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Abstract: Despite numerous studies on multiple socio-economic factors influencing urban PM2.5

pollution in China, only a few comparable studies have focused on developed countries. We analyzed
the impact of three major socio-economic factors (i.e., income per capita, population density, and
population size of a city) on PM2.5 concentrations for 254 cities from six developed countries. We
used the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT)
model with three separate data sets covering the period of 2001 to 2013. Each data set of 254 cities
were further categorized into five subgroups of cities ranked by variable levels of income, density,
and population. The results from the multivariate panel regression revealed a wide variation of
coefficients. The most consistent results came from the six income coefficients, all of which met the
statistical test of significance. All income coefficients except one carried negative signs, supporting the
applicability of the environmental Kuznet curve. In contrast, the five density coefficients produced
statistically significant positive signs, supporting the results from previous studies. However, we
discovered an interesting U-shaped distribution of density coefficients across the six subgroups
of cities, which may be unique to developed countries with urban pollution. The results from
the population coefficients were not conclusive, which is similar to the results of previous studies.
Implications from the results of this study for urban and national policy makers are discussed.

Keywords: PM2.5 concentrations; city income per capita; population density; population size;
STIRPAT model; threshold regression; environmental Kuznet curve

1. Introduction

Heavy fine particulate (PM2.5) pollution has increased and become a high risk to public
health in densely populated urban areas in many countries. According to a recent study
involving 381 large cities with populations of more than 0.75 million people in China, India,
the U.S., Europe, Latin America, and Africa [1], the annual average PM2.5 concentrations
from 2000 to 2006 in 23.9% of these cities was higher than the World Health Organization’s
(WHO) interim Target 1 of less than 35 micrograms per cubic meter (35 µg/m3). In addition,
only 18.0% of these large cities were within the recommended WHO target of less than
10 µg/m3. Large cities in Asia, especially China and India, had the worst record, with
48.7% of these cities recording PM2.5 concentrations higher than 35 µg/m3 and only 1.7%
with PM2.5 concentrations of less than 10 µg/m3. In contrast, large cities in Latin America
had the best air quality, with 64.4% of them within the 10 µg/m3 guideline.

Translating urban pollution risk in terms of the number of people, it has been re-
ported [1] that more than 500 million Chinese urban residents (14% of the global urban
population) were at risk from PM2.5 hazard (35 µg/m3 or more) in 2010. These people
resided in 154 cities, which represented 78% of all large cities with a population of more
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than 1 million. To make matters worse, 278 million more people became exposed to PM2.5
hazards between 2000 and 2010 due to the high birth rate and high migration rate from
rural areas to these cities.

In short, the air pollution risk appears to be far more serious in urban settings in large
cities in several countries in Asia, particularly in China, India, and Pakistan. Therefore,
a high priority for research on socio-economic influencing factors of PM2.5 pollution in
urban centers is needed to develop effective mitigating policies to control urban pollution.
However, the unavailability of relevant city-wide technology-related data, such as the
industrial structure, energy intensity, service structure, vehicle usage, as well as income
per capita has been a barrier to the productive flow of research. Fortunately, however, the
unavailability of city-wide data has become somewhat more manageable in recent years,
increasing the number of necessary studies.

A large majority of these studies have focused exclusively on urban pollution in
China [2–12]. For example, Hao and Liu [2] examined the four influencing factors of GDP
per capita, industrial structure, vehicle population, and population density to PM2.5 con-
centrations for 73 Chinese cities. The results showed that secondary industries, including
manufacturing, construction, fast moving consumer goods, and other industries, and the
vehicle population, in that order, had greater impacts on PM2.5 concentrations in these
cities. Wu et al. [3] used PM2.5 data from the same 73 cities in 2013 and 2014 and determined
that PM2.5 significantly correlated with the proportion of industrial activity, the number of
vehicles, and household gas consumption in these cities.

Expanding the number of cities to 338 Chinese cities from 2014 to 2017, Wang et al. [5]
determined that population density and the number of vehicles had a large impact on
increasing PM2.5, and GDP per capita had a moderate impact on PM2.5. Cheng et al. [4]
also used STIRPAT models to analyze influencing factors of PM2.5 concentrations for
285 Chinese cities from 2001 to 2012. Their results indicated that population density,
income, and traffic intensity had a significant impact on PM2.5 concentrations. In addition,
secondary industries and central heating significantly aggravated urban air pollution.
However, foreign direct investment was not a significant factor.

In contrast to the many studies on urban pollution, only a few socio-economic studies
on PM2.5 concentrations in cities in developed countries have been published in recent
years [13,14]. The current study fills this important gap in the urban pollution literature
for developed economies by focusing on 254 cities in the U.S., Germany, Japan, France,
U.K. and Spain. More specifically, a STIRPAT framework was used to analyze the three
influencing factors of population, income, and technology on PM2.5 concentrations from
2001 to 2013.

After this introduction, the paper has four sections. A brief literature review on
selected socio-economic studies on PM2.5 pollution is presented in the next section, followed
by a section explaining the STIRPAT model and data sources. An analysis of the results is
presented in the fourth section. Finally, the conclusion, implications, and limitations of the
study are presented in the fifth section.

2. Literature Review of PM2.5 Concentrations in Urban Centers

The large majority of socio-economic studies on PM2.5 concentration in urban centers
in recent years have concentrated on China [2–6,8–10,12,15]. One reason is that PM2.5 is the
main component of haze and fog for large cities in China, so investigating the relationship
between socio-economic factors related to PM2.5 pollution is very important to Chinese
policy makers. Another reason is that city-level data for PM2.5 pollutants and related socio-
economic factors in many other developing countries are mostly unavailable. In terms of
developed countries, PM2.5 is not as critical of an environmental pollution issue for cities in
developed countries [2]. Thus, only a few socio-economic studies on PM2.5 concentrations
for cities in developed countries have been published recently on cities in the U.S. [13] and
Germany [14]. A group of related studies on air pollution in developed countries such as
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the U.S. and Canada have also been published [16–21]. A few other papers on multiple
cities in both developed and developing countries have also been published [1,22,23].

We selected the five most representative papers on the socio-economic analysis of
city-level PM2.5 concentrations in China for a closer examination [2,4,8,9,15]. The results
show that economic development measured by city GDP per capita and population density
are the two most influential factors analyzed by these five studies, followed by traffic inten-
sity analyzed by four articles, and industrial structure and energy or electricity intensity
examined by three articles. Other factors such central heating, trade openness, and foreign
direct investment were analyzed in one article each.

The most consistent finding is related to the increasing or decreasing impact of city
GDP per capita to PM2.5 concentrations, depending on the income level of cities. All five
articles found a statistically significant inverse U-shaped or inverted N-shaped environ-
mental Kuznet curve (EKC). For example, Cheng et al. [4] estimated that 83.4% of Chinese
cities are below the inflection point of EKC, and as a result of increasing income, have
experienced an increase in PM2.5 pollution. Similarly, Liu et al. [9] concluded that high-
income cities in China have surpassed the peak of their EKC while upper- and low-middle
income cites have not.

Wu et al. [8] also estimated that most cities in the eastern region with higher incomes
have passed the inflection point, while cities in the middle region may need 10 to 15 years
to reach their peak of EKC. To elaborate, Wu et al. [8] verified the existence of an inverted
U-shaped EKC involving 104 cities in the middle region of China with the inflection point
estimated at $18,506 per capita. As of 2011, only 11% (13) of these cities have arrived at
this inflection point, creating a win-win relationship between income and PM2.5 pollution.
For 108 cities in the eastern region, there is an inverted N-shaped curve with a projected
inflection point of $9186. As many as 64% (69) of the cities have reached their inflection
point, and another 18% (19) cities are expected to reach their inflection point within the
next five years. The remaining 47 cities in the western region do not follow the EKC and
show a linear positive relationship between income per capita and PM2.5 pollution.

Wang and Fang’s [6] study on 53 cities in the Bohai Rim Urban Agglomeration found
that 43 of the 53 cities displayed a negative relationship with GDP per capita with an
average coefficient of −1.8. In other words, an increase of 10,000-yuan GDP per capita
would cause a reduction of 1.18% of µg/m3 in PM2.5.

Nearly the same findings can be found for industrial structure, measured by the
proportion of value added by secondary industry to GDP as well as traffic intensity
measured by the proportion of the number of civilian vehicles to the total length of urban
roads. In short, four of the five articles (with the exception of Wu et al. [8]) confirmed
a positive and significant relationship between high traffic intensity and high secondary
industry output to higher PM2.5 concentrations.

The impact of population density on PM2.5 pollution has had somewhat contradic-
tory results in these five articles. The findings by Cheng et al. [4], Wu et al. [8], and
Zhou et al. [15] were statistically significant and positive. For example, Cheng et al. [4]
showed that population density coefficients to PM2.5 concentrations derived from three
separate panel regression models for 285 cities in China from 2001 to 2012 generated all
six population density coefficients ranging from +0.06 to +0.029, which were statistically
significant at the 1% level. In other words, a 1% increase in density increased PM2.5 concen-
trations from 0.029% to 0.06%, while the effects from other factors such as income, industrial
structure, electricity intensity, traffic intensity, and several others held constant. The other
two articles by Hao and Liu [2] and Lin et al. [24] showed positive but no statistically
significant density coefficients.

Another factor, energy or electricity intensity, has also generated somewhat contra-
dictory findings in the three articles. For example, Cheng et al. [4] found a statistically
significant positive impact of increased electricity consumption on increased PM2.5 pollu-
tion. Similarly, Wu et al. [8] found a strong positive impact of coal consumption on PM2.5
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pollution. In contrast, Zhou et al. [15] found no significant relationship between electricity
consumption and PM2.5 pollution.

It is interesting to note that none of the five articles examined the impact of the pop-
ulation size of cities on PM2.5 pollution. However, other papers such as Wang et al. [25]
reported a positive correlation between PM2.5 concentrations and urban population, to-
gether with the size of the urban areas, the share of secondary industry, and population
density. Han et al. [11] and Han et al. [26] suggested that urbanization had a considerable
impact on increasing PM2.5 concentrations in Chinese cities.

The findings from socio-economic analyses of urban PM2.5 pollution in developed
countries are less clear as they vary from those reported on city level PM2.5 concentrations in
China. A recent socio-economic analysis of PM2.5 pollution on cites in developed countries
emphasized the role of population density over income or population size. For example,
Carozzi and Roth [13] found a positive and statistically significant population density
coefficient of +0.13 for PM2.5 concentrations. Specifically, they found that doubling the
density would increase the average PM2.5 pollution roughly 10% across 933 U.S. cities.

In another systematic study on 109 districts in Germany, which included 51 urban
districts, Borck and Schrauth [14] found that a 1% increase in population density increased
PM2.5 concentrations by a modest 0.08%. Using an authoritative survey, Ahlfeldt and
Pietrostefani [27] cited both studies by Carozzi and Roth [13] and Borck and Schrauth [14],
and recommended +0.13 as the elasticity for pollution reduction. In short, the impact of
high-density cities on PM2.5 pollution was positive in Chinese studies. Similarly, studies
on U.S. and Germany cities also suggested that the effect of high population density was
moderately positive.

However, when population density is examined in the framework of urban spatial
structure or urban form in relation to air pollution, studies of American and European
cities have shown that low-density urban sprawl can lead to a significant deterioration of
air quality [16,19,28,29].

For example, Bereitsnaft and Debbaze [19] found that among 86 metropolitan areas in
the U.S., low-density urban sprawls led to higher concentration of air pollution. Stone [16]
showed for the 45 major cities in the U.S, the more compact the city, the smaller the
spread, the more likely it was to reduce air pollution emissions. The primary reason is
that compact low-density cities can reduce transportation emissions and air pollution,
due to the proximity of housing and employment. In contrast, Clark et al. [30] found that
PM2.5 pollution levels increase as population density increases. Another study for 249
European cities found that high density cities were more vulnerable to high levels of SO2
concentration [31].

In sum, it is likely that both very high- and very low-density cities may be subjected
to higher levels of air pollution emissions. Thus, several recent studies have proposed
adjusting population density upward by promoting monocentric urban structures for
those low-density cities while adjusting population density downwards by promoting
polycentric structures for the excessively high-density cities as possible remedies to reduce
air pollution [32–34].

As for the impact of income on PM2.5 pollution, Anenberg et al. [22] discovered that
PM2.5 concentrations across 82 global cities were negatively associated with city GDP per
capita at a correlation coefficient of 0.64 at p < 0.0001. In other words, the negative impact
from higher income cities in developed countries on PM2.5 pollution appears to be more
pervasive compared to Chinese cities.

Another paper by Ouyang et al. [35] examined the driving forces of PM2.5 concentra-
tions in 30 OECD countries from 1998 to 2015 using a threshold panel model. The result
was that a 1% increase in GDP per capita decreased the PM2.5 concentrations from 0.3%
to 0.4%, depending on the three income levels of countries. These findings supported the
earlier studies by Wang and Fang [6] and Wang et al. [25].

As for the impact of population size of a city on PM2.5 pollution, Han et al. [1]
discovered an inverse U-shape relation among Chinese cities. However, they indicated that
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the relationships in U.S., European, and Latin American cities were stationary or showed a
small increasing trend. In other words, the larger population size cities in China may be
more likely to experience higher PM2.5 pollution than those in U.S., European, and Latin
American cities. For cities in India and Africa, they discovered a U-shaped trend for PM2.5
concentrations as urban population increased.

3. Method and Data
3.1. STIRPAT Model

Many scholars have used econometric models to analyze the influencing factors of
energy usage and air pollution from a socio-economic perspective. Econometric mod-
els include both cross-section and panel models. The use of panel models has become
popular as they can increase the sample size, reduce collinearity between variables, and
control individual heterogeneity of samples to improve the reliability and validity of the
estimates [4].

The original IPAT model was refined later to become the Stochastic Impacts by Regres-
sion on Population, Affluence and Technology (STIRPAT) model, which enabled researchers
to estimate the proportional change of the environmental impact per given proportional
change in population, affluence, and technology.

The STIRPAT model is defined as

Iit = aPit
b Ait

cTit
deit (1)

where I represents the pollution intensity of a pollutant, P represents the total population,
A depicts affluence or income, and T indicates the level of technological development.
Subscript i and t of each variable denote the cross-sectional unit, which is the cites and
time period, respectively; a is the constant; b, c, and d are the exponents of P, A, and T,
respectively, to be estimated; and e is the residual error term.

To ease the task of estimating exponents, Equation (1) is converted into the log-log
form of Equation (2) by taking the natural log of both sides.

InIit = In(ait) + b[In(Pit)]+c[In(Ait)]+d[In(Tit)] + eit (2)

The natural log is helpful as it converts non-linear variables to linear ones, rendering
the results interpretable as a percentage change. For example, b can be viewed as the
population elasticity that measures the percentage change of the environmental impact
resulting from a 1% change in population. The STIRPAT model has also been used to
examine the impact of population, income, and/or technology in other areas such as
the material footprint, human ecological footprint, and environmental efficiency of well-
being [36–38].

Many scholars have also used the STIRPAT model to analyze the impact of socio-
economic factors on PM2.5 pollution at the country level as well as the city level [39–46]. As
for a measure for technology, there is no consensus on a single measure of technology [47].
According to Cole and Neumayer [48], technology is a broad term intended to reflect
technological, cultural, and institutional determinants of the environmental impact. For
example, Uddin, Alam and Gow [49] extensively used the urbanization ratio measured
as the percentage of the population living in urban areas for technology in their STIRPAT
model. Wang et al. [40] also used the urbanization ratio, together with energy intensity for
the technology factor in their STIRPAT model.

For this study, population density is used to represent the technology factor in the
STIRPAT model, together with the population size of a city as P and income per capita of a
city as A, as shown in Equation (3):

InYit = Ina + b(InPit) + c(InAit) + d(InPDit) + eit (3)
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where P represents the population size of each city, A represents the GDP per capita of a
city, and PD represents population density calculated by population per km2.

In addition, we use threshold regression as a robust test to verify the results from the
STIRPAT analysis. This study uses Hansen’s [50] threshold regression using the simplest
form of regression where a single threshold was called for. The single threshold regression
model includes Equations (4) and (5):

Yi = θ1xi + ei qi ≤ γ (4)

Yi = θ2xi + ei qi > γ (5)

where i represents the units of analysis, which is a city; Y represents the dependent variable
of PM2.5 concentrations; x represents the explaining variables of population size (P), income
per capita (I), and population density (PD); θ1 and θ2 represent parameters to be estimated;
q represents the threshold variable; γ represents the threshold quantity; and e represents the
error term. Based on the variables selected in this study, the threshold model is expressed
in Equations (6) and (7):

InYi = θ1[InPi + InIi + InPDi] + ei , (Inqi ≤ Inγ) (6)

InYi = θ2[InPi + InIi + InPDi] + ei , (Inqi > Inγ) (7)

We then combine Equations (6) and (7) using a dummy variable, which takes the value
of one when the condition in parentheses is met, otherwise it becomes zero. This combined
equation is used as the estimation equation of this research. The generalized threshold
panel model has been used extensively in the fields of energy consumption, renewable
energy development, and carbon emission on sustainable development [51–57].

3.2. Data and Data Sources

We downloaded the data set indicating the exposure to PM2.5 in metropolitan areas
from 2001 to 2013 (https://stats.oecd.org/index.aspx?DatasetCode=EXP_PM2_5_FUA
accessed on 12 August 2020) for 706 cities in six countries: the U.S. (262 cities), Germany
(109 cities), the U.K. (101 cities), France (82 cities), Japan (76 cities), and Spain (76 cities).

We then downloaded the population size, metropolitan land area, and GDP from 2001
to 2013 (http://stats.oecd.org accessed on 24 August 2020). After eliminating cities with
missing data, we obtained the final sample size of 254 cities with a complete set of yearly
data on PM2.5, population size, population density, and city GDP per capita. The final
sample size of 254 cities included 59 cities in the U.S., 57 cities in Germany, 46 cities in
Japan, 38 cities in France, 33 cities in the U.K., and 21 cities in Spain.

Further details on data and data sources are presented in Table 1. First, the PM2.5 mean
pollution exposure was 13.15 µg/m3 and the median was nearly the same at 13.05 µg/m3.
Second, the population size of the cites during the study period was calculated at 1.35 mil-
lion inhabitants. The average city GDP income per capita measured in constant inter-
national U.S dollars with a base year of 2010 at PPP was $37,772. Finally, the average
population density during the study period was 703.68 persons per km2.

For the subgroup analysis, the total sample of 254 cities was independently ranked
from highest to the lowest in each of the three categories of income, density, and population
size. We used the latest income figures of 2013 to categorize the income subgroups. The
total group of 254 cities was categorized into two equal numbers of the top 127 highest
income cities and the bottom 127 lowest income cities. The top 127 subgroup was led by
San Francisco, CA, the highest ranked for income per capita at $84,921, and ended with
Rennes, France, the 127th ranked at $35,966. The bottom 127 subgroup was led by Reims,
France, ranked 128th at an income per capita at $35,964, and ended with Cordoba, Spain,
ranked 254th at $22,057. To highlight the scale effect, three additional subgroups were
created: the top 15, top 30, and top 60 high-income cities. The top 15 subgroup was again
led by San Francisco, CA and the 15th ranked Denver, CO at $60,752, while the top 30

https://stats.oecd.org/index.aspx?DatasetCode=EXP_PM2_5_FUA
http://stats.oecd.org
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subgroup was led by San Francisco, CA and the 30th ranked Aberdeen, SD at $54,812.
Finally, the top 60 subgroup was led again by San Francisco, CA and the 60th ranked
Sacramento, CA at $44,680.

Table 1. Data sources for 254 cities.

Variable Definition Unit of Measurement Data Source Mean Std.dev. Min Max

PM2.5 PM2.5
Micrograms per cubic

meter (µg/m3)
OECD statics: Metropolitan

areas Environment 13.15 2.83 5 24

POP Population No. of population US Census Bureau (2013) 1,349,779 2,883,295 202,891 35,221,137

ICM Income
GDP per capita, PPP

(constant 2010
international $)

OECD statics: Metropolitan
areas Economic 37,772.01 10,616.28 17,367 86,268

DEN Density No. of population per
km2

OECD statics: Metropolitan
area Density 703.68 1018.15 20 8635

We then applied the same procedure to population density using 2013 density data.
For density subgroups, the top 127 subgroup was led by the first ranked Tokyo, Japan, at
8635 persons per km2 and ended with the 127th ranked Hachinohe, Japan at 405 persons per
km2. The bottom 127 subgroup was led by the 128th ranked Granada, Spain at 402 persons
per km2 and ended with the 254th ranked Albuquerque, NM at 28 persons per km2. To
highlight the scale effect, we created three additional subgroups of the top 15, top 30, and
top 60 high-population density cities. The top 15 subgroup was again led by Tokyo, Japan
and ended with the 15th ranked Barcelona, Spain at 2076 persons per km2. The top 30
subgroup was led by Tokyo, Japan, and ended with the 30th ranked Santa Cruz de Tenerife,
Spain at 1311 persons per km2. Finally, the top 60 subgroup was led again by San Francisco,
CA and ended with the 60th ranked Bonn, Germany at 797 persons per km2.

For population size subgroups, using 2013 population data, the top 127 subgroup
was led by the highest-ranked Tokyo, Japan at 35,221,137 inhabitants and ended with the
127th ranked Toulon, France at 553,594 inhabitants. The bottom 127 subgroup was led by
the 128th ranked Numazu, Japan at 553,358 inhabitants and ended with the 254th ranked
Tuscaloosa, AL in the USA at 244,054 inhabitants. To highlight the scale effect, we again
created three additional subgroups of the top 15, top 30, and top 60 high-population size
cities. The top 15 subgroup was again led by Tokyo, Japan and ended with the 15th ranked
Berlin, Germany at 4,950,913 inhabitants. The top 30 subgroup was led by Tokyo, Japan
and ended with the 30th ranked Sacramento, CA at 2,213,564 inhabitants. Finally, the
top 60 subgroup was led again by Tokyo, Japan and ended with the 60th ranked Bremen,
Germany at 1,230,691 inhabitants. Detailed ranking of the cities by income, density, and
population are listed in the Appendix A Tables A1–A3.

4. Analysis of Results

This study used the panel unit root test to check whether the data used in this study
were stationary or not. We applied two widely used tests: the Levin–Lin–Chu (LLC) test
developed by Levin, Lin, and James [58], and the Fisher Phillips–Perron (PP) test developed
by Phillips and Perron [59]. The results indicated that there is a common unit root process in
all of the variables, with one exception of income in the Fisher PP test, as shown in Table 2.

We then tested for multicollinearity among the explanatory independent variables in
all of the panel regression models using variance inflation factors (VIFs). The VIF values
were all less than 10, as shown in Table 3, suggesting no multicollinearity [60].

In the regression of the SPIRPAT model, this research used the Prais–Winsten (PW)
estimation method with panel-corrected standard error. The PW method uses a generalized
least square framework that corrects for AR(1) autocorrelation within the panels and
cross-sectional correlation and heteroscedasticity across panels [61].



Int. J. Environ. Res. Public Health 2021, 18, 9019 8 of 30

Table 2. Results of panel unit root tests.

Variable
Unit Root Test

Levin-Lin-Chu (LLC) Fisher-PP

lnPM2.5 −32.5583 *** 33.1823 ***
lnIncome −19.5545 *** −1.7108
lnDensity −39.4000 *** 14.3177 ***

lnPopulation −83.3723 *** 68.9691 ***
*** p < 0.01.

Table 3. VIF test for PM2.5 data.

Variable All
Income Density Population

Top
15

Top
30

Top
60

Top
127

Bottom
127

Top
15

Top
30

Top
60

Top
127

Bottom
127

Top
15

Top
30

Top
60

Top
127

Bottom
127

lnPopulation 1.64 1.33 1.33 1.47 1.38 1.07 1.31 1.18 1.28 1.43 1.04 2.03 1.61 1.64 1.72 1.05
lnDensity 1.28 1.39 1.69 1.22 1.26 1.35 2.41 2.2 2.28 1.87 1.52 1.08 1.23 1.37 1.74 1.04
lnIncome 1.84 1.21 1.63 1.59 1.68 1.34 2.05 2.31 2.38 2.17 1.53 2.12 1.57 1.48 1.31 1.07
Mean_VIF 1.59 1.31 1.55 1.43 1.44 1.25 1.92 1.89 1.98 1.82 1.36 1.74 1.47 1.5 1.59 1.05

STIRPAT multivariate panel regression of PM2.5 concentrations on the three separate
groups of 254 cities by income, density, and population, and their respective five subgroups
generated the following variable results. First, the full sample of 254 cities ranked by 2013
income per capita yielded a statistically significant −0.074. In other words, a 1% increase
in income per capita generated a −0.074% reduction of PM2.5 concentrations, while the
impact from the other factors of density and population size were held constant, as shown
in Table 4.

Table 4. Multivariate panel analysis of PM2.5 concentrations for six income subgroups (2001–2013).

Variables
Subgroups Top 15 Top 30 Top 60 Top 127 Bottom 127 All 254

InIncome −0.783 *** −0.553 *** −0.501 *** −0.208 *** 0.157 ** −0.074 ***
(0.225) (0.122) (0.080) (0.043) (0.068) (0.028)

InDensity 0.142 *** 0.130 *** 0.121 *** 0.083 *** 0.035 *** 0.058 ***
(0.033) (0.023) (0.013) (0.009) (0.009) (0.007)

InPopulation −0.011 −0.017 −0.013 −0.033 *** 0.040 ** −0.018 **
(0.033) (0.021) (0.013) (0.009) (0.016) (0.008)

Incons 10.360 *** 8.003 *** 7.434 *** 4.725 *** 0.206 3.225 ***
(2.470) (1.307) (0.792) (0.411) (0.692) (0.252)

R2 0.864 0.852 0.848 0.838 0.773 0.812
Observation 195 390 780 1651 1651 3302

*** p < 0.01, **p < 0.05.

When the subgroup of 254 cities was divided into the top 127 high-income cities, the
income coefficient increased to −0.208, which was about 2.7 times larger than the income
coefficient obtained from the 254 cities. A 1% increase in income per capita reduced PM2.5
concentrations by 0.208% for the subgroup of 127 high-income cities. In contrast, the
sample of the remaining bottom 127 low-income cities yielded a statistically significant
coefficient of +0.157, while the other factors held constant. Specifically, a 1% increase
in income increased PM2.5 concentrations by 0.157%, which indicated an income scale
disadvantage for the bottom 127 low-income cities. These results suggest that there are
effects from the EKC curve on cities with different income levels.

Furthermore, the contrasting results from the top 127 and the bottom 127 cities sug-
gested the possibility of an even greater income scale advantage for cities with very high
income per capita. Therefore, extended STIRPAT analysis of income coefficients for the
samples of the top 15, top 30, and top 60 high-income cities were examined. The result was
that the top 60 cities yielded −0.505, while the top 30 yielded −0.582. Finally, the top 15
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high-income cities generated the highest negative income coefficient of −0.783, which was
about 10 times larger than the income coefficient of the 254 cites at −0.074, indicating the
existence of a very large-scale advantage of income for PM2.5 pollution. Furthermore, all
three income coefficients met the statistical test of significance.

In summary, a very large-scale advantage of income for reduced PM2.5 pollution was
evident in the top 15, top 30, and top 60 high-income cities. This income scale advantage
continued through the top 127 cities at a somewhat reduced scale. However, the scale
advantage showed a slight scale disadvantage for the remaining bottom 127 cities with
lower income per capita. The full sample of 254 cities showed a moderate yet statistically
significant income scale advantage by combining different income coefficients from these
city subgroups.

The same STIRPAT multivariate panel regression was applied first to the full sample of
254 cities, ranked by 2013 population density. The density coefficient from the full sample of
254 cities yielded statistically significant density coefficients of +0.058, as shown in Table 5,
which resembled the results in a German study [14] with a density coefficient of +0.08. In
other words, a 1% increase in density yielded a 0.058% increase in PM2.5 concentration,
demonstrating that the impact of density on PM2.5 concentrations was positive. When the
full sample of 254 cities was divided into the subsample of the top 127 cities with higher
density, the density coefficient was more or less unchanged at 0.053, meeting the statistical
test of significance, while the effects from the other factors held constant.

Table 5. Multivariate panel analysis of PM2.5 concentrations for six density subgroups (2001–2013).

Variables
Subgroups Top 15 Top 30 Top 60 Top 127 Bottom 127 All 254

InDensity 0.119 0.061 * 0.049 ** 0.053 *** 0.142 *** 0.058 ***
(0.076) (0.037) (0.021) (0.014) (0.013) (0.007)

InIncome 0.009 −0.023 −0.025 0.004 −0.171 *** −0.074 ***
(0.027) (0.020) (0.055) (0.036) (0.040) (0.028)

InPopulation −0.088 −0.003 0.000 0.001 −0.051 *** −0.018 **
(0.148) (0.092) (0.014) (0.010) (0.012) (0.008)

Incons 2.416 2.503 *** 2.511 *** 2.161 *** 4.258 *** 3.225 ***
(1.699) (0.896) (0.525) (0.345) (0.363) (0.252)

R2 0.824 0.799 0.802 0.810 0.809 0.812
Observation 195 390 780 1651 1651 3302

*** p < 0.01, **p < 0.05, * p < 0.1.

The bottom 127 cities with lower densities yielded a statistically significant density
coefficient of +0.142, which was substantially higher than the density coefficients of both
the top 127 and all 254 cities. In other words, the positive impact of population density on
PM2.5 pollution was much greater for the group of cities with lower densities compared to
the group of cities with higher densities.

The result for the top 60 cities yielded a statistically significant coefficient of +0.05,
which was nearly the same as the +0.058 coefficient estimated for all 254 cities. Similarly,
the density coefficients for the top 30 cities remained at +0.061. However, for the top 15
cities, the density coefficient more than doubled to +0.13. The density coefficients for the
top 15 cities did not meet the statistical test of significance, whereas the density coefficient
for the top 30 cities did.

In summary, all of the density coefficients displayed a positive impact of density on
greater PM2.5 pollution. The positive impact was greater for the 127 cities with lower
population densities over both the 127 cities with higher population densities, and the
full sample of all 254 cites. The top 60 and 30 cities displayed density coefficients nearly
equal to those of the top 127 cities and all 254 cities. However, the top 15 cities displayed a
substantially higher density coefficient, approaching the density coefficient derived from
the bottom 127 cities. In sum, the overall pattern of density coefficients followed a U-shaped
pattern, providing an interesting contrast to the inverse U-shaped pattern of the EKC.
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Finally, the full sample of 254 cities ranked by 2013 population size was subjected
to the same panel regression analysis. The resulting population coefficient of −0.018 met
the statistical test of significance. To explain, a 1% increase in population would reduce
PM2.5 concentrations slightly by 0.018% for the full sample of 254 cities, while the effects of
the other factors of income and density were held constant, as listed in Table 6. However,
compared to the income and density coefficients estimated earlier, the magnitude of impact
of population size is quite moderate. In addition, similar to the effect of income, larger
population sizes implied a smaller reduction in PM2.5 concentrations.

Table 6. Multivariate panel analysis of PM2.5 concentrations for six population subgroups (2001–2013).

Variables
Subgroups Top 15 Top 30 Top 60 Top 127 Bottom 127 All 254

InPopulation 0.261 *** 0.027 −0.034 −0.009 0.024 −0.018 **
(0.072) (0.036) (0.021) (0.013) (0.029) (0.008)

InIncome −0.281 ** −0.244 *** −0.192 *** −0.160 *** 0.061 * −0.074 ***
(0.135) (0.087) (0.059) (0.041) (0.037) (0.028)

InDensity −0.094 ** 0.060 ** 0.094 *** 0.071 *** 0.033 *** 0.058 ***
(0.044) (0.024) (0.014) (0.009) (0.009) (0.007)

Incons 2.098 4.357 *** 4.503 *** 3.932 *** 1.427 *** 3.225 ***
(1.557) (0.907) (0.572) (0.375) (0.543) (0.252)

R2 0.862 0.851 0.853 0.839 0.764 0.812
Observation 195 390 780 1651 1651 3302

*** p < 0.01, **p < 0.05, * p < 0.1.

To differentiate the degree of impact between large versus small population size,
the full sample of 254 cities was again divided into the subgroups of the top 127 largest
population cities and the remaining 127 smallest population cities. The resulting population
coefficient for the top 127 cities was much smaller at −0.009, compared to the −0.018
estimated for all 254 cities, but the coefficient failed to meet the statistical test of significance.
The remaining 127 cities with smaller populations yielded a substantially larger population
coefficient of +0.024, which again did not meet the statistical test of significance.

To determine the impact of population mega cities of the top 15 most populated
cities, the panel regression yielded a statistically significant population coefficient of +0.261.
For the subgroup of the top 30 most populated cities, the population coefficient was
substantially smaller at +0.027, but failed to meet the statistical test of significance. For
the top 60 cites, the population coefficient yielded −0.034, indicating the same population
impact on PM2.5 concentrations as the subgroups of the top 127 and all 254 cities. However,
only the two population coefficients for the top 15 cities and all 254 cities met the statistical
test of significance.

In sum, although an increasing population size for the full sample of 254 cities yielded
a moderate reduction in PM2.5 pollution, the results from the subgroup analyses did not
support such an impact. On the contrary, the subgroup of 15 mega cities indicated a
much higher impact of increasing, not decreasing, PM2.5 pollution. The results from the
remaining subgroups were inconclusive.

In order to verify the appropriateness of subgroups used in this study so far, the
multivariate panel regression was replicated for the four additional subgroups for the
respective independent variables. Specifically, we added the subgroups of the top 20, top
50, top 100, and top 200 cities. Table 7 shows the newly derived income, density, and
population coefficients for the newly added four subgroups together with the coefficients
estimated earlier for the five subgroups of the top 15, top 30, top 60, top 127, and bottom
127 cities.

The four newly estimated income coefficients, all of which are statistically significant,
follow the overall declining pattern of coefficients from the top 15 to bottom 127 cities
in perfect alignment, indicating the robustness of our previous estimation of the five
subgroups. As for the four new density coefficients, they, in general, also support the overall
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“U” shaped pattern, with a wide flat bottom displayed by the previous five coefficients.
The distribution of the four new population coefficients, also, support the overall pattern
established by the previously estimated coefficients, where the top 15 displayed the highest
coefficients. Similarly, the new coefficients from the subgroup of top 20 cities also displayed
the highest coefficients among the new four subgroups.

Table 7. Robustness tests of income, density, and population coefficients with four additional subgroups.

Variables
Subgroups Top 15 Top 20 Top 30 Top 50 Top 60 Top 100 Top 127 Top 200 Bottom 127 All 254

Income −0.783 *** −0.766 *** −0.553 *** −0.545 *** −0.501 *** −0.244 *** −0.208 *** −0.180 *** 0.157 ** −0.074 ***
Density 0.119 0.058 0.061 * 0.030 0.049 ** 0.035 ** 0.053 *** 0.030 *** 0.142 *** 0.058 ***

Population 0.261 *** 0.143 *** 0.027 −0.008 −0.034 −0.005 −0.009 −0.023 ** 0.024 −0.018 **
Observation 195 260 390 650 780 1300 1651 2600 1651 3302

*** p < 0.01, ** p < 0.05, * p < 0.1.

Since both the top 127 largest cities and the bottom 127 smallest cities failed to generate
statistically significant population coefficients, we used an alternative model of threshold
regression as a robustness check. The results, shown in Table 8, indicated that the optimal
single-threshold value was estimated at 0.768 million inhabitants. We divided the full
sample of 254 cities into Region 1 with more than 0.768 million inhabitants and Region 2
with less than 0.768 million inhabitants. Region 1 with 94 cities had an average population
size of 2,903,502 inhabitants and Region 2 with 160 cities had an averaged population size
of 436,966 inhabitants.

Table 8. Threshold regression of PM2.5 concentrations for 254 cities by population size.

In_PM2.5 Coef. Std.
Err. z P > z 95%

Conf. Interval

Region1
(94 cities)

InPopulation 0.045 ** 0.016 2.82 0.005 0.014 0.076
InIncome 0.052 * 0.025 2.08 0.037 0.003 0.101
InDensity 0.037 *** 0.005 6.89 0.000 0.027 0.048

Incons 1.228 *** 0.305 4.03 0.000 0.630 1.823

Region2
(160

cities)

InPopulation 0.012 0.010 1.22 0.223 −0.007 0.031
InIncome −0.204 *** 0.027 −7.56 0.000 −0.257 −0.151
InDensity 0.069 *** 0.006 11.33 0.000 0.057 0.081

Incons 4.098 *** 0.253 16.18 0.000 3.601 4.594
Note: number of threshold = 1, threshold variable: InPopulation, threshold value of population = In13.551506 or
767,970 inhabitants, SSR = 145.5654, BIC = −10,250. *** p < 0.01, ** p < 0.05, * p < 0.1.

The population coefficient for Region 1 generated a statistically significant +0.045,
compared to −0.009 for the top 127 cities, whereas Region 2 generated a statistically
insignificant +0.012, compared to +0.024 for the bottom 127 cities.

In sum, the robustness test with threshold regression using the subgroups of alterna-
tive population size for the top 94 cities and the bottom 160 cities improved the statistical
validity for the subgroup of cities with large populations. However, the basic piecewise
linear pattern of population coefficients remained essentially intact.

5. Conclusions

The key findings from this research can be summarized as follows. First, the impact
of income measured by city GDP per capita on PM2.5 pollution for the full sample of 254
cities was highest, in that a 1% increase in income generated a −0.074 reduction of PM2.5
concentrations. In contrast, the impact of population density was nearly as high, in that a
1% increase in population density resulted in a 0.058% increase of PM2.5 concentrations.
The impact from population size was quite modest, in that a 1% increase of population size
resulted in a reduction of only 0.018%.

Second, when all 254 cities were categorized into five subgroups of the top 127, bottom
127, top 60, top 30, and top 15 cities, the impact of income, density, and population varied



Int. J. Environ. Res. Public Health 2021, 18, 9019 12 of 30

so widely that each influencing factor needed a separate in-depth analysis. We provide a
summary in Table 9 of the six coefficients for each of the three influencing factors of income,
density, and population. We also present the average values during the study period of
income, density, and population for all 254 cities as well as for each of the respective five
subgroups under analysis.

Table 9. Summary table of income, density, and population coefficients (2001–2013).

Subgroups

Influencing Factors Income Density Population
Average Coefficient Average Coefficient Average Coefficient

(in $) (in Persons per km2) (in Million Inhabitants)

Bottom 127 30,007 0.157 ** 202 0.142 *** 0.381 0.024
All 254 37,772 −0.074 *** 704 0.058 *** 1.345 −0.018 **
Top 127 45,537 −0.208 *** 1206 0.053 *** 2.318 −0.009
Top 60 53,156 −0.501 *** 1919 0.049 ** 3.990 −0.034
Top 30 58,739 −0.553 *** 2835 0.061 * 6.415 0.027
Top 15 63,152 −0.783 *** 4010 0.119 9.775 0.261 ***

*** p < 0.01, **p < 0.05, * p < 0.1.

Third, the results of the income subgroup analysis showed the most consistent pattern
following the EKC. The richest cities displayed the highest scale advantage for greater pollution
reduction, whereas the lower income cities experienced a scale of diseconomy with pollution
increases. To elaborate, Figure 1 shows that the income coefficient for the top 15 highest-income
subgroup with an average income of $63,132 experienced a reduction of −0.783% in PM2.5
pollution, whereas the bottom 127 lower-income cities with an average income of $30,007
experienced a pollution increase of 0.157% for the same 1% increase in income.

Figure 1. Distribution of income coefficients and averaged income for all cities and the five subgroups
of cities (2001–2013). *** p < 0.01, ** p < 0.05.

To explain this pattern in the context of the EKC, many cities in the subgroup of cities with
an average income of $30,007 had not reached the peak of their EKC, and thus, experienced
increasing pollution as their income increased. In contrast, many cities in the subgroup with
an average income of $45,537 had surpassed the peak, so experienced a win-win relation of
increased income and reduced pollution. Cities with the highest income level experienced
proportionately greater pollution reductions, as predicted by the EKC.

Fourth, the results of the density subgroup analysis showed a somewhat opposite
pattern from the income subgroups. As shown in Figure 2, the bottom 127 low-density cites
with an average density of 202 persons per km2 generated the highest density coefficient
of +0.142, whereas the top 15 high-density cities also generated an equally high density
coefficient of +0.119. In the remaining subgroups, the density coefficient clustered closely
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around the density coefficient derived from all 254 cities. Thus, the overall distribution
of density coefficients resembled a U-shaped pattern, which is opposite to the inverse
U-shaped EKC.

As noted in the earlier section of the literature review, many cities in the U.S and some
European countries with low-density urban sprawl may have been responsible for the
unusual high-density coefficient of +0.142 estimated for the subgroups of the bottom 127
cities. For example, the bottom 127 subgroup contained a large minority of 36 American
cities. Furthermore, this subgroup contained 14 American cities in the bottom 20 lowest
density cities, indicating the impact of low-density sprawl cities.

The high-density coefficient of 0.119 from the subgroup of the top 15 cities with a very
high average density of 4010 inhabitants per km2 may reflect the fact that extremely high-
density cities will begin to experience excessive spatial concentration and consequently
increasing vehicle emissions due to severe congestion as well as the high number of people
exposed to pollution. These can bring about a rapidly rising air pollution. Furthermore, the
fact that there are seven high-density Japanese cities included in the top 15 subgroup may
have generated another cause for the unusually high coefficient derived for this subgroup.

Figure 2. Distribution of density coefficients and averaged density for all cities and the five subgroups
of cities (2001–2013). *** p < 0.01, ** p < 0.05, * p < 0.1.

Fifth, the results from the population subgroups were somewhat inconsistent and
contradictory in that only the full sample of 254 cities and the top 15 most populous mega
cities generated statistically significant population coefficients. All 254 cities generated
−0.018, while the top 15 subgroup generated +0.261. In other words, most cities would
experience a very modest pollution reduction in the full sample of 254 cities, whereas the
most populous cities in the top 15 subgroup would experience the largest increase in PM2.5
pollution. The population coefficient from the remaining subgroups clustered around the
population density of the full sample of all cities group. Therefore, the distribution of
population coefficients can be approximated using a piecewise linear relation, as displayed
in Figure 3. In short, unlike the case of income and density, the population size of cities
appears to not have a substantial impact on PM2.5 pollution. The only exception was in
the case of the most populous 15 mega cities with an average population size around 10
million inhabitants.
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Figure 3. Distribution of population size coefficients and averaged population size for all cities and
the five subgroups of cities (2001–2013). *** p < 0.01, ** p < 0.05.

It would be interesting to compare the results of this study to the results of studies on
Chinese cities discussed earlier in the literature review section. First, the impact of income
on PM2.5 pollution between the two groups was quite similar, as both the previous studies
and our study verified the theory of EKC. One difference may be that the inflection point of
the EKC in China could be somewhat lower in the range of $9186 to $18,506 per capita [8].
In comparison, the average income for the bottom 127 cities in this study, generating a
positive income coefficient, was estimated at $30,007. Another difference may relate to
the very large-scale economy estimated for the top 15 high-income subgroup in this study,
which may be different in high-income Chinese cities.

As for population density, both groups of studies verified the result of increasing pollu-
tion as a function of increasing population density. However, the U-shaped distribution of
density coefficients revealed in this study may be due to many low-density urban sprawls
found particularly in the U.S. For example, the average density for all 254 cities was quite
low (i.e., estimated at 704 persons per km2). In comparison, the average population density
for 285 cities in China during a similar study period of 2001 to 2012 was estimated at a
much higher density of 1149.86 persons per km2 [4]. Finally, both groups of studies found
that the impact of population size on PM2.5 pollution was inconclusive, although our study
revealed rapidly increasing pollution from the most populous cities with an average of 10
million inhabitants.

The findings of this study have policy implications for all countries. An ideal combi-
nation of the three influencing factors examined in this study that are most favorable to
pollution reduction are (1) an average income per capita of $38,000 or more; (2) population
density in the range of 1000 to 2000 population per km2; and (3) a medium population
size between 1.5 million to 4 million inhabitants. In contrast, the worst combination of
the three factors are (1) low-income cities with significantly less than $30,000 per capita;
(2) the highest population density of more than 4000 persons per km2; and (3) the largest
population size of more than 10 million inhabitants.

We realize, however, that such an ideal combination would be quite difficult to achieve
in most cities. Fortunately, the results of this study have identified a rather wide indifference
zone of the average values in all three factors. For the income, any city income per capita
over $38,000 would generate a substantial pollution reduction. For density, the wide
indifference zone ranges from about 700 to 3000 persons per km2, while the indifference
zone of population size ranges from 1.3 million to 6.4 million inhabitants.

There are several limitations to this study that represent possible topics for future
studies. One major limitation is the omission of several socio-economic factors related to
PM2.5 pollution that have been analyzed in previous studies. For example, several previous
studies on Chinese cities have included other influencing factors such as industrial structure,
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traffic intensity, energy and electricity usage, and coal consumption [2–4,7]. Another group
of omitted factors include meteorological elements such as temperature, precipitation,
wind, and humidity [9]. Other omitted variables may include atmospheric chemistry
and the long-distance transport of pollution [9,62–66]. These omitted variables could be
included in future studies, and thus could revise the interactions related to socio-economic
factors examined in this study. In other words, we have provided some evidence for
the robust association between the factors of income, density, and population to PM2.5
pollutions, rather than evidence of causality. Thus, future work should continue to establish
the causal relationships to control air pollutions.

Despite these limitations, this research revealed the role of high-income cities in
developed countries and added insights about how pollution reduction can have a greater
impact compared to developing countries such as China. This study also supports the
positive impact of high population density cities on increasing pollution, which is also
the case in developing countries. Going beyond this basic notion, this study proposes a
U-shaped pattern of density coefficients as a function of variable population densities of
cities for developed countries.
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Appendix A

Table A1. Ranking of 254 cities into 5 subgroups by income per capita.

Rank Cities gdp/cap Population Density PM2.5

1 USA: San Francisco (Greater) 84,921 6,457,022 1285 11
2 USA: Boston 73,186 4,276,297 2343 8
3 USA: Houston 72,001 6,422,530 285 9
4 USA: New York (Greater) 70,399 20,000,933 1757 10
5 USA: New Haven 69,899 1,807,423 1068 10
6 DE: Ingolstadt 68,518 463,060 171 18
7 USA: Washington (Greater) 68,073 8,794,922 561 10
8 USA: Hartford 64,337 1,216,966 585 9
9 USA: Philadelphia (Greater) 61,836 6,407,666 756 10
10 DE: Dusseldorf 61,698 1,511,967 1708 14
11 USA: Minneapolis 61,415 3,405,918 238 10
12 USA: Portland 61,332 2,209,459 201 6
13 FR: Paris 61,301 11,866,785 1186 17
14 USA: Dallas 60,787 6,980,428 272 10

Top 15 USA: Denver 60,752 2,696,308 226 8

16 USA: Indianapolis 60,360 1,938,160 232 11
17 DE: Frankfurt am Main 60,351 2,544,366 648 15
18 USA: Tulsa 59,447 1,002,698 59 10
19 USA: Milwaukee 58,426 1,571,740 485 10
20 USA: Chicago 58,099 9,548,402 1089 11
21 USA: Nashville 58,031 294,618 427 10
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Table A1. Cont.

Rank Cities gdp/cap Population Density PM2.5

22 USA: New Orleans 56,524 1,219,579 150 8
23 DE: Stuttgart 56,386 2,648,143 802 16
24 UK: London 55,954 11,544,026 2897 15
25 DE: Heilbronn 55,901 441,943 402 17
26 USA: East Baton Rouge 55,885 819,304 84 10
27 USA: Austin 55,841 1,894,164 257 8
28 USA: Charlotte 55,486 1,839,138 343 9
29 USA: Columbus 55,401 1,935,123 192 12

Top 30 UK: Aberdeen 54,812 484,840 77 6

31 USA: Cincinnati 54,682 2,084,836 268 11
32 USA: Atlanta 52,745 5,183,715 465 10
33 DE: Hamburg 52,487 3,143,783 487 11
34 USA: Jackson (MO) 52,441 1,977,173 124 9
35 USA: Richmond (Greater) 51,870 1,112,531 101 9
36 DE: Bonn 51,515 889,551 797 13
37 USA: Salt Lake 51,295 1,539,116 54 9
38 DE: Karlsruhe 51,240 722,801 667 16
39 DE: Wiesbaden 51,140 453,599 559 14
40 USA: Pittsburgh 50,378 1,441,884 646 11
41 USA: Oklahoma 50,025 1,281,128 120 9
42 DE: Regensburg 50,009 436,621 178 18
43 DE: Mainz 49,981 405,874 671 15
44 USA: Lancaster (NE) 49,898 328,854 110 11
45 USA: St. Louis 49,457 2,596,184 237 10
46 DE: Mannheim-Ludwigshafen 49,358 1,145,686 661 16
47 DE: Muenster 49,276 512,138 461 12
48 UK: Guildford 49,131 263,440 764 12
49 USA: Detroit (Greater) 48,811 4,360,382 885 11
50 DE: Koblenz 48,496 319,944 392 13

51 DE: Braunschweig-Salzgitter
Wolfsburg 48,491 977,157 279 13

52 USA: Memphis 47,895 1,302,172 146 10
53 DE: Ulm 47,753 470,839 263 16
54 DE: Darmstadt 46,621 434,462 661 16
55 ES: Vitoria 46,600 264,719 200 10
56 USA: Virginia Beach 46,383 1,165,789 286 9
57 USA: Rochester (NY) 46,221 857,051 320 10
58 USA: Albany 45,650 976,721 118 8
59 FR: Lyon 45,114 1,958,191 622 17

Top 60 USA: Sacramento 44,680 2,213,564 478 11

61 DE: Hannover 44,588 1,267,062 458 12
62 DE: Schweinfurt 44,541 267,890 136 16
63 JPN: Toyohashi 44,353 665,226 961 14
64 UK: Oxford 44,033 527,670 281 13
65 USA: Erie (NY) 43,694 1,136,993 823 11
66 DE: Aschaffenburg 43,603 368,348 261 16
67 USA: Charleston 43,545 711,407 152 9
68 USA: Tuscaloosa 43,490 244,054 43 11
69 USA: Montgomery (OH) 43,485 697,435 646 11
70 USA: Phoenix 43,099 4,390,565 315 12
71 USA: Lafayette 43,007 427,049 54 12
72 DE: Reutlingen 42,986 273,578 272 16
73 UK: Edinburgh 42,842 849,720 582 9
74 USA: Miami (Greater) 42,808 6,014,211 3413 7
75 JPN: Tokyo 42,785 35,221,137 8635 16
76 USA: Providence 42,772 969,960 980 9
77 USA: Roanoke 42,757 311,993 65 8
78 ES: Barcelona 42,739 4,019,011 2076 14
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Table A1. Cont.

Rank Cities gdp/cap Population Density PM2.5

79 FR: Toulouse 42,275 1,277,646 267 12
80 DE: Offenburg 42,147 412,179 232 15
81 ES: Madrid 42,105 6,379,915 991 10
82 DE: Bremen 42,075 1,230,691 221 12
83 JPN: Toyota 41,974 8,498,701 2403 13
84 USA: Allen 41,952 396,450 453 10
85 DE: Heidelberg 41,759 677,291 639 16
86 USA: San Antonio 41,750 2,298,261 122 8
87 USA: Las Vegas 41,274 2,074,253 28 7
88 DE: Wurzburg 41,216 497,551 168 16
89 UK: Bristol 40,865 913,519 1048 14
90 DE: Kassel 40,851 427,403 331 14
91 DE: Saarbrucken 40,635 800,458 586 14
92 USA: Hamilton (TN) 40,424 542,036 134 11
93 UK: Cambridge 40,261 360,154 232 13
94 DE: Augsburg 40,217 639,038 345 17
95 JPN: Hamamatsu 40,014 957,085 681 13
96 DE: Freiburg im Breisgau 39,783 623,036 303 15
97 JPN: Kanazawa 39,658 684,018 722 13
98 USA: Jacksonville 39,619 1,485,547 132 9
99 JPN: Fujieda 39,605 457,650 1069 14

100 JPN: Numazu 39,600 553,358 1100 13
101 DE: Iserlohn 39,246 420,986 451 12
102 JPN: Yokkaichi 38,989 1,058,231 1145 14
103 DE: Pforzheim 38,695 307,352 536 15
104 USA: Albuquerque 38,603 929,424 28 7
105 USA: Knox 38,534 463,248 723 9
106 DE: Aachen 38,469 539,521 995 13
107 ES: Pamplona 38,280 362,229 241 11
108 JPN: Utsunomiya 38,171 882,046 646 14
109 DE: Siegen 38,160 405,088 244 12
110 DE: Osnabruck 38,113 506,726 239 12
111 DE: Paderborn 37,865 298,853 281 12
112 DE: Rosenheim 37,486 307,074 213 18
113 USA: Spokane 37,376 501,584 51 8
114 UK: Southampton 37,211 664,608 481 13
115 JPN: Toyama 37,118 593,754 828 12
116 FR: Nice 36,979 824,441 353 16
117 DE: Kiel 36,979 632,735 195 10
118 ES: Bilbao 36,936 1,033,172 770 11
119 JPN: Fukui 36,794 547,512 306 14
120 JPN: Morioka 36,463 413,105 178 10
121 FR: Nantes 36,454 915,985 348 13
122 FR: Dijon 36,390 402,912 111 15
123 JPN: Mito 36,331 703,770 681 14
124 DE: Berlin 36,248 4,950,913 302 14
125 DE: Oldenburg (Oldenburg) 36,096 402,152 224 11
126 JPN: Sendai 36,011 1,464,672 1435 13

Top 127 FR: Rennes 35,966 701,153 219 13

128 FR: Reims 35,964 320,879 137 15
129 USA: Tallahassee 35,883 373,212 81 9
130 FR: Strasbourg 35,874 771,559 449 16
131 JPN: Hitachi 35,740 316,365 420 13
132 UK: Northampton 35,711 457,540 313 13
133 DE: Gottingen 35,692 383,137 169 14
134 JPN: Tokushima 35,601 569,456 620 15
135 DE: Wetzlar 35,552 251,578 255 13
136 JPN: Hiroshima 35,436 1,432,615 3149 17
137 FR: Bordeaux 35,367 1,174,012 235 12
138 USA: Fresno (Greater) 35,140 1,105,606 198 15
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139 JPN: Kurashiki 34,908 1,516,388 962 16
140 JPN: Takamatsu 34,900 562,614 1285 15
141 FR: Pau 34,751 267,702 146 11
142 FR: Orleans 34,633 424,619 164 14
143 FR: Clermont-Ferrand 34,545 476,713 202 13
144 JPN: Niigata 34,529 805,385 1446 14
145 ES: Palma de Mallorca 34,502 643,352 355 11
146 JPN: Wakayama 34,473 541,730 1180 15
147 DE: Lubeck 34,352 407,813 295 11
148 FR: Rouen 34,337 689,626 313 16
149 JPN: Kofu 34,222 586,614 433 12
150 JPN: Kurume 34,202 409,982 1898 19
151 FR: Grenoble 34,031 661,221 282 16
152 JPN: Nagano 33,981 572,858 732 12
153 DE: Flensburg 33,897 274,656 138 9
154 UK: Derby 33,806 472,015 783 14
155 JPN: Koriyama 33,754 518,284 513 12
156 UK: Manchester 33,644 3,246,448 1762 13
157 DE: Leipzig 33,626 978,997 266 15
158 JPN: Matsumoto 33,581 426,101 477 11
159 JPN: Fukushima 33,569 449,041 548 12
160 DE: Erfurt 33,561 519,509 201 15
161 USA: Montgomery (AL) 33,516 451,815 39 11
162 FR: Le Havre 33,328 297,916 537 16
163 USA: Lubbock 33,053 351,009 29 6
164 DE: Trier 33,037 248,567 227 13
165 DE: Halle an der Saale 33,026 420,210 292 14
166 DE: Magdeburg 33,017 496,349 125 14
167 UK: Brighton and Hove 32,843 440,222 1502 16
168 JPN: Kitakyushu 32,749 1,332,183 2680 20
169 UK: Glasgow 32,740 1,790,510 780 10
170 JPN: Oita 32,635 732,952 568 17
171 JPN: Fukuoka 32,630 2,680,715 5918 21
172 DE: Rostock 32,549 412,399 121 11
173 JPN: Matsuyama 32,249 625,918 6137 17
174 FR: Caen 32,169 434,109 211 14
175 FR: Valenciennes 32,133 358,729 687 16
176 FR: Avignon 32,098 318,245 505 13
177 JPN: Asahikawa 32,090 388,628 232 9
178 FR: Annecy 32,023 272,588 256 15
179 UK: Ipswich 31,738 349,520 235 13
180 FR: Tours 31,733 460,093 183 14
181 FR: Lille 31,700 1,366,909 1647 16
182 FR: Poitiers 31,591 266,275 118 13
183 FR: Montpellier 31,425 668,380 372 12
184 JPN: Obihiro 31,404 262,830 150 9
185 DE: Dresden 31,378 1,327,534 241 16
186 JPN: Himeji 31,342 720,892 1139 16
187 FR: Le Mans 31,328 355,467 171 15
188 JPN: Sapporo 31,201 2,192,770 1629 11
189 UK: Leicester 31,141 849,964 728 13
190 ES: Valladolid 30,983 414,196 431 8
191 UK: Leeds 30,926 2,550,810 740 12
192 JPN: Yamagata 30,785 422,839 571 13
193 UK: Norwich 30,726 388,299 266 12
194 DE: Kaiserslautern 30,696 273,554 226 14
195 DE: Bremerhaven 30,604 307,055 149 11
196 JPN: Aomori 30,530 309,601 585 11
197 FR: Nancy 30,446 474,407 176 14
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198 FR: Dunkerque 30,390 273,513 425 17
199 JPN: Hakodate 30,317 345,811 562 10
200 JPN: Hachinohe 30,196 324,182 405 10
201 USA: El Paso (TX) 30,194 833,522 70 8
202 JPN: Akita 30,093 399,793 624 13
203 JPN: Miyazaki 29,868 493,598 639 15
204 JPN: Kumamoto 29,811 1,130,440 753 20
205 FR: Amiens 29,772 309,154 145 17
206 DE: Zwickau 29,645 329,603 390 15
207 UK: Nottingham 29,576 884,410 1068 13
208 UK: Dundee City 29,547 264,390 121 8
209 FR: Mulhouse 29,505 407,282 414 16
210 FR: Angers 29,380 406,872 227 14
211 DE: Hildesheim 29,355 276,440 248 12
212 FR: Besancon 29,345 270,164 138 15
213 JPN: Nagasaki 29,342 641,205 1869 17
214 UK: Liverpool 29,312 1,178,689 6204 13
215 DE: Schwerin 29,287 303,031 64 11
216 JPN: Kagoshima 29,173 715,775 1473 15
217 FR: Limoges 29,160 307,992 114 12
218 FR: Brest 29,048 365,055 336 10
219 FR: Saint-Etienne 28,911 526,369 425 13
220 UK: Plymouth 28,849 396,686 193 11
221 UK: Exeter 28,828 460,870 192 11
222 UK: Blackburn with Darwen 28,709 285,594 489 10
223 UK: Newcastle upon Tyne 28,450 1,152,859 230 9
224 ES: Oviedo 28,336 304,133 407 8
225 JPN: Kochi 28,335 513,465 342 16
226 ES: Valencia 28,298 1,663,496 1243 12
227 ES: Santander 27,833 372,909 608 9
228 DE: Neubrandenburg 27,794 278,044 48 12
229 UK: Cardiff 27,691 767,542 1095 13
230 ES: Santa Cruz de Tenerife 27,235 492,820 1311 12
231 DE: Gorlitz 27,186 264,402 130 17
232 FR: Metz 27,067 368,383 247 14
233 UK: Kingston upon Hull 26,879 593,260 246 11
234 UK: Lincoln 26,721 296,097 143 11
235 UK: Stoke-on-Trent 26,405 472,866 822 11
236 UK: Sheffield 26,220 1,154,133 4197 12
237 UK: Blackpool 26,076 326,318 1966 13
238 ES: Murcia 26,062 591,669 1992 11
239 UK: Middlesbrough 25,983 467,304 1907 11
240 UK: Swansea 25,891 379,975 858 12
241 JPN: Naha 25,838 1,170,320 3715 8
242 FR: Toulon 25,681 553,594 818 13
243 UK: Colchester 25,622 317,030 932 14
244 ES: Gijon 25,587 296,163 863 9
245 ES: Las Palmas 25,354 620,841 1127 13
246 ES: Vigo 25,251 533,676 430 9
247 ES: Elche/Elx 25,221 249,200 4224 12
248 FR: Perpignan 25,092 389,016 326 11
249 FR: Nimes 24,987 338,177 414 11
250 ES: Seville 24,789 1,498,774 372 13
251 ES: Alicante 23,321 439,642 3891 12
252 ES: Marbella 23,226 285,326 509 13
253 ES: Granada 22,719 538,657 402 11

Bottom
127 ES: Cordoba 22,057 355,038 577 11
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Table A2. Ranking of 254 cities into 5 subgroups by population density.

Rank Cities Density gdp/Capita Population PM2.5

1 JPN01: Tokyo 8635 42,785 35,221,137 16
2 UK006: Liverpool 6204 29,312 1,178,689 13
3 JPN25: Matsuyama 6137 32,249 625,918 17
4 JPN04: Fukuoka 5918 32,630 2,680,715 21
5 ES505: Elche/Elx 4224 25,221 249,200 12
6 UK010: Sheffield 4197 26,220 1,154,133 12
7 ES021: Alicante 3891 23,321 439,642 12
8 JPN10: Naha 3715 25,838 1,170,320 8
9 USA09: Miami (Greater) 3413 42,808 6,014,211 7
10 JPN08: Hiroshima 3149 35,436 1,432,615 17
11 UK001: London 2897 55,954 11,544,026 15
12 JPN09: Kitakyushu 2680 32,749 1,332,183 20
13 JPN03: Toyota 2403 41,974 8,498,701 13
14 USA11: Boston 2343 73,186 4,276,297 8

Top 15 ES002: Barcelona 2076 42,739 4,019,011 14

16 ES007: Murcia 1992 26,062 591,669 11
17 UK553: Blackpool 1966 26,076 326,318 13
18 UK559: Middlesbrough 1907 25,983 467,304 11
19 JPN42: Kurume 1898 34,202 409,982 19
20 JPN24: Nagasaki 1869 29,342 641,205 17
21 UK008: Manchester 1762 33,644 3,246,448 13
22 USA01: New York (Greater) 1757 70,399 20,000,933 10
23 DE011: Dusseldorf 1708 61,698 1,511,967 14
24 FR009: Lille 1647 31,700 1,366,909 16
25 JPN05: Sapporo 1629 31,201 2,192,770 11
26 UK515: Brighton and Hove 1502 32,843 440,222 16
27 JPN19: Kagoshima 1473 29,173 715,775 15
28 JPN15: Niigata 1446 34,529 805,385 14
29 JPN06: Sendai 1435 36,011 1,464,672 13

Top 30 ES025: Santa Cruz de Tenerife 1311 27,235 492,820 12

31 USA05: San Francisco (Greater) 1285 84,921 6,457,022 11
32 JPN28: Takamatsu 1285 34,900 562,614 15
33 ES003: Valencia 1243 28,298 1,663,496 12
34 FR001: Paris 1186 61,301 11,866,785 17
35 JPN33: Wakayama 1180 34,473 541,730 15
36 JPN12: Yokkaichi 1145 38,989 1,058,231 14
37 JPN20: Himeji 1139 31,342 720,892 16
38 ES008: Las Palmas 1127 25,354 620,841 13
39 JPN31: Numazu 1100 39,600 553,358 13
40 UK009: Cardiff 1095 27,691 767,542 13
41 USA03: Chicago 1089 58,099 9,548,402 11
42 JPN38: Fujieda 1069 39,605 457,650 14
43 USA27: New Haven 1068 69,899 1,807,423 10
44 UK029: Nottingham 1068 29,576 884,410 13
45 UK011: Bristol 1048 40,865 913,519 14
46 DE507: Aachen 995 38,469 539,521 13
47 ES001: Madrid 991 42,105 6,379,915 10
48 USA53: Providence 980 42,772 969,960 9
49 JPN07: Kurashiki 962 34,908 1,516,388 16
50 JPN23: Toyohashi 961 44,353 665,226 14
51 UK546: Colchester 932 25,622 317,030 14
52 USA13: Detroit (Greater) 885 48,811 4,360,382 11
53 ES023: Gijon 863 25,587 296,163 9
54 UK517: Swansea 858 25,891 379,975 12
55 JPN26: Toyama 828 37,118 593,754 12
56 USA44: Erie (NY) 823 43,694 1,136,993 11
57 UK027: Stoke-on-Trent 822 26,405 472,866 11
58 FR032: Toulon 818 25,681 553,594 13
59 DE007: Stuttgart 802 56,386 2,648,143 16
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Top 60 DE034: Bonn 797 51,515 889,551 13

61 UK518: Derby 783 33,806 472,015 14
62 UK004: Glasgow 780 32,740 1,790,510 10
63 ES019: Bilbao 770 36,936 1,033,172 11
64 UK033: Guildford 764 49,131 263,440 12
65 USA06: Philadelphia (Greater) 756 61,836 6,407,666 10
66 JPN11: Kumamoto 753 29,811 1,130,440 20
67 UK003: Leeds 740 30,926 2,550,810 12
68 JPN29: Nagano 732 33,981 572,858 12
69 UK014: Leicester 728 31,141 849,964 13
70 USA97: Knox 723 38,534 463,248 9
71 JPN17: Kanazawa 722 39,658 684,018 13
72 FR034: Valenciennes 687 32,133 358,729 16
73 JPN14: Hamamatsu 681 40,014 957,085 13
74 JPN21: Mito 681 36,331 703,770 14
75 DE037: Mainz 671 49,981 405,874 15
76 DE035: Karlsruhe 667 51,240 722,801 16

77 DE084:
Mannheim-Ludwigshafen 661 49,358 1,145,686 16

78 DE025: Darmstadt 661 46,621 434,462 16
79 DE005: Frankfurt am Main 648 60,351 2,544,366 15
80 USA41: Pittsburgh 646 50,378 1,441,884 11
81 JPN16: Utsunomiya 646 38,171 882,046 14
82 USA66: Montgomery (OH) 646 43,485 697,435 11
83 DE522: Heidelberg 639 41,759 677,291 16
84 JPN36: Miyazaki 639 29,868 493,598 15
85 JPN43: Akita 624 30,093 399,793 13
86 FR003: Lyon 622 45,114 1,958,191 17
87 JPN30: Tokushima 620 35,601 569,456 15
88 ES015: Santander 608 27,833 372,909 9
89 DE040: Saarbrucken 586 40,635 800,458 14
90 USA40: Hartford 585 64,337 1,216,966 9
91 JPN51: Aomori 585 30,530 309,601 11
92 UK007: Edinburgh 582 42,842 849,720 9
93 ES020: Cordoba 577 22,057 355,038 11
94 JPN41: Yamagata 571 30,785 422,839 13
95 JPN18: Oita 568 32,635 732,952 17
96 JPN48: Hakodate 562 30,317 345,811 10
97 USA04: Washington (Greater) 561 68,073 8,794,922 10
98 DE020: Wiesbaden 559 51,140 453,599 14
99 JPN39: Fukushima 548 33,569 449,041 12

100 FR012: Le Havre 537 33,328 297,916 16
101 DE533: Pforzheim 536 38,695 307,352 15
102 JPN34: Koriyama 513 33,754 518,284 12
103 ES533: Marbella 509 23,226 285,326 13
104 FR039: Avignon 505 32,098 318,245 13
105 UK557: Blackburn with Darwen 489 28,709 285,594 10
106 DE002: Hamburg 487 52,487 3,143,783 11
107 USA32: Milwaukee 485 58,426 1,571,740 10
108 UK520: Southampton 481 37,211 664,608 13
109 USA29: Sacramento 478 44,680 2,213,564 11
110 JPN40: Matsumoto 477 33,581 426,101 11
111 USA10: Atlanta 465 52,745 5,183,715 10
112 DE504: Muenster 461 49,276 512,138 12
113 DE013: Hannover 458 44,588 1,267,062 12
114 USA116: Allen 453 41,952 396,450 10
115 DE045: Iserlohn 451 39,246 420,986 12
116 FR006: Strasbourg 449 35,874 771,559 16
117 JPN27: Kofu 433 34,222 586,614 12
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118 ES009: Valladolid 431 30,983 414,196 8
119 ES022: Vigo 430 25,251 533,676 9
120 USA145: Nashville 427 58,031 294,618 10
121 FR011: Saint-Etienne 425 28,911 526,369 13
122 FR042: Dunkerque 425 30,390 273,513 17
123 JPN50: Hitachi 420 35,740 316,365 13
124 FR040: Mulhouse 414 29,505 407,282 16
125 FR044: Nimes 414 24,987 338,177 11
126 ES013: Oviedo 407 28,336 304,133 8

Top 127 JPN49: Hachinohe 405 30,196 324,182 10

128 ES501: Granada 402 22,719 538,657 11
129 DE529: Heilbronn 402 55,901 441,943 17
130 DE042: Koblenz 392 48,496 319,944 13
131 DE544: Zwickau 390 29,645 329,603 15
132 ES004: Seville 372 24,789 1,498,774 13
133 FR010: Montpellier 372 31,425 668,380 12
134 ES010: Palma de Mallorca 355 34,502 643,352 11
135 FR205: Nice 353 36,979 824,441 16
136 FR008: Nantes 348 36,454 915,985 13
137 DE033: Augsburg 345 40,217 639,038 17
138 USA28: Charlotte 343 55,486 1,839,138 9
139 JPN35: Kochi 342 28,335 513,465 16
140 FR037: Brest 336 29,048 365,055 10
141 DE513: Kassel 331 40,851 427,403 14
142 FR043: Perpignan 326 25,092 389,016 11
143 USA56: Rochester (NY) 320 46,221 857,051 10
144 USA12: Phoenix 315 43,099 4,390,565 12
145 FR215: Rouen 313 34,337 689,626 16
146 UK528: Northampton 313 35,711 457,540 13
147 JPN32: Fukui 306 36,794 547,512 14
148 DE027: Freiburg im Breisgau 303 39,783 623,036 15
149 DE001: Berlin 302 36,248 4,950,913 14
150 DE510: Lubeck 295 34,352 407,813 11
151 DE018: Halle an der Saale 292 33,026 420,210 14
152 USA43: Virginia Beach 286 46,383 1,165,789 9
153 USA08: Houston 285 72,001 6,422,530 9
154 FR026: Grenoble 282 34,031 661,221 16
155 UK560: Oxford 281 44,033 527,670 13
156 DE523: Paderborn 281 37,865 298,853 12

157 DE083: Braunschweig-Salzgitter
Wolfsburg 279 48,491 977,157 13

158 USA07: Dallas 272 60,787 6,980,428 10
159 DE537: Reutlingen 272 42,986 273,578 16
160 USA21: Cincinnati 268 54,682 2,084,836 11
161 FR004: Toulouse 267 42,275 1,277,646 12
162 DE008: Leipzig 266 33,626 978,997 15
163 UK566: Norwich 266 30,726 388,299 12
164 DE532: Ulm 263 47,753 470,839 16
165 DE061: Aschaffenburg 261 43,603 368,348 16
166 USA30: Austin 257 55,841 1,894,164 8
167 FR048: Annecy 256 32,023 272,588 15
168 DE079: Wetzlar 255 35,552 251,578 13
169 DE542: Hildesheim 248 29,355 276,440 12
170 FR017: Metz 247 27,067 368,383 14
171 UK026: Kingston upon Hull 246 26,879 593,260 11
172 DE540: Siegen 244 38,160 405,088 12
173 DE009: Dresden 241 31,378 1,327,534 16
174 ES014: Pamplona 241 38,280 362,229 11
175 DE517: Osnabruck 239 38,113 506,726 12
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176 USA15: Minneapolis 238 61,415 3,405,918 10
177 USA17: St. Louis 237 49,457 2,596,184 10
178 FR007: Bordeaux 235 35,367 1,174,012 12
179 UK569: Ipswich 235 31,738 349,520 13
180 USA25: Indianapolis 232 60,360 1,938,160 11
181 DE073: Offenburg 232 42,147 412,179 15
182 JPN44: Asahikawa 232 32,090 388,628 9
183 UK017: Cambridge 232 40,261 360,154 13
184 UK013: Newcastle upon Tyne 230 28,450 1,152,859 9
185 FR036: Angers 227 29,380 406,872 14
186 DE026: Trier 227 33,037 248,567 13
187 USA18: Denver 226 60,752 2,696,308 8
188 DE044: Kaiserslautern 226 30,696 273,554 14
189 DE520: Oldenburg (Oldenburg) 224 36,096 402,152 11
190 DE012: Bremen 221 42,075 1,230,691 12
191 FR013: Rennes 219 35,966 701,153 13
192 DE069: Rosenheim 213 37,486 307,074 18
193 FR023: Caen 211 32,169 434,109 14
194 FR022: Clermont-Ferrand 202 34,545 476,713 13
195 USA20: Portland 201 61,332 2,209,459 6
196 DE032: Erfurt 201 33,561 519,509 15
197 ES012: Vitoria 200 46,600 264,719 10
198 USA45: Fresno (Greater) 198 35,140 1,105,606 15
199 DE039: Kiel 195 36,979 632,735 10
200 UK516: Plymouth 193 28,849 396,686 11
201 USA31: Columbus 192 55,401 1,935,123 12
202 UK018: Exeter 192 28,828 460,870 11
203 FR035: Tours 183 31,733 460,093 14
204 DE028: Regensburg 178 50,009 436,621 18
205 JPN37: Morioka 178 36,463 413,105 10
206 FR016: Nancy 176 30,446 474,407 14
207 DE534: Ingolstadt 171 68,518 463,060 18
208 FR038: Le Mans 171 31,328 355,467 15
209 DE021: Gottingen 169 35,692 383,137 14
210 DE524: Wurzburg 168 41,216 497,551 16
211 FR019: Orleans 164 34,633 424,619 14
212 USA69: Charleston 152 43,545 711,407 9
213 USA42: New Orleans 150 56,524 1,219,579 8
214 JPN53: Obihiro 150 31,404 262,830 9
215 DE527: Bremerhaven 149 30,604 307,055 11
216 USA37: Memphis 146 47,895 1,302,172 10
217 FR045: Pau 146 34,751 267,702 11
218 FR014: Amiens 145 29,772 309,154 17
219 UK019: Lincoln 143 26,721 296,097 11
220 DE052: Flensburg 138 33,897 274,656 9
221 FR025: Besancon 138 29,345 270,164 15
222 FR018: Reims 137 35,964 320,879 15
223 DE077: Schweinfurt 136 44,541 267,890 16
224 USA83: Hamilton (TN) 134 40,424 542,036 11
225 USA33: Jacksonville 132 39,619 1,485,547 9
226 DE074: Gorlitz 130 27,186 264,402 17
227 DE019: Magdeburg 125 33,017 496,349 14
228 USA24: Jackson (MO) 124 52,441 1,977,173 9
229 USA19: San Antonio 122 41,750 2,298,261 8
230 DE043: Rostock 121 32,549 412,399 11
231 UK550: Dundee City 121 29,547 264,390 8
232 USA39: Oklahoma 120 50,025 1,281,128 9
233 USA52: Albany 118 45,650 976,721 8
234 FR021: Poitiers 118 31,591 266,275 13
235 FR024: Limoges 114 29,160 307,992 12
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236 FR020: Dijon 111 36,390 402,912 15
237 USA132: Lancaster (NE) 110 49,898 328,854 11
238 USA46: Richmond (Greater) 101 51,870 1,112,531 9
239 USA60: East Baton Rouge 84 55,885 819,304 10
240 USA119: Tallahassee 81 35,883 373,212 9
241 UK016: Aberdeen 77 54,812 484,840 6
242 USA59: El Paso (TX) 70 30,194 833,522 8
243 USA135: Roanoke 65 42,757 311,993 8
244 DE031: Schwerin 64 29,287 303,031 11
245 USA51: Tulsa 59 59,447 1,002,698 10
246 USA34: Salt Lake 54 51,295 1,539,116 9
247 USA108: Lafayette 54 43,007 427,049 12
248 USA89: Spokane 51 37,376 501,584 8
249 DE064: Neubrandenburg 48 27,794 278,044 12
250 USA162: Tuscaloosa 43 43,490 244,054 11
251 USA96: Montgomery (AL) 39 33,516 451,815 11
252 USA126: Lubbock 29 33,053 351,009 6
253 USA22: Las Vegas 28 41,274 2,074,253 7

Bottom
127 USA54: Albuquerque 28 38,603 929,424 7

Table A3. Ranking of 254 cities into 5 subgroups by population.

Rank Cities Population Density gdp/Capita PM2.5

1 JPN: Tokyo 35,221,137 8635 42,785 16
2 USA: New York (Greater) 20,000,933 1757 70,399 10
3 FR: Paris 11,866,785 1186 61,301 17
4 UK: London 11,544,026 2897 55,954 15
5 USA: Chicago 9,548,402 1089 58,099 11
6 USA: Washington (Greater) 8,794,922 561 68,073 10
7 JPN: Toyota 8,498,701 2403 41,974 13
8 USA: Dallas 6,980,428 272 60,787 10
9 USA: San Francisco (Greater) 6,457,022 1285 84,921 11
10 USA: Houston 6,422,530 285 72,001 9
11 USA: Philadelphia (Greater) 6,407,666 756 61,836 10
12 ES: Madrid 6,379,915 991 42,105 10
13 USA: Miami (Greater) 6,014,211 3413 42,808 7
14 USA: Atlanta 5,183,715 465 52,745 10

Top 15 DE: Berlin 4,950,913 302 36,248 14

16 USA: Phoenix 4,390,565 315 43,099 12
17 USA: Detroit (Greater) 4,360,382 885 48,811 11
18 USA: Boston 4,276,297 2343 73,186 8
19 ES: Barcelona 4,019,011 2076 42,739 14
20 USA: Minneapolis 3,405,918 238 61,415 10
21 UK: Manchester 3,246,448 1762 33,644 13
22 DE: Hamburg 3,143,783 487 52,487 11
23 USA: Denver 2,696,308 226 60,752 8
24 JPN: Fukuoka 2,680,715 5918 32,630 21
25 DE: Stuttgart 2,648,143 802 56,386 16
26 USA: St. Louis 2,596,184 237 49,457 10
27 UK: Leeds 2,550,810 740 30,926 12
28 DE: Frankfurt am Main 2,544,366 648 60,351 15
29 USA: San Antonio 2,298,261 122 41,750 8

Top 30 USA: Sacramento 2,213,564 478 44,680 11

31 USA: Portland 2,209,459 201 61,332 6
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32 JPN: Sapporo 2,192,770 1629 31,201 11
33 USA: Cincinnati 2,084,836 268 54,682 11
34 USA: Las Vegas 2,074,253 28 41,274 7
35 USA: Jackson (MO) 1,977,173 124 52,441 9
36 FR: Lyon 1,958,191 622 45,114 17
37 USA: Indianapolis 1,938,160 232 60,360 11
38 USA: Columbus 1,935,123 192 55,401 12
39 USA: Austin 1,894,164 257 55,841 8
40 USA: Charlotte 1,839,138 343 55,486 9
41 USA: New Haven 1,807,423 1068 69,899 10
42 UK: Glasgow 1,790,510 780 32,740 10
43 ES: Valencia 1,663,496 1243 28,298 12
44 USA: Milwaukee 1,571,740 485 58,426 10
45 USA: Salt Lake 1,539,116 54 51,295 9
46 JPN: Kurashiki 1,516,388 962 34,908 16
47 DE: Dusseldorf 1,511,967 1708 61,698 14
48 ES: Seville 1,498,774 372 24,789 13
49 USA: Jacksonville 1,485,547 132 39,619 9
50 JPN: Sendai 1,464,672 1435 36,011 13
51 USA: Pittsburgh 1,441,884 646 50,378 11
52 JPN: Hiroshima 1,432,615 3149 35,436 17
53 FR: Lille 1,366,909 1647 31,700 16
54 JPN: Kitakyushu 1,332,183 2680 32,749 20
55 DE: Dresden 1,327,534 241 31,378 16
56 USA: Memphis 1,302,172 146 47,895 10
57 USA: Oklahoma 1,281,128 120 50,025 9
58 FR: Toulouse 1,277,646 267 42,275 12
59 DE: Hannover 1,267,062 458 44,588 12

Top 60 DE: Bremen 1,230,691 221 42,075 12

61 USA: New Orleans 1,219,579 150 56,524 8
62 USA: Hartford 1,216,966 585 64,337 9
63 UK: Liverpool 1,178,689 6204 29,312 13
64 FR: Bordeaux 1,174,012 235 35,367 12
65 JPN: Naha 1,170,320 3715 25,838 8
66 USA: Virginia Beach 1,165,789 286 46,383 9
67 UK: Sheffield 1,154,133 4197 26,220 12
68 UK: Newcastle upon Tyne 1,152,859 230 28,450 9
69 DE: Mannheim-Ludwigshafen 1,145,686 661 49,358 16
70 USA: Erie (NY) 1,136,993 823 43,694 11
71 JPN: Kumamoto 1,130,440 753 29,811 20
72 USA: Richmond (Greater) 1,112,531 101 51,870 9
73 USA: Fresno (Greater) 1,105,606 198 35,140 15
74 JPN: Yokkaichi 1,058,231 1145 38,989 14
75 ES: Bilbao 1,033,172 770 36,936 11
76 USA: Tulsa 1,002,698 59 59,447 10
77 DE: Leipzig 978,997 266 33,626 15

78 DE: Braunschweig-Salzgitter
Wolfsburg 977,157 279 48,491 13

79 USA: Albany 976,721 118 45,650 8
80 USA: Providence 969,960 980 42,772 9
81 JPN: Hamamatsu 957,085 681 40,014 13
82 USA: Albuquerque 929,424 28 38,603 7
83 FR: Nantes 915,985 348 36,454 13
84 UK: Bristol 913,519 1048 40,865 14
85 DE: Bonn 889,551 797 51,515 13
86 UK: Nottingham 884,410 1068 29,576 13
87 JPN: Utsunomiya 882,046 646 38,171 14
88 USA: Rochester (NY) 857,051 320 46,221 10
89 UK: Leicester 849,964 728 31,141 13
90 UK: Edinburgh 849,720 582 42,842 9
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91 USA: El Paso (TX) 833,522 70 30,194 8
92 FR: Nice 824,441 353 36,979 16
93 USA: East Baton Rouge 819,304 84 55,885 10
94 JPN: Niigata 805,385 1446 34,529 14
95 DE: Saarbrucken 800,458 586 40,635 14
96 FR: Strasbourg 771,559 449 35,874 16
97 UK: Cardiff 767,542 1095 27,691 13
98 JPN: Oita 732,952 568 32,635 17
99 DE: Karlsruhe 722,801 667 51,240 16

100 JPN: Himeji 720,892 1139 31,342 16
101 JPN: Kagoshima 715,775 1473 29,173 15
102 USA: Charleston 711,407 152 43,545 9
103 JPN: Mito 703,770 681 36,331 14
104 FR: Rennes 701,153 219 35,966 13
105 USA: Montgomery (OH) 697,435 646 43,485 11
106 FR: Rouen 689,626 313 34,337 16
107 JPN: Kanazawa 684,018 722 39,658 13
108 DE: Heidelberg 677,291 639 41,759 16
109 FR: Montpellier 668,380 372 31,425 12
110 JPN: Toyohashi 665,226 961 44,353 14
111 UK: Southampton 664,608 481 37,211 13
112 FR: Grenoble 661,221 282 34,031 16
113 ES: Palma de Mallorca 643,352 355 34,502 11
114 JPN: Nagasaki 641,205 1869 29,342 17
115 DE: Augsburg 639,038 345 40,217 17
116 DE: Kiel 632,735 195 36,979 10
117 JPN: Matsuyama 625,918 6137 32,249 17
118 DE: Freiburg im Breisgau 623,036 303 39,783 15
119 ES: Las Palmas 620,841 1127 25,354 13
120 JPN: Toyama 593,754 828 37,118 12
121 UK: Kingston upon Hull 593,260 246 26,879 11
122 ES: Murcia 591,669 1992 26,062 11
123 JPN: Kofu 586,614 433 34,222 12
124 JPN: Nagano 572,858 732 33,981 12
125 JPN: Tokushima 569,456 620 35,601 15
126 JPN: Takamatsu 562,614 1285 34,900 15

Top 127 FR: Toulon 553,594 818 25,681 13

128 JPN: Numazu 553,358 1100 39,600 13
129 JPN: Fukui 547,512 306 36,794 14
130 USA: Hamilton (TN) 542,036 134 40,424 11
131 JPN: Wakayama 541,730 1180 34,473 15
132 DE: Aachen 539,521 995 38,469 13
133 ES: Granada 538,657 402 22,719 11
134 ES: Vigo 533,676 430 25,251 9
135 UK: Oxford 527,670 281 44,033 13
136 FR: Saint-Etienne 526,369 425 28,911 13
137 DE: Erfurt 519,509 201 33,561 15
138 JPN: Koriyama 518,284 513 33,754 12
139 JPN: Kochi 513,465 342 28,335 16
140 DE: Muenster 512,138 461 49,276 12
141 DE: Osnabruck 506,726 239 38,113 12
142 USA: Spokane 501,584 51 37,376 8
143 DE: Wurzburg 497,551 168 41,216 16
144 DE: Magdeburg 496,349 125 33,017 14
145 JPN: Miyazaki 493,598 639 29,868 15
146 ES: Santa Cruz de Tenerife 492,820 1311 27,235 12
147 UK: Aberdeen 484,840 77 54,812 6
148 FR: Clermont-Ferrand 476,713 202 34,545 13
149 FR: Nancy 474,407 176 30,446 14
150 UK: Stoke-on-Trent 472,866 822 26,405 11
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151 UK: Derby 472,015 783 33,806 14
152 DE: Ulm 470,839 263 47,753 16
153 UK: Middlesbrough 467,304 1907 25,983 11
154 USA: Knox 463,248 723 38,534 9
155 DE: Ingolstadt 463,060 171 68,518 18
156 UK: Exeter 460,870 192 28,828 11
157 FR: Tours 460,093 183 31,733 14
158 JPN: Fujieda 457,650 1069 39,605 14
159 UK: Northampton 457,540 313 35,711 13
160 DE: Wiesbaden 453,599 559 51,140 14
161 USA: Montgomery (AL) 451,815 39 33,516 11
162 JPN: Fukushima 449,041 548 33,569 12
163 DE: Heilbronn 441,943 402 55,901 17
164 UK: Brighton and Hove 440,222 1502 32,843 16
165 ES: Alicante 439,642 3891 23,321 12
166 DE: Regensburg 436,621 178 50,009 18
167 DE: Darmstadt 434,462 661 46,621 16
168 FR: Caen 434,109 211 32,169 14
169 DE: Kassel 427,403 331 40,851 14
170 USA: Lafayette 427,049 54 43,007 12
171 JPN: Matsumoto 426,101 477 33,581 11
172 FR: Orleans 424,619 164 34,633 14
173 JPN: Yamagata 422,839 571 30,785 13
174 DE: Iserlohn 420,986 451 39,246 12
175 DE: Halle an der Saale 420,210 292 33,026 14
176 ES: Valladolid 414,196 431 30,983 8
177 JPN: Morioka 413,105 178 36,463 10
178 DE: Rostock 412,399 121 32,549 11
179 DE: Offenburg 412,179 232 42,147 15
180 JPN: Kurume 409,982 1898 34,202 19
181 DE: Lubeck 407,813 295 34,352 11
182 FR: Mulhouse 407,282 414 29,505 16
183 FR: Angers 406,872 227 29,380 14
184 DE: Mainz 405,874 671 49,981 15
185 DE: Siegen 405,088 244 38,160 12
186 FR: Dijon 402,912 111 36,390 15
187 DE: Oldenburg (Oldenburg) 402,152 224 36,096 11
188 JPN: Akita 399,793 624 30,093 13
189 UK: Plymouth 396,686 193 28,849 11
190 USA: Allen 396,450 453 41,952 10
191 FR: Perpignan 389,016 326 25,092 11
192 JPN: Asahikawa 388,628 232 32,090 9
193 UK: Norwich 388,299 266 30,726 12
194 DE: Gottingen 383,137 169 35,692 14
195 UK: Swansea 379,975 858 25,891 12
196 USA: Tallahassee 373,212 81 35,883 9
197 ES: Santander 372,909 608 27,833 9
198 FR: Metz 368,383 247 27,067 14
199 DE: Aschaffenburg 368,348 261 43,603 16
200 FR: Brest 365,055 336 29,048 10
201 ES: Pamplona 362,229 241 38,280 11
202 UK: Cambridge 360,154 232 40,261 13
203 FR: Valenciennes 358,729 687 32,133 16
204 FR: Le Mans 355,467 171 31,328 15
205 ES: Cordoba 355,038 577 22,057 11
206 USA: Lubbock 351,009 29 33,053 6
207 UK: Ipswich 349,520 235 31,738 13
208 JPN: Hakodate 345,811 562 30,317 10
209 FR: Nimes 338,177 414 24,987 11
210 DE: Zwickau 329,603 390 29,645 15
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211 USA: Lancaster (NE) 328,854 110 49,898 11
212 UK: Blackpool 326,318 1966 26,076 13
213 JPN: Hachinohe 324,182 405 30,196 10
214 FR: Reims 320,879 137 35,964 15
215 DE: Koblenz 319,944 392 48,496 13
216 FR: Avignon 318,245 505 32,098 13
217 UK: Colchester 317,030 932 25,622 14
218 JPN: Hitachi 316,365 420 35,740 13
219 USA: Roanoke 311,993 65 42,757 8
220 JPN: Aomori 309,601 585 30,530 11
221 FR: Amiens 309,154 145 29,772 17
222 FR: Limoges 307,992 114 29,160 12
223 DE: Pforzheim 307,352 536 38,695 15
224 DE: Rosenheim 307,074 213 37,486 18
225 DE: Bremerhaven 307,055 149 30,604 11
226 ES: Oviedo 304,133 407 28,336 8
227 DE: Schwerin 303,031 64 29,287 11
228 DE: Paderborn 298,853 281 37,865 12
229 FR: Le Havre 297,916 537 33,328 16
230 ES: Gijon 296,163 863 25,587 9
231 UK: Lincoln 296,097 143 26,721 11
232 USA: Nashville 294,618 427 58,031 10
233 UK: Blackburn with Darwen 285,594 489 28,709 10
234 ES: Marbella 285,326 509 23,226 13
235 DE: Neubrandenburg 278,044 48 27,794 12
236 DE: Hildesheim 276,440 248 29,355 12
237 DE: Flensburg 274,656 138 33,897 9
238 DE: Reutlingen 273,578 272 42,986 16
239 DE: Kaiserslautern 273,554 226 30,696 14
240 FR: Dunkerque 273,513 425 30,390 17
241 FR: Annecy 272,588 256 32,023 15
242 FR: Besancon 270,164 138 29,345 15
243 DE: Schweinfurt 267,890 136 44,541 16
244 FR: Pau 267,702 146 34,751 11
245 FR: Poitiers 266,275 118 31,591 13
246 ES: Vitoria 264,719 200 46,600 10
247 DE: Gorlitz 264,402 130 27,186 17
248 UK: Dundee City 264,390 121 29,547 8
249 UK: Guildford 263,440 764 49,131 12
250 JPN: Obihiro 262,830 150 31,404 9
251 DE: Wetzlar 251,578 255 35,552 13
252 ES: Elche/Elx 249,200 4224 25,221 12
253 DE: Trier 248,567 227 33,037 13

Bottom
127 USA: Tuscaloosa 244,054 43 43,490 11
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