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ABSTRACT Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp.
mays). Teosinte contains greater genetic diversity compared with maize inbreds and landraces, but its
use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic
lines (NILs) was previously developed to broaden the resources for genetic diversity of maize, and to
discover novel alleles for agronomic and domestication traits. The 961 teosinte NILs were developed by
backcrossing 10 geographically diverse parviglumis accessions into the B73 (reference genome inbred)
background. The NILs were grown in two replications in 2009 and 2010 in Columbia, MO and Aurora,
NY, respectively, and near infrared reflectance spectroscopy and nuclear magnetic resonance calibrations
were developed and used to rapidly predict total kernel starch, protein, and oil content on a dry matter
basis in bulk whole grains of teosinte NILs. Our joint-linkage quantitative trait locus (QTL) mapping analysis
identified two starch, three protein, and six oil QTL, which collectively explained 18, 23, and 45% of the
total variation, respectively. A range of strong additive allelic effects for kernel starch, protein, and oil
content were identified relative to the B73 allele. Our results support our hypothesis that teosinte harbors
stronger alleles for kernel composition traits than maize, and that teosinte can be exploited for the im-
provement of kernel composition traits in modern maize germplasm.
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Maize (Zea mays ssp. mays) is one of the most economically valuable
grain crops in the world (Awika 2011). It is a significant resource for
food, feed, and biofuel, and provides raw materials for various indus-
trial applications.Maize was domesticated from teosinte (Zea mays ssp.
parviglumis) in southern Mexico �7500–9000 years ago (Matsuoka
et al. 2002; Piperno et al. 2009; Hufford et al. 2012) but bears striking
morphological differences in terms of plant, inflorescence, and seed
architecture (Doebley et al. 1995). Today, maize breeders and geneti-
cists are well aware of the reduction in genetic diversity during crop

domestication, especially in genes underlying traits that were targeted
by the selection process (Flint-Garcia 2013), which resulted in lower or
no variation in traits and limited the discovery of novel alleles that have
potential to improve a crop’s germplasm (Flint-Garcia et al. 2009).

Teosinte hasminute kernels comparedwithmaize, enclosedwithin a
hard, stony fruitcase, a trait not present in maize inbreds and landraces
(Dorweiler et al. 1993). Similarly, kernel composition differs between
teosinte andmodernmaize; on a drymatter basis (DMB), inbredmaize
kernels are �71.7% starch, �9.5% protein, and �4.3% oil (Watson
et al. 2003). In contrast, teosinte kernels have �52.92% starch,
�28.71% protein, and�5.61% oil, strongly suggesting that the increase
in kernel size, fruitcase-less kernels, and increase in kernel starch were
the targets of artificial selection during maize domestication (Flint-
Garcia et al. 2009).

Recent sequencing efforts suggest that 2–4% of the maize genome
was impacted due to the artificial selection process. There is a signifi-
cant reduction in the genetic variation of genes underlying selected
traits, whereas, the 96–98% of the neutral genes remain to retain high
levels of genetic diversity (Wright et al. 2005; Hufford et al. 2012). One
long-term goal of maize breeding is to transfer novel genetic variation
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from teosinte for the improvement of modernmaize germplasm (Flint-
Garcia et al. 2009).

A teosinte near isogenic population [hereafter referred to as
teosinte near isogenic lines (NILs)] was developed to provide
new genetic resources for complex trait dissection in maize, and
identify and introduce novel genetic diversity from teosinte (Liu
et al. 2016). NILs have a strong potential to identify and fine-map
quantitative trait loci (QTL), and have been widely applied in
several crop species, including maize (Graham et al. 1997;
Szalma et al. 2007), soybean (Muehlbauer et al. 1991; Jiang et al.
2009), and tomato (Eshed and Zamir 1995; Brouwer and St. Clair
2004). Another advantage of NILs is the reduction of confounding
“noise” from genetic background and epistatic interactions be-
tween QTL. These characteristics of NIL populations make them
suitable genetic resources to fine-map and identify novel alleles
for complex agronomic traits. Statistically, NILs are more accurate
in estimating QTL effects because the phenotypic differences are
caused only by allelic differences at the introgression sites
(Kaeppler 1997).

In this study, we aimed to simultaneously discover and evaluate the
potential of novel alleles from teosinte for improving the nutritional and
kernel quality of modern maize germplasm.

MATERIALS AND METHODS

Maize teosinte near isogenic libraries
The development and genotyping of the 10 teosinte NIL families
(58–185 lines per family) was described previously (Liu et al. 2016).
Briefly, the NILs were developed by backcrossing 10 accessions
of geographically diverse Z. mays ssp. parviglumis into the inbred
B73 for four generations prior to inbreeding, creating a total of
961 NILs. These NILs were genotyped via a GoldenGate assay
(Illumina, San Diego, CA), and a subset of 728 out of the
1106 nested association mapping (NAM) markers were selected
based on polymorphism between B73 and the 10 teosinte parents
(McMullen et al. 2009; Liu et al. 2016). Genotypic data for the
teosinte NILs can be accessed from the supplemental data in Liu
et al. (2016). Genotypic ratios revealed by examining marker data
shows that the BC4S2 teosinte NIL population averaged �95.9%
homozygous B73, �2.6% heterozygous B73/teosinte, and �1.5%
homozygous teosinte. An individual teosinte NIL had an average
of 2.4 chromosomal segments from teosinte which, when com-
bined, encompass �4% of the teosinte genome introgressed into
a B73 background (Liu et al. 2016).

Near infrared reflectance and nuclear magnetic
resonance calibration for estimating kernel
composition traits
Previously, kernel starch, protein, and oil content was estimated for
26,305seedsamples fromsevengrow-outsof theNAMpopulationusing
a Perten Diode Array 7200 (DA7200) instrument (Perten Instruments,
Stockholm, Sweden) and a proprietary (Syngenta Seeds, Inc.) near
infrared reflectance (NIR) calibration (Cook et al. 2012). In order to
calibrate our own local machines, we selected two sets of 210 and
45 seed samples from among these 26,305 samples, in order to span
the wide range of values for starch protein and oil based on these
Syngenta estimates. The original composition values based on the Syn-
genta calibration were used solely to choose samples with extreme
values for calibration and are not used anywhere in the current study.

The 255 calibration samples were sent to the University of Missouri
Experiment Station Chemical Laboratories for proximate analysis,
following the official methods of AOAC International (2006). These
reference values for starch, protein, and oil were then adjusted to a
DMB and used in the calibration of our own machines. The reference
samples had the following ranges: 55.3–82.3% for starch, 6.8–21.4% for
protein, and 1.7–6.3% for oil (Table 1).

In the NIR calibration, intact kernels were scanned on a FOSS
6500 NIR instrument (FOSS North America, Eden Prairie, MN). Re-
flectance spectra (R) from bulk whole grains of at least 50 kernels from
each sample were collected at 10-nm intervals in the NIR region from
400 to 2500 nm. Each sample was scanned five times and averaged.
Absorbance values were calculated as log(1/R) using ISIscan and
exported via WinISI IV software for regression analysis (Supplemental
Material, Table S1). The collected NIR spectra of the samples were
preprocessed using Savitzky–Golay first derivative as described by
Spielbauer et al. (2009), and multiplicative scatter correction as de-
scribed by Geladi et al. (1985). Spectral preprocessing and partial least
squares (PLS) regression analysis were carried out using the UnScram-
bler version 6.11 (CAMO ASA, Trondheim, Norway).

A PLS1 regressionmethod was used to derive calibrationmodels for
protein and starch, aswell as oil (Baye et al. 2006). In thePLS1 regression
analysis, preprocessed spectral data were used as descriptor data (X
variable) and analytical data as response data set (Y variable). Initially,
of the 210 samples with reference data, 190 samples were randomly
chosen for NIR calibration and 20 samples for external validation
(Table S2). The performance of the various regression models was
evaluated based on the coefficient of correlation (r) between the refer-
ence and NIR-predicted values and SE of calibration (SEC) in the
validation set of 20 samples (Table S2). Once a satisfactory calibration

n Table 1 Descriptive statistics of reference composition values on a DMB in the NIR and NMR calibration sets
comprised of NAM samples

Trait Instrument n Mean, % Median, % SD Variance Range, %

Starch NIR 209 68.65 68.60 5.40 29.2 55.34–82.33
Protein NIR 210 12.91 12.90 3.08 9.51 6.76–21.40
Oil NMR 45 3.94 4.02 1.42 2.03 1.66–6.34

n Table 2 Final NIR calibration statistics for starch and protein content on a DMB in intact maize kernels

Trait Instrument
Spectral

Range, nm
Spectra

Treatment n r SEC

Starch FOSS 6500 NIR 410–2500 MSC; 1st Deri 210 0.82 2.70
Protein FOSS 6500 NIR 900–2500 MSC 210 0.97 0.72

MSC, multiplicative scatter correction; 1st Deri, Savitzky–Golay first derivative.
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model was developed for each trait, the 20 samples from the validation
set were added back to the calibration set in order to develop a final
calibration model (NIR calibration equations for kernel protein and
starch are provided in Table S3). The NIR oil calibration was poor (r =
0.63; SEC = 0.78) (Table S2), and was not used for the remainder of the
study.

Similarly, a bench-topMQC analyzer (Oxford Instruments) nuclear
magnetic resonance (NMR) instrument was calibrated with samples
from 45 NAM recombinant inbred lines (RILs) with wide range of
known analytical values for oil content (Cook et al. 2012) using the
in-built calibration software. The NMR resonance values from each
sample were collected in triplicate at the operating frequency 5 MHz
from �10 g of intact maize kernels, which was regressed against the
reference values to develop a model (Table S4). The performance of the
NMR model to measure oil content was determined by the coefficient
of correlation (r) and SE between the reference and NMR-predicted
values.

Phenotypic data collection and analysis in teosinte NILs
A total of 961 teosinte NIL entries were grown as a random complete
block design and self-pollinated in two locations with two replications
each: Columbia, MO and Aurora, NY in the year 2009 and 2010,
respectively, with B73 as an experimental control. Kernel composi-
tion data (starch, protein, and oil) were obtained from bulk intact
kernels from each plot using the NIR and NMR calibrations de-
veloped above.

Least square means across environments (Table S5) were calculated
using PROC MIXED for individual kernel composition traits, and

broad sense heritability (H2) was calculated by the method described
in Holland et al. (2003) in SAS software version 9.2 (SAS Institute Inc.,
Cary, NC).

Joint-linkage QTL analysis
A genetic map based on the NAM population was used for the joint-
linkage QTL analysis following the protocol of Liu et al. (2016). Briefly,
appropriate P-value thresholds (starch = 1.31 · 10206, protein = 6.06 ·
10207, and oil = 1.12 · 10206) for the joint-linkage mapping were
determined by 1000 permutations in SAS. Joint step regression was
conducted using PROC GLM SELECT, where the model contained a
familymain effect andmarker effects nestedwithin families (Cook et al.
2012). We used PROC GLM for the final model and to estimate addi-
tive effects of the teosinte alleles. The presence of significant additive
effects of the teosinte alleles were determined by a t-test comparison of
the parental means vs. the control B73 allele. QTL support intervals
were calculated as a 1-LOD drop from the peak of the QTL.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

Results
TheNIRmodels were successfully able to predict starch (r= 0.82, SEC=
2.7) and protein (r = 0.97, SEC = 0.72) (Table 2), while the oil model
was unable to accurately predict oil (r = 0.63, SEC = 0.78) (Table S2).
Instead, we developed an NMR model to predict oil content (r = 0.98,
error = 0.09) (Table 3).

n Table 3 NMR calibration statistics for oil content on DMB in intact maize kernels

Trait Instrument Operating Frequency, MHz n Weight, g r SD SE

Oil Oxford Instruments NMR 5 45 �10 0.98 0.30 0.09

Figure 1 Distribution of kernel starch, protein, and oil content in the teosinte NILs. The least squares mean (LSMean) for B73 is indicated by a
black arrow.
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TheNIR calibrationswere used topredict starch andprotein content
and the NMR calibration was used to predict oil content in the teosinte
NIL trial. Due to few or no kernels in some NIL samples, kernel
composition data were obtained from 858 out of 961 teosinte NILs,
and ranged from 66.4 to 75.1% for starch, 7.32 to 15.2% for protein, and
2.7 to 5.5% for oil (Figure 1 andTable 4). The distribution of the teosinte
NILs was skewed in the direction of the expected teosinte allelic effect as
predicted by teosinte composition phenotypes relative to maize: a
longer tail for lower starch, and a longer tail in the direction of higher
protein and oil.

Significant negative phenotypic correlations were detected between
starch and protein (r =20.823, P, 0.0001) and between starch and oil
(r = 20.083, P , 0.01). A significant positive phenotypic correlation
was detected between protein and oil (r = 0.11, P , 0.001). These
correlations are in line with those previously observed in diverse maize
germplasm (Cook et al. 2012), as well as QTL studies involving high-oil
parents (Zhang et al. 2008). Broad-sense heritability for starch, protein
and oil content in teosinte NILs were 70, 74, and 94%, respectively
(Table 4).

Joint stepwise regression identified a total of eight QTL across the
three traits: two starch QTL that explained 18% of the variation, three
protein QTL that explained 23% of the variation, and six oil QTL that
explained 45% of variation (Figure 2, Table 4, and Table S6). The
chromosome 1 QTL was significant for both protein and oil, and the
chromosome 3 QTL was significant for all three traits.

As the 10 teosinte accessions were crossed to a common reference
line (B73), it was possible to accurately estimate additive effects of the
teosinte alleles relative to B73 and to each other. Each of the 10 teosinte
NIL donors was allowed to have an independent allele by fitting a

population-by-marker term in the stepwise regression and finalmodels,
as described by Buckler et al. (2009) and Cook et al. (2012). We iden-
tified a total of nine starch, 12 protein, and 25 oil teosinte alleles that
were significant (Table 5 and Table S7) (P, 0.05). The direction of the
allelic effects corresponded well with the skew of the phenotypes (Fig-
ure 1). Because teosinte has lower starch content and higher protein
and oil thanmaize (Flint-Garcia et al. 2009), we anticipated thatmost of
the teosinte alleles would decrease starch and increase protein and oil.
In fact, all of the significant alleles were in the anticipated direction,
with the exception of the oil QTL on chromosome 2, where all five of
the significant alleles decreased oil. All the QTL had a range of strong
additive allelic effects, with the largest allelic effects for starch, protein,
and oil QTL being22.56, 2.21, and 0.61% dry matter, respectively, and
displayed both positive and negative additive allelic effects depending
upon the trait (Figure 3).

DISCUSSION
The endosperm is the largest structure (80–85%of the kernel by weight)
in maize kernels (FAO 1992), and starch (�71% by weight) and protein
(�11% by weight) are the major chemical components. In contrast, oil
is only a minor constituent of the total kernel (�4% of the kernel
weight) but is major chemical component of the embryo/germ
(10–12% of the kernel by weight) (FAO 1992; Flint-Garcia et al.
2009). Kernel composition in maize is influenced by various envi-
ronmental and genetic factors (Wilson et al. 2004), and has been the
target of domestication and more recent breeding. Therefore, it is crit-
ical to understand what genes control these important traits, and to
determine the levels of genetic diversity for these genes in order to
continue the improvement of maize grain for food, feed, and fuel.

n Table 4 Descriptive statistics of predicted starch, protein, and oil content in teosinte NILs, and results for the joint-linkage QTL analysis
for each trait

Trait n Mean, % Range, % Difference, % H2 QTL Marker (Chromosome) R2, %

Starch 857 71.41 66.42–75.17 8.85 0.70 2 t251; PZA01962.12 (3) 18.0
t643; PZA03057.3 (9)

Protein 857 10.77 7.32–15.20 7.87 0.76 3 t50; PZA02070.1 (1) 23.1
t254; PHM1675.29 (3)
t437; PZA03172.3 (5)

Oil 858 3.89 2.77–5.55 2.78 0.94 6 t53; PZA02135.2 (1) 45.0
t149; PZA01993.7 (2)
t254; PHM1675.29 (3)
t408; PZA01779.1 (5)
t476; PZA03461.1 (6)
t604; PZA00951.1 (8)

Figure 2 Joint-linkage QTL analysis for kernel starch, protein, and oil content in teosinte NILs. Horizontal units, cM; vertical units, log of odds
(LOD). Asterisks indicate the presence of significant QTL for starch (red), protein (blue), or oil (green).
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One aim in this study was to develop rapid, nondestructive pheno-
typing methods for kernel starch, protein, and oil in intact kernels of
maize. We accomplished this by developing nondestructive, robust and
high-throughput methods using NIR and NMR instrumentation. The
calibration and validation results and PLS models revealed that NIR is
capable of predicting kernel protein and starch content (Table 2), but
unable to reliably predict oil (Table S2).

NIR can efficiently predict a higher number of kernel composition
traits in ground samples than in intact kernels of maize. In ground
samples, the kernel chemical components are evenly distributed
throughout the sample. However, in intact seed, oil is nonuniformly
distributed throughout the kernel. Because the oil is concentrated in the
embryo, reflectance methods are highly sensitive to the directionality of
the kernels in the sample (more embryos facing towardor away from the
instrument). Because our goal was to nondestructively phenotype
composition traits, we decided to explore an NMR-base method to
characterize oil.

Inprevious studies,NMRhas beenused topredict oil content inboth
25 g and single-kernel intactmaize kernels with high accuracy (r. 0.99,
error = 0.05) (Alexander et al. 1967). Our NMR model can predict oil
content with less than half the amount of material (�10 g) of intact
maize kernels very accurately (r. 0.98, error = 0.09) in,15 sec. These
parameters are important both for efficiency and to avoid inadvertent
selection bias, as some of the lines in teosinteNILs produced,50 kernels.

Broad-sense heritability estimates for kernel starch and proteinwere
moderate (70 and 76%, respectively), but extremely high for kernel oil
(94%), which indicates that kernel oil content is more stable over

environments than either kernel starch and protein. When compared
with theNAMpopulation, heritability for kernel protein and starchwas
lower in our teosinte NILs but higher for kernel oil content. Heritability
in NIL populations is generally lower than RIL populations, likely
because of lower genotypic variance in the near isogenic background
than amongRILs due to the uniformity in the lines (Eichten et al. 2011).

Cook et al. (2012) evaluated the maize NAM population for kernel
starch, protein, and oil content. The NAM population was developed
by crossing 25 diverse founder inbred lines of maize to the reference
inbred B73 and producing 24 RIL families (Buckler et al. 2009;
McMullen et al. 2009). In NAM, 21 starch, 26 protein, and 22 oil
QTL were identified, which explained 59, 61, and 70% of the total
variation. Of the eight QTL identified in the teosinte NILs, the QTL
on chromosomes 1 and 3 appear to be teosinte-specific and were not
identified in theNAM (Cook et al. 2012) (Figure 4).We identified fewer
QTL for kernel starch, protein, and oil in the teosinte NILs. There are
multiple nonexclusive reasons that we detected fewer QTL in the NILs
compared with NAM: reduced statistical power in NILs as the donor
alleles appear at a lower frequency than in RIL populations, and the
possible presence of teosinte · teosinte epistatic interactions that are
not present in the maize alleles sampled in NAM.

Even though there was a strong correlation between starch and
protein at the phenotypic level, only theQTL on chromosome 3 showed
complete overlap for starch and protein (as well as oil). The additive
effects were strongly negatively correlated (r = 20.84, P = 0.0045),
indicating that this QTL is partially responsible for the high negative
correlation between these two traits. This QTL overlap is consistent

n Table 5 Comparing number of QTL and additive allelic effects of maize (NAM) and teosinte alleles for kernel composition traits

Trait

NAM Population Teosinte NILs

QTL
Allelic Effects Allelic Effects

Minimum, % Maximum, % QTL Minimum, % Maximum, %

Starch 21 20.62 0.65 2 22.56 0.82
Protein 26 20.38 0.34 3 20.77 2.21
Oil 22 20.12 0.21 6 20.33 0.61

Figure 3 Heat map displaying additive effects of teosinte alleles across 10 populations for starch, protein, and oil content QTL relative to B73.
The NIL population is indicated on the vertical axis and marker genotype associated with the QTL is indicated on the horizontal axis. Color and
intensity reflect the direction and strength of the allelic effect: red represents teosinte alleles that increase the trait value and blue represents
teosinte alleles that decrease the trait value. �, significant at P = 0.05; ��, significant at P = 0.01; –, no teosinte introgression available for t-test.
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with the fact that protein and starch are stored primarily in the endo-
sperm and, as a percentage of the kernel, they compensate for each
other. Inmost other cases, however, the QTL appear to be trait-specific.
This phenomenon was observed in the NAMpopulation, where several
starch and protein QTL colocalized and others did not, despite the
similar strong phenotypic correlation (Cook et al. 2012). It is possible
that the chromosome 3 QTL is one of the primary drivers of the 34%
increase in starch and 60% loss in protein between teosinte and maize
for starch and protein that occurred during domestication (Flint-Garcia
et al. 2009). However, fine mapping would be required in order to
address these questions concerning pleiotropy.

Because our introgressed regions in the teosinte NILs are quite large
and the resulting QTL are broad, there are long lists of potential
candidate genes underlying each QTL. Rather than dwelling on the
possibilities of our favorite candidate genes forwhichwe have little to no
supporting evidence at this time, we will focus our discussion on the oil
QTL on chromosome 6 that has been identified in many previous QTL
studies (Alrefai et al. 1995; Zheng et al. 2008; Cook et al. 2012). The
most likely candidate gene is diacylglycerol acyltransferase 1-2 (DGAT1-2),
which encodes a rate-limiting enzyme in triacylglycerol biosynthesis
that was fine-mapped using NILs and verified by a number of inde-
pendent methods (Zheng et al. 2008). This study identified a 3-bp

Figure 4 Circos plot displaying: (A) the 10 chromosomes of maize, (B) physical coordinates of the SNP markers, (C) joint-linkage QTL peaks in the
teosinte NIL analysis, and (D) joint-linkage QTL peaks in the NAM analysis (Cook et al. 2012).
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insertion resulting in an extra phenylalanine residue as the causative
lesion conferring the high oil trait. The high-oil insertion allele was
present in all 46 teosinte accessions analyzed, and thus the high-oil
allele is considered ancestral (Zheng et al. 2008). A follow-up study
of DGAT1-2 in landraces and early cycle inbred lines showed the
high-oil insertion allele was present in most of the Southwestern
US, Northern Flint, and Southern Dent landraces of the United States,
at a moderate frequency in Corn Belt Dent, and nearly absent in the
early inbred lines (Chai et al. 2012). Interestingly, DGAT1-2 was not
identified as a selection candidate by Hufford et al. (2012), despite the
fact that there were 8–31 SNPs (depending on the definition of gene
structure) inDGAT1-2 in the HapMap2 dataset that could be used for
selection tests (Chia et al. 2012). One possible reason is the fact that
there was no gene model for DGAT1-2 in B73 RefGen_v1, the version
of the genome that was used in the selection study. Alternatively, it is
possible that DGAT1-2 was not selected, but rather the high-oil allele
was lost due to drift when the small number of Corn Belt Dent
populations was chosen for developing inbred lines as proposed by
Chai et al. (2012). Regardless of its selection status, it is a strong
candidate underlying the chromosome 6 oil QTL.

The teosinte NILs use B73 as the common reference, which allows
direct comparisons of the teosinte alleles among themselves, as well as
with the NAM inbred founders. Most inbred lines have a lower starch
content than B73, thus one might expect that most inbred donor alleles
would decrease starch. However, in NAM, of the 132 significant starch
alleles, only 82 alleles (62%) decreased starch (Cook et al. 2012). In our
teosinte NILs, all nine significant alleles decreased starch. In the case of
protein, B73 has an average protein content compared with other in-
bred lines, resulting in an equal mix of significant positive (66 alleles)
and negative (69 alleles) effects from the NAM inbred founders (Cook
et al. 2012). In our study, all 10 of the significant teosinte alleles in-
creased protein content. Interestingly, four of the 27 significant teosinte
oil alleles (all from the chromosome 2 QTL) decreased oil, breaking the
pattern of expected allelic effects. This is a possible reflection of the
smaller difference in oil content between maize and teosinte as com-
pared with the larger differences in protein and starch (Flint-Garcia
et al. 2009).

The additive effects of the NAMQTL were relatively small with the
largest allelic effects being 0.65,20.38, and 0.21% for the starch, protein,
and oil QTL, respectively (Cook et al. 2012). We observed that our
teosinte alleles were stronger than those of NAM, with the strongest
allelic effects of22.56% for starch, 2.21% for protein, and 0.61% for oil
(Table 5). These teosinte alleles may be prime candidates for improving
maize kernel composition. The limited number of recombination
events in the teosinte NILs compared with the NAM RILs results in
larger genomic regions which may contain multiple linked loci that
contribute to the larger effects of the teosinte alleles. Unfortunately,
there is no set of publicly available NILs carrying a large number of
inbred donors (not even the NAM founders) in the B73 background—
such NILs would allow comparisons to be made with the exact same
population structure. Further, our NIL population was not designed to
address this question without initiating fine-mapping experiments for
the various alleles. However, we have developed a different population
with a higher proportion of the same teosinte donors and more exten-
sive recombination to further address this question (S.A. Flint-Garcia,
unpublished data).

The maize teosinte NILs were developed to reintroduce a modest
amount of genetic variation (�3% teosinte donor on average) from
teosinte and evaluate the value of teosinte alleles for various agronomic
and kernel composition traits (Liu et al. 2016). In this study, we deter-
mined the genetic basis of kernel composition alleles from teosinte, and

compared the QTL and their effects to those observed in in the maize
NAM population. We identified teosinte alleles with a broader range
and larger allelic effect in comparison to that observed in diversemaize.
Our study strongly suggests that teosinte bears novel alleles that can be
utilized for the improvement of kernel starch, protein, and oil content
in modern maize germplasm, as well as provide unique source of
variation for further QTL and molecular studies.
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