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Abstract
The term “immune synapse” was originally coined to highlight the similarities
between the synaptic contacts between neurons in the central nervous system
and the cognate, antigen-dependent interactions between T cells and
antigen-presenting cells. Here, instead of offering a comprehensive molecular
catalogue of molecules involved in the establishment, stabilization, function,
and resolution of the immune synapse, we follow a spatiotemporal timeline that
begins at the initiation of exploratory contacts between the T cell and the
antigen-presenting cell and ends with the termination of the contact. We focus
on specific aspects that distinguish synapses established by cytotoxic and T
helper cells as well as unresolved issues and controversies regarding the
formation of this intercellular structure.
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Introduction
The immune synapse (IS) is a central event in the development of 
the adaptive immune response that results in the activation of the 
T cell. The “synapse-like” nature of the intimate contact between 
the T cell and the antigen-presenting cell (APC) during T cell 
activation was initially proposed by Norcross in the early 1980s1, 
although the term “immunological synapse” first appeared in a 
review by Paul and Seder in 19942. The specifics of molecular seg-
regation into activation clusters at the T cell:APC interface dates 
back to the seminal observations of Kupfer’s group in 19983. At 
the same time, Dustin and Shaw conjoined both concepts (the IS 
as the physical manifestation of T cell activation, and molecular 
segregation as the functional reflection of the T cell:APC interac-
tion), adding crucial early data on the composition of the activation 
clusters4. The IS can be defined as a stimulus-driven, spatiotem-
poral segregation of molecules that participate in T cell activa-
tion. Segregation requires the establishment of an intimate contact 
between a T lymphocyte and an APC. The molecular redistribu-
tion is antigen dependent, requiring the interaction of an antigen- 
specific T cell receptor (TCR) with an antigen-loaded major 
histocompatibility complex (MHC) molecule. The features and 
outcome of the IS depend on the type of T cell and APC. The inter-
action of a CD4+ T helper (T

H
) cell with an antigen-loaded MHC-

II-bearing APC results in the specific recognition of the antigen and 
the activation of the T cell, i.e. proliferation, cytokine secretion, 
expression of effector molecules, etc. In the case of CD8+ T (CTL) 
cells interacting with cells displaying antigen-associated MHC-I, 
the outcome depends on the pre-exposure of the CTL to the antigen. 
Naïve CTL encountering specific antigens presented by APCs (e.g. 
dendritic cells [DCs] expressing antigen associated with class I via 
cross-presentation) are primed (“armed”) to kill target cells and 
proliferate. Primed CTL also form transient IS with target cells 
(tumor cells or cells infected by a virus), resulting in specific killing.

The IS displays remarkable similarities with the neuronal synapse 
(NS), to which it owes its name. For spatial and functional refer-
ence, the APC is better compared to the pre-synaptic terminal, and 
the T cell to the post-synaptic terminal. The presynaptic portal pro-
vides the initiating signal, soluble in the NS (neurotransmitters), but 
membrane bound in the IS (antigen-bearing MHC). Upon ligation 
of the key receptor in the post-synaptic terminal (neurotransmitter 
receptors in the NS; TCR and its signaling co-receptor CD3 in the 
IS), downstream signaling ensues, including calcium mobilization, 
actin remodeling, and functional activation of the post-synaptic 
cell1,5. However, a unique feature of the IS consists of specific anti-
genic recognition, which is absent in the central nervous system 
(CNS). Another difference is the duration of the contact: whereas 
some NS can last for days, weeks, or even months, IS between CTL 
and target cells resolve in minutes, whereas between T

H
 cells and 

APCs they can last from several hours to two days6,7. This feature 
change implies a different meaning for the concept of plasticity. In 
the NS, it refers to the modifications to the post-synaptic terminal 
that involve the consolidation and adaptation of the post-synaptic 
terminal to the flux of signal stemming from the pre-synaptic portal. 
In the IS, plasticity follows contact resolution and could be used to 
describe the functional changes to the T cell caused by the estab-
lishment of a productive synapse. These include activation (T

H
), 

activation (naïve CTL) or kill (primed CTL), and functional anergy 

or apoptosis, e.g. during thymic selection of naïve T cells. A major 
manifestation of functional plasticity is the development of immu-
nological memory, i.e. the generation of long-lived T cells primed 
to respond to a specific antigen that trigger a much faster and more 
efficient response to repeated exposure to the same antigen.

Overview of the spatiotemporal events of the IS
The study of the IS has focused on the establishment of hierarchi-
cal, spatiotemporally segregated events during the contact between 
the APC and the T cell. These events include the following:

1)   Establishment of low-affinity, exploratory contacts between 
the T cell and the APC

2)   Initial, scattered contact of the TCR with the antigen-
loaded MHC on the APC, followed by initiation of TCR-
dependent signaling pathways upon specific recognition of 
the MHC-peptide complex. Such activation is “umbrella 
shaped” (simultaneous activation and amplification of 
multiple pathways through different sets of effectors) and 
induces the activation of multiple effectors, including 
membrane-bound molecules, e.g. integrins, signaling adap-
tors, cytoskeletal elements, and transcription factors

3)   Transactivation of adhesion molecules (integrins) that con-
solidate the interaction between the T cell and the APC. 
This step actually begins after initial TCR activation (step 
2), but they evolve in parallel

4)   Cytoskeleton- and signaling-dependent clustering of adhe-
sion molecules and the TCR/CD3 complex at the contact 
interface between the T cell and the APC. In most cases, 
clustering is spatiotemporally segregated, i.e. the TCR/CD3 
clusters and the integrin clusters, and their respective sets of 
adaptors, are separated

5)   Signaling- and motor-dependent positioning of the secretory 
apparatus (including microtubules and microtubule-binding 
proteins) to the contact interface of the T cell

6)   (Primed CTL only, also natural killer [NK] cells) Actin 
clearance at the center of the contact interface, enabling a 
tight association of the secretory apparatus with the plasma 
membrane

7-i)   (T
H
 cells) Stabilization of the contact and transcriptional 

activation of the T cell, including cytokine production and 
the expression of activation markers

7-ii)   (Naïve CTL) Stabilization of the contact, priming and acti-
vation

7-iii)  (Primed CTL and NK cells) Degranulation and target cell 
killing

8)   Termination of the contact

From this flowchart, it becomes obvious that a major difference 
between the IS established by CTL and that established by T

H
 cells 

is the overall duration of the process and its immediate repeatabil-
ity. CTL contacts are quick (to eliminate target cells rapidly), and 
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CTLs can establish multiple IS with different target cells over short 
periods of time. Conversely, T

H
 cells establish prolonged IS and do 

not form consecutive IS once activated properly.

In the following sections, we will develop emerging concepts per-
taining to each of these spatiotemporal events.

Exploratory contacts
Exploratory contacts are mediated by low-affinity interactions 
between specific ligands and receptors. A major factor is the 
glycocalyx, which establishes charge-dependent repulsive interac-
tions between the APC and the T cell (reviewed in 8). Additional 
contacts are mediated by glycosylation-dependent, low-affinity 
interactions, e.g. via galectins. For example, galectins bind TCR 
molecules with low affinity, thus the TCR does not activate9. Anti-
gen-loaded MHC molecules successfully compete with galectin to 
trigger TCR/CD3 activation and subsequent cytoskeletal remod-
eling and transcriptional activation (see below). Chemokine recep-
tors also participate in the formation and subsequent stabilization 
of the initial contacts and localize in the IS. Possible functions 
for chemokine receptors in this subcellular region are likely to 
involve co-stimulation, cell attraction, enhancement of actin 
polymerization, etc.10. Other exploratory contacts depend on spe-
cific protein-protein interactions, e.g. LFA-1 (α

L
β

2
) (APC) with 

ICAM-3 (T cell)11, and LFA-3 (APC) with CD2 (T cell). LFA-1 
interacts with ICAM-3 while in a low-affinity conformation12. 
Likewise, LFA-3 interacts with CD2 with suitable low affinity13, 
although the glycocalyces are likely to hinder their interaction 
sterically14. These contacts allow the transient interaction of the 
TCR with peptide-loaded MHC. If such interaction bears enough 
affinity, it overcomes the repulsive forces between the glycocalyces; 
if not, repulsion dominates and the unproductive contact between 
the mismatched T cell and APC is resolved.

TCR ligation and initial signaling
Successful interaction of the TCR/CD3 complex with peptide-
loaded MHC initiates signaling. It is important to point out that 
very few TCR-MHC interactions are sufficient to trigger T cell 
activation15. Recent reviews have described the current viewpoints 
on TCR/CD3 signaling16,17. Here, we will focus on several aspects 
of TCR binding and initial signaling that are specific to IS forma-
tion and shape the rest of the process.

Productive TCR engagement promotes its immobilization and clus-
tering in the contact area18. This is mediated in part by its interac-
tion with the MHC on the APC, which restricts the possible lateral 
movement of the TCR to the interacting portion of the plasma mem-
brane of the T cell with the APC. However, the TCR/CD3 complex 
appears more immobile and clustered than predicted by a model of 
free diffusion in a semi-planar layer8, suggesting additional mecha-
nisms of immobilization and aggregation. A crucial mechanism is 
the association of the TCR/CD3 complex with the actin cortex19,20. A 
recent study has shown that ligated TCR/CD3 molecules modify the 
flow of actin underneath them, indicating binding-dependent inter-
actions between the TCR and cortical actin21, which are essential for 
sustained TCR-dependent signaling22. Such interaction is not direct 
but relies on the recruitment of actin-binding adaptors, e.g. Nck23.

Another important topic is cluster size. There is evidence of small 
(nanosized) TCR clusters even before their interaction with the 
MHC. These nanoclusters are continually generated throughout 
the plasma membrane of the T cell24 and migrate and coalesce at 
the center of the contact to form micron-scale structures, termed 
central Supramolecular Activation Clusters (cSMACs) (Figure 1, 
top)25, which concentrate signaling components (reviewed in 26) 
as well as molecules involved in co-stimulation, e.g. CD2827. The 
mechanism of coalescence is also unclear, but it also depends on 
actin and TCR ligation28. Possible explanations involve increases 
in homotypic TCR lateral affinity, actin coalescence that 
would “drag” the TCR nanoclusters together, or changes to the 
size/position of the membrane nanoclusters based on alterations 
to the regional composition of the plasma membrane. The princi-
ples of spatiotemporal assembly of such structures remain unclear, 
mainly because of differences depending on the type of T cell and 
APC. In general, T cells that bear a higher basal activation state 
(e.g. leukemic T cells or memory T cells) form large clusters more 
readily than resting, naïve T cells. In the latter, TCR/CD3 clusters 
often remain small and sparse along the contact area between the 
T cell and the APC29,30. The difference could pertain to the expres-
sion of additional components in activated cells that promote, or 
facilitate, TCR/CD3 clustering in more pre-activated cells and/or 
that signals emanating from the TCR/CD3 are more intense in 
pre-activated cells owing to a higher activation baseline.

Adhesive interactions
TCR-dependent inside-out signals trigger the conformational 
extension of integrin LFA-1, enabling its interaction with APC-
expressed ICAM-1 (reviewed in 31). This process is simi-
lar to the inside-out signaling that activates integrins during 
extravasation32, and it results in stable adhesion between the 
APC and the T cell.

TCR signals that mediate LFA-1 trans-activation go through 
several adaptor circuits, including Rap1-RapL-RIAM and SLP-76/
ADAP/SKAP (Figure 2). Rap1 is a small Ras-like GTPase that is 
activated by RasGEFs triggered by the TCR, e.g. CalDAG-1. Active 
Rap1 forms a complex with RapL and RIAM that targets talin to the 
plasma membrane33, where it promotes the conformational exten-
sion of LFA-134. SLP-76/ADAP/SKAP-55 bind to the TCR effector 
LAT, triggering their association to RIAM, thereby participating in 
the delivery of talin to the integrin35.

Another important molecule for the inside-out activation of LFA-1  
via TCR is kindlin-3. Kindlin-3 mutations cause a severe form 
of immunodeficiency, named Leukocyte Adhesion Deficiency  
(LAD)-III36,37. LAD-III T cells do not migrate properly and activate 
poorly due to impaired adhesion mediated by LFA-138. There are 
two possible mechanisms to explain the role of kindlin-3 in LFA-1 
transactivation. One mechanism postulates that kindlin-3 triggers 
inside-out activation of LFA-1 by binding directly to the β chain 
cytoplasmic domain. The other mechanism suggests that kindlin-3 
could facilitate the binding of talin, or its effect on the conforma-
tional extension of LFA-1 (reviewed in 39). Recruitment of kindlin-3 
to LFA-1 is likely mediated by its interaction with ADAP, as in 
platelet integrin α

IIB
β

3
40 (Figure 2).
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Figure 1. Key events during the formation of the immune synapse. Top, diagram represents the adhesion of the T cell (left) to the antigen-
presenting cell (APC) (right), and the early formation of discrete domains, central supramolecular activation cluster (cSMAC) (red) containing 
the T cell receptor (TCR)/CD3 complex and signaling proteins, and the peripheral SMAC (pSMAC) (blue) displaying integrins and their adaptor 
proteins. Bottom left column, events in the T helper (TH) formation of a synapse with a professional APC, including F-actin accumulation (top, 
in red) and juxtaposition of the secretory apparatus (green) and the microtubule-directing centrosome (bottom, in black), resulting in the 
polarized secretion of exosomes (bright-green spheres) and the non-polarized secretion of cytokines (stars). Bottom right column, events in 
the CD8+ T (CTL) synapse, including F-actin accumulation and the formation of a secretory domain with weak actin presence (top) and the 
juxtaposition of the secretory apparatus (purple) and the microtubule-directing centrosome (bottom, in black), resulting in the highly polarized 
secretion of lytic particles that kill the target cell.
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LFA-1 is the predominant integrin that mediates the interaction of 
T

H
 cells with APC. It is also important for the formation of IS 

between CTL and target cells. However, it is unlikely that every 
target cell expresses ICAM-1, thus additional integrins may be 
implicated in the formation of IS. Prior studies have described 
possible roles for VLA-4 (α

4
β

1
) and VLA-5 (α

5
β

1
) in the IS 

(reviewed in 41), but their ligands as well as their redundant/unique 
functions with respect to LFA-1 remain unclear. Spatially, integrins 
localize throughout the contact area of the T cell and the APC. 
In activated cells (e.g. super-antigen-triggered clonal leukemic 
T cells), integrins localize in the outer edge of the contact zone, 
defining a peripheral SMAC (pSMAC) (Figure 1, top).

Actin reorganization at the IS
Outside-in signals stemming from the TCR and integrins promote 
actin polymerization and clustering at the T cell:APC interface 
(Figure 1). As discussed above, actin accumulation is fundamental 
for the clustering of the TCR and the integrins, forming a positive 
feedback loop. TCR/CD3 and integrins trigger actin polymeriza-
tion through several pathways. A major pathway of TCR-medi-
ated actin polymerization depends on the small GTPase Rac1. The 
TCR activates several Rac GEFs, including Vav142 and Tiam143. 
Rac promotes branched actin accumulation by activating a multi-
molecular complex that includes WAVE (Scar), HSP300, ABL2, 
SRA1, and NAP1. This complex associates with the Arp2/3 com-
plex, triggering actin polymerization, as reviewed elsewhere44. 
Wiskott-Aldrich syndrome protein (WASP) is a protein related to 

WAVE that also induces Arp2/3-dependent actin polymerization 
downstream of the TCR, but it is activated by the small GTPase 
Cdc4245.

The contribution of other mechanisms of actin polymerization to 
the congregation of actin at the contact area with the APC is less 
clear. During the first steps of the formation of the IS, molecular 
regulators of actin assembly, e.g. ADF/cofilin, are involved in the 
dynamic reorganization and accumulation of actin at the contact 
region. For example, depletion of ADF/cofilin function in T cells 
enhances the accumulation of actin at the IS46. Formins, e.g. mDia, 
are barbed end nucleators that bind to the uncapped actin filament 
through one domain and to G-actin-loaded profilin through another, 
thereby catalyzing G-actin transfer from profilin to the barbed end. 
mDia-deficient T cells activate and migrate deficiently47. Finally, the 
Arp2/3 complex, which nucleates dendritic actin polymerization at 
the lamellipodium of migrating cells48, also participates in the for-
mation of actin lamellae at the IS, although differently shaped actin 
can accumulate at the IS in the absence of the Arp2/3 complex, in a 
formin-dependent manner49.

Actin accumulation is also regulated by the function of actin- 
binding proteins involved in its cross-linking. For example, 
α-actinin and filamin accumulate at the IS and are required for 
proper T cell activation in response to antigen-loaded MHC50,51. 
It is important to note that these two actin cross-linkers also bind 
directly to the cytoplasmic tail of β integrins52,53 (Figure 2), hence 

Figure 2. T cell receptor-dependent transactivation of LFA-1. Diagram depicts the major interactions involved in actin-dependent T cell 
receptor (TCR) and integrin immobilization at the immune synapse (IS), including the signaling modules involved in LFA-1 transactivation. The 
diagram focuses on the role of SLP-76/ADAP/SKAP-55 in recruiting kindlin-3 and RIAM in proximity to integrin, and the role of Rap/RapL/RIAM 
in promoting talin association with the β chain of the LFA-1 dimer.
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they play a dual function facilitating actin and integrin accumula-
tion at the synapse. Other cross-linkers, e.g. non-muscle myosin 
II (NMII), are also involved in the formation of efficient syn-
apses. However, the role of NMII in IS formation is controver-
sial. Some studies have shown that NMII affects TCR clustering 
into the cSMAC54,55, likely due to impaired actin-dependent flux 
of the TCR towards the contact area56, but other studies suggest a 
minimal involvement of this molecule in the formation of the IS57,58. 
The differences between these studies likely reside in the type of 
T cell and APC used. NMII may play an additional role by 
regulating the mechanics of the contact interface of the T cell and 
the APC. In this regard, changes to the rigidity of the APC surface 
(and NMII inhibition) affect T cell activation59, indicating that the 
mechanics of the interfacing surfaces also play a role in the process.

Polarization of the secretory apparatus and the centrosome
TCR and integrin signaling promotes a dramatic redistribution of 
cellular components in the T cell, most notably the redistribution of 
the secretory apparatus (centrosome and Golgi, reviewed recently 
in 60) and machinery involved in the generation of extracellular 
vesicles61 towards the contact area with the APC (Figure 1, both 
columns). A major difference with the neuronal synapse is that the 
secretory apparatus of the APC does not polarize towards the post-
synaptic cell (the T cell). This is a crucial event during this process 
that is often used as a marker of IS maturation. It depends on the 
activation of microtubule motors, e.g. dynein, which “reel in” the 
centrosome and the associated secretory elements towards the sig-
naling area. This process has been reviewed in detail elsewhere62–64. 
In IS formed between CTL and target cells, this polarization ensures 
the rapid and specific lysis of the target cell (Figure 1, bottom right 
column, and next two sections). A major argument to explain the 
polarization of the secretory apparatus in T

H
 cells has emerged 

recently with the discovery of the unidirectional transmission of 
microRNA-containing exosomes from the T

H
 cell to the APC65 

(Figure 1, bottom left column), which could influence the activation 
state of the APC, inducing functional activation or anergy of the 
APC depending on the microRNAs contained in the exosomes.

Formation of a secretory domain in the CTL synapse
Actin accumulation at the IS facilitates the initial activation of the 
T cell by immobilizing receptors involved in the contact with the 
APC and sustaining localized signaling. However, it also consti-
tutes a steric hindrance for polarized secretion. In the early 2000s, 
Griffiths’ group described the clearance of a part of central actin 
in maturing cytotoxic IS (Figure 1, right column). Such a zone, 
containing less actin than its surroundings, coincided with the 
localization of intracellular granzyme66, suggesting that the region 
of actin clearance acted as a gate that enabled efficient secretion 
towards the target cell. However, recent studies have indicated that 
very small openings in the cortical actin may be sufficient for effi-
cient vesicle delivery67,68. The mechanism of actin clearance at the 
cytotoxic synapse remains unclear. A recent study indicates that 
coronin 1A is a key mediator of actin remodeling and clearance at 
the contact area to form the secretory domain69. The contribution 
of other actin mediators of depolymerization, e.g. cofilin, has been 
suggested but not directly demonstrated70. This scenario implicates 

that the depolymerization signal stems from receptors localized at 
the CTL side of the IS. An intriguing possibility, untested yet, is that  
secretory granules directly depolymerize actin at the IS by carrying 
actin remodeling factors in their surface.

Target cell killing/T cell activation
In the case of pre-primed CTL-contacting target cells bearing 
antigen-loaded MHC-I, the subsequent steps of this process 
involve the secretion of granzyme- and perforin-loaded vesicles to 
kill the target cell (Figure 1, bottom right column). This has been 
reviewed in detail elsewhere71–73. Before that, naïve CTLs undergo 
priming (i.e. expression of lytic enzymes and their load into the 
secretory apparatus) at the secondary lymphoid organs (SLOs) 
when they enter into contact with mature DCs bearing suitable 
antigens associated with MHC-I. Direct priming occurs only 
when a) the pathogen infects and activates DCs directly and b) the 
pathogen-infected cell (or tumor cell) migrates directly into the 
SLO. Importantly, the establishment of IS between naïve CTLs 
and immature DCs leads to cross-tolerance, i.e. the inability of the 
CTL to activate properly74. This is likely an important mechanism 
of induction of tolerance involved in tumor evasion.

On the other hand, T
H
–APC contacts trigger a transcriptional pro-

gram that results in the activation of the T
H
, including expression 

of activation markers, e.g. CD69 and CD25, and cytokine secre-
tion, e.g. IFN-γ and IL-2 (Figure 1, bottom left column). The main 
function of these cytokines is to create an activating microenviron-
ment for other immune cells in a paracrine manner. At the site of 
infection, these cytokines activate other effector cells, particularly 
macrophages involved in pathogen clearance, CTLs, and NK cells.

Additional molecules induced by the establishment of IS include 
mediators of cell proliferation downstream of NF-AT, AP1, and  
NF-kB (reviewed in 75) as well as receptors implicated in the migra-
tion of the activated cell to the inflammatory site, e.g. CCR576.

IS termination
The specific signals that promote termination of the IS are unclear. 
In the case of IS of CTL with target cells, a clear candidate to 
promote termination of the contact is the flip-flop of the plasma 
membrane of the target cell due to the effect of the lytic enzymes 
secreted by the CTL. In such a mechanism, the CTL would rec-
ognize phosphatidylserine, annexin V, or other components of the 
inner leaflet of the plasma membrane of the target cell. In the case 
of naïve CTL or T

H
 cells, the mechanism is less clear but likely 

involves the exhaustion of the TCR recycling process over extended 
periods of stimulation77. Importantly, signaling molecules involved 
in the formation and function of the IS, e.g. PKCtheta, are also 
involved in synapse breakdown, constituting a possible mechanism 
of early remodeling of the IS78.

Concluding remarks: towards the application of 
manipulating the IS in biomedicine
In recent years, the need for new therapies against multidrug-
resistant tumors and the secondary effects of current therapies, 
e.g. chemotherapy, have led to the study and the development of 
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better “targeted” therapies with less deleterious side effects for 
patients. Therefore, enhancing the ability of the immune system to 
detect and remove pathological cells through recognition of tumor 
or different expression patterns of the target cells is a crucial step 
to develop better therapies. Another important issue is to counteract 
the evasive mechanisms developed by pathogens and tumor cells.

One approach aimed at improving the immune response against 
tumor cells consists of autologous or allogeneic tumor vaccination 
(Figure 3, top right). These approaches are aimed at generating 
strong CTL responses against tumor cells based on their specific 
molecular makeup. The underlying mechanism consists of vaccine-
mediated CTL priming by vaccine-stimulated APC (mainly DCs), 
which would then home to the tumor and rapidly form an IS with 
the tumor cells, killing them. Several trials based on this approach 
are reviewed here79. Another possibility is the genetic immuniza-
tion of patients (DNA vaccination) through DCs. The major limit-
ing factor is the need for safe and specific carriers. An attractive 

possibility is the use of in vivo DC-targeting liposomal DNA 
vaccine carriers80.

Approaches aimed at suppressing the effects of the evasive maneu-
vers of tumor cells have also been tested in recent years (Figure 3, 
top left). For example, tumor cells are believed to promote the 
expression of CTLA-4, which is a molecule expressed by T cells 
that competes with CD28 for the co-stimulatory molecule CD80 
(B7.1), thereby suppressing T cell activation. The US Food 
and Drug Administration (FDA) and the European Medicines 
Agency (EMA) have approved the use of a humanized mono-
clonal antibody against CTLA-4 for the treatment of late-stage 
melanoma81. Similar approaches have been developed for PD-1, 
which is another inhibitory receptor that suppresses T cell 
responses independent of CD28 but dependent of its ligands 
PD-L1 and PD-L2, which are abundantly expressed by several 
types of tumor cells82. A number of antibodies against PD-1 and 
PD-L1/2 are being developed by big pharmaceutical companies 

Figure 3. Therapy-based enhancement of immune synapse formation between T cells and tumor antigen-presenting dendritic cells. 
Top left, poorly responding T cells are treated with antibodies that block inhibitory molecules such as CTLA-4 and PD-1, or inhibitory ligands 
of the latter, e.g. PD-L1/2. Bottom left inlay, representation of the effect of anti-CTLA-4 blockade, which blocks inhibitory signals emanating 
from CTLA-4 that counteract TCR/CD3-dependent signals and also releases CD80 to co-stimulate via interaction with CD28; also depicted is 
the effect of anti-PD-1 or anti-PD-L1/2 monoclonal antibodies (mAbs), which prevent their interaction and the generation of inhibitory signals. 
Top right, direct vaccination of dendritic cells with tumor DNA or autologous or allogeneic tumor extracts. Bottom right, either treatment should 
enhance T cell response against tumor antigens.
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aiming to find different anti-tumor therapies83–85. At a molecular 
level, CTLA-4 binding to CD28 disrupts TCR clustering, effec-
tively destabilizing the IS86. Likewise, PD-1 accumulation at the 
IS recruits protein phosphatases, such as SHP-2, that quench the 
stimulating signals emanating from the synapse87.

Clearly, these studies and novel forms of treatment are of outstand-
ing importance in the development of new treatments for the more 
aggressive and less-tractable types of cancer and are likely the 
beginning of a new era of molecular treatment of cancer.
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