfection according to the manufacturer’s protocol.

PLOS GENETICS Long-read RNA sequencing for liver cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010342 August 4, 2022 19 / 28

https://doi.org/10.1371/journal.pgen.1010342


Gene silencing

To investigate the effect of L1-MET on cell proliferation, L1-MET expression was suppressed

in the HepG2 and Huh-7 cell lines. Cells were seeded in 24-well and 96-well plates at a concen-

tration of 1×105 cells/mL. After 24 h of incubation, siRNA (S12 Table) was transfected into

the cells using Lipofectamin RNAiMAX Transfection Reagent (ThermoFIsher SCIENTIFIC)

according to the manufacturer’s protocol. MISSION siRNA Universal Negative Control #1

(Sigma-Aldrich) was used as a negative control for the siRNA transfection. RNA was extracted

after 48 h incubation from the 24-well plates, and the cell proliferation assay was performed

for cells in the 96-well plates using CCK-8 (DOJINDO) after 96 h of incubation according to

the manufacturer’s protocol.
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(PDF)
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levels of L1-MET in L1-MET knockdown in both cell lines.

(PDF)
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transcripts and non-cancerous liver-specific transcripts were calculated by Fisher’s exact test.

Comparisons were done for TE-derived exons in cancer-specific transcripts and other tran-

scripts and for TE-derived exons in liver-specific transcripts and other transcripts. N.S.: Not

significant.
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were plotted for each sample. Statistical significances were calculated by the Wilcoxon signed-
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